1
|
Fallet M, Blanc M, Di Criscio M, Antczak P, Engwall M, Guerrero Bosagna C, Rüegg J, Keiter SH. Present and future challenges for the investigation of transgenerational epigenetic inheritance. ENVIRONMENT INTERNATIONAL 2023; 172:107776. [PMID: 36731188 DOI: 10.1016/j.envint.2023.107776] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic pathways are essential in different biological processes and in phenotype-environment interactions in response to different stressors and they can induce phenotypic plasticity. They encompass several processes that are mitotically and, in some cases, meiotically heritable, so they can be transferred to subsequent generations via the germline. Transgenerational Epigenetic Inheritance (TEI) describes the phenomenon that phenotypic traits, such as changes in fertility, metabolic function, or behavior, induced by environmental factors (e.g., parental care, pathogens, pollutants, climate change), can be transferred to offspring generations via epigenetic mechanisms. Investigations on TEI contribute to deciphering the role of epigenetic mechanisms in adaptation, adversity, and evolution. However, molecular mechanisms underlying the transmission of epigenetic changes between generations, and the downstream chain of events leading to persistent phenotypic changes, remain unclear. Therefore, inter-, (transmission of information between parental and offspring generation via direct exposure) and transgenerational (transmission of information through several generations with disappearance of the triggering factor) consequences of epigenetic modifications remain major issues in the field of modern biology. In this article, we review and describe the major gaps and issues still encountered in the TEI field: the general challenges faced in epigenetic research; deciphering the key epigenetic mechanisms in inheritance processes; identifying the relevant drivers for TEI and implement a collaborative and multi-disciplinary approach to study TEI. Finally, we provide suggestions on how to overcome these challenges and ultimately be able to identify the specific contribution of epigenetics in transgenerational inheritance and use the correct tools for environmental science investigation and biomarkers identification.
Collapse
Affiliation(s)
- Manon Fallet
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden; Department of Biochemistry, Dorothy Crowfoot Hodgkin Building, University of Oxford, South Parks Rd, Oxford OX1 3QU, United Kingdom.
| | - Mélanie Blanc
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Michela Di Criscio
- Department of Organismal Biology, Uppsala University, Norbyv. 18A, 75236 Uppsala, Sweden
| | - Philipp Antczak
- University of Cologne, Faculty of Medicine and Cologne University Hospital, Center for Molecular Medicine Cologne, Germany; Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Magnus Engwall
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| | | | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Norbyv. 18A, 75236 Uppsala, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, 70182 Örebro, Sweden
| |
Collapse
|
2
|
Cell-of-Origin and Genetic, Epigenetic, and Microenvironmental Factors Contribute to the Intra-Tumoral Heterogeneity of Pediatric Intracranial Ependymoma. Cancers (Basel) 2021; 13:cancers13236100. [PMID: 34885210 PMCID: PMC8657076 DOI: 10.3390/cancers13236100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intra-tumoral heterogeneity (ITH) is a complex multifaceted phenomenon that posits major challenges for the clinical management of cancer patients. Genetic, epigenetic, and microenvironmental factors are concurrent drivers of diversity among the distinct populations of cancer cells. ITH may also be installed by cancer stem cells (CSCs), that foster unidirectional hierarchy of cellular phenotypes or, alternatively, shift dynamically between distinct cellular states. Ependymoma (EPN), a molecularly heterogeneous group of tumors, shows a specific spatiotemporal distribution that suggests a link between ependymomagenesis and alterations of the biological processes involved in embryonic brain development. In children, EPN most often arises intra-cranially and is associated with an adverse outcome. Emerging evidence shows that EPN displays large intra-patient heterogeneity. In this review, after touching on EPN inter-tumoral heterogeneity, we focus on the sources of ITH in pediatric intra-cranial EPN in the framework of the CSC paradigm. We also examine how single-cell technology has shed new light on the complexity and developmental origins of EPN and the potential impact that this understanding may have on the therapeutic strategies against this deadly pediatric malignancy.
Collapse
|
3
|
Nickel AC, Picard D, Qin N, Wolter M, Kaulich K, Hewera M, Pauck D, Marquardt V, Torga G, Muhammad S, Zhang W, Schnell O, Steiger HJ, Hänggi D, Fritsche E, Her NG, Nam DH, Carro MS, Remke M, Reifenberger G, Kahlert UD. Longitudinal stability of molecular alterations and drug response profiles in tumor spheroid cell lines enables reproducible analyses. Biomed Pharmacother 2021; 144:112278. [PMID: 34628166 DOI: 10.1016/j.biopha.2021.112278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
The utility of patient-derived tumor cell lines as experimental models for glioblastoma has been challenged by limited representation of the in vivo tumor biology and low clinical translatability. Here, we report on longitudinal epigenetic and transcriptional profiling of seven glioblastoma spheroid cell line models cultured over an extended period. Molecular profiles were associated with drug response data obtained for 231 clinically used drugs. We show that the glioblastoma spheroid models remained molecularly stable and displayed reproducible drug responses over prolonged culture times of 30 in vitro passages. Integration of gene expression and drug response data identified predictive gene signatures linked to sensitivity to specific drugs, indicating the potential of gene expression-based prediction of glioblastoma therapy response. Our data thus empowers glioblastoma spheroid disease modeling as a useful preclinical assay that may uncover novel therapeutic vulnerabilities and associated molecular alterations.
Collapse
Affiliation(s)
- A C Nickel
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - D Picard
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - N Qin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - M Wolter
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - K Kaulich
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - M Hewera
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - D Pauck
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - V Marquardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - G Torga
- Drug Development Unit, Sarah Cannon Research Institute, London, UK
| | - S Muhammad
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - W Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - O Schnell
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - H-J Steiger
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - D Hänggi
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - E Fritsche
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - N-G Her
- R&D Center, AIMEDBIO Inc., Seoul, South Korea
| | - D-H Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, South Korea
| | - M S Carro
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - M Remke
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - G Reifenberger
- Institute of Neuropathology, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - U D Kahlert
- Department of Neurosurgery, University Hospital Düsseldorf and Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Molecular and Experimental Surgery, Department of General, Visceral, Vascular, and Transplant Surgery, University Hospital Magdeburg, Magdeburg, Germany.
| |
Collapse
|
4
|
Wang G, Jia Y, Ye Y, Kang E, Chen H, Wang J, He X. Identification of key methylation differentially expressed genes in posterior fossa ependymoma based on epigenomic and transcriptome analysis. J Transl Med 2021; 19:174. [PMID: 33902636 PMCID: PMC8077736 DOI: 10.1186/s12967-021-02834-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Background Posterior fossa ependymoma (EPN-PF) can be classified into Group A posterior fossa ependymoma (EPN-PFA) and Group B posterior fossa ependymoma (EPN-PFB) according to DNA CpG island methylation profile status and gene expression. EPN-PFA usually occurs in children younger than 5 years and has a poor prognosis. Methods Using epigenome and transcriptome microarray data, a multi-component weighted gene co-expression network analysis (WGCNA) was used to systematically identify the hub genes of EPN-PF. We downloaded two microarray datasets (GSE66354 and GSE114523) from the Gene Expression Omnibus (GEO) database. The Limma R package was used to identify differentially expressed genes (DEGs), and ChAMP R was used to analyze the differential methylation genes (DMGs) between EPN-PFA and EPN-PFB. GO and KEGG enrichment analyses were performed using the Metascape database. Results GO analysis showed that enriched genes were significantly enriched in the extracellular matrix organization, adaptive immune response, membrane raft, focal adhesion, NF-kappa B pathway, and axon guidance, as suggested by KEGG analysis. Through WGCNA, we found that MEblue had a significant correlation with EPN-PF (R = 0.69, P = 1 × 10–08) and selected the 180 hub genes in the blue module. By comparing the DEGs, DMGs, and hub genes in the co-expression network, we identified five hypermethylated, lower expressed genes in EPN-PFA (ATP4B, CCDC151, DMKN, SCN4B, and TUBA4B), and three of them were confirmed by IHC. Conclusion ssGSEA and GSVA analysis indicated that these five hub genes could lead to poor prognosis by inducing hypoxia, PI3K-Akt-mTOR, and TNFα-NFKB pathways. Further study of these dysmethylated hub genes in EPN-PF and the pathways they participate in may provides new ideas for EPN-PF treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02834-1.
Collapse
Affiliation(s)
- Guanyi Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Yibin Jia
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China.,Department of Neurosurgery, PLA 163Rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, 410000, China
| | - Enming Kang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Huijun Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Jiayou Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, 710032, China.
| |
Collapse
|
5
|
Masalmeh RHA, Taglini F, Rubio-Ramon C, Musialik KI, Higham J, Davidson-Smith H, Kafetzopoulos I, Pawlicka KP, Finan HM, Clark R, Wills J, Finch AJ, Murphy L, Sproul D. De novo DNA methyltransferase activity in colorectal cancer is directed towards H3K36me3 marked CpG islands. Nat Commun 2021; 12:694. [PMID: 33514701 PMCID: PMC7846778 DOI: 10.1038/s41467-020-20716-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The aberrant gain of DNA methylation at CpG islands is frequently observed in colorectal tumours and may silence the expression of tumour suppressors such as MLH1. Current models propose that these CpG islands are targeted by de novo DNA methyltransferases in a sequence-specific manner, but this has not been tested. Using ectopically integrated CpG islands, here we find that aberrantly methylated CpG islands are subject to low levels of de novo DNA methylation activity in colorectal cancer cells. By delineating DNA methyltransferase targets, we find that instead de novo DNA methylation activity is targeted primarily to CpG islands marked by the histone modification H3K36me3, a mark associated with transcriptional elongation. These H3K36me3 marked CpG islands are heavily methylated in colorectal tumours and the normal colon suggesting that de novo DNA methyltransferase activity at CpG islands in colorectal cancer is focused on similar targets to normal tissues and not greatly remodelled by tumourigenesis.
Collapse
Affiliation(s)
| | - Francesca Taglini
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Cristina Rubio-Ramon
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Kamila I Musialik
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Jonathan Higham
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
| | | | - Ioannis Kafetzopoulos
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Kamila P Pawlicka
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Hannah M Finan
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Richard Clark
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Jimi Wills
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
| | - Andrew J Finch
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Lee Murphy
- Edinburgh Clinical Research Facility, University of Edinburgh, Edinburgh, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Edinburgh, UK.
- CRUK Edinburgh Centre, IGMM, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Nambirajan A, Sharma A, Rajeshwari M, Boorgula MT, Doddamani R, Garg A, Suri V, Sarkar C, Sharma MC. EZH2 inhibitory protein (EZHIP/Cxorf67) expression correlates strongly with H3K27me3 loss in posterior fossa ependymomas and is mutually exclusive with H3K27M mutations. Brain Tumor Pathol 2020; 38:30-40. [PMID: 33130928 DOI: 10.1007/s10014-020-00385-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 11/30/2022]
Abstract
The PFA molecular subgroup of posterior fossa ependymomas (PF-EPNs) shows poor outcome. H3K27me3 (me3) loss by immunohistochemistry (IHC) is a surrogate marker for PFA wherein its loss is attributed to overexpression of Cxorf67/EZH2 inhibitory protein (EZHIP), C17orf96, and ATRX loss. We aimed to subgroup PF-EPNs using me3 IHC and study correlations of the molecular subgroups with other histone related proteins, 1q gain, Tenascin C and outcome. IHC for me3, acetyl-H3K27, H3K27M, ATRX, EZH2, EZHIP, C17orf96, Tenascin-C, and fluorescence in-situ hybridisation for chromosome 1q25 locus were performed on an ambispective PF-EPN cohort (2003-2019). H3K27M-mutant gliomas were included for comparison. Among 69 patients, PFA (me3 loss) constituted 64%. EZHIP overexpression and 1q gain were exclusive to PFA seen in 72% and 19%, respectively. Tenascin C was more frequently positive in PFA (p = 0.02). H3K27M expression and ATRX loss were noted in one case of PFA-EPN each. All H3K27M-mutant gliomas (n = 8) and PFA-EPN (n = 1) were EZHIP negative. C17orf96 and acetyl-H3K27 expression did not correlate with me3 loss. H3K27me3 is a robust surrogate for PF-EPN molecular subgrouping. EZHIP overexpression was exclusive to PFA EPNs and was characteristically absent in midline gliomas and the rare PFA harbouring H3K27M mutations representing mutually exclusive pathways leading to me3 loss.
Collapse
Affiliation(s)
- Aruna Nambirajan
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Agrima Sharma
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Madhu Rajeshwari
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Meher Tej Boorgula
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ramesh Doddamani
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
7
|
CN133, a Novel Brain-Penetrating Histone Deacetylase Inhibitor, Hampers Tumor Growth in Patient-Derived Pediatric Posterior Fossa Ependymoma Models. Cancers (Basel) 2020; 12:cancers12071922. [PMID: 32708733 PMCID: PMC7409080 DOI: 10.3390/cancers12071922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/13/2023] Open
Abstract
Pediatric ependymoma (EPN) is a highly aggressive tumor of the central nervous system that remains incurable in 40% of cases. In children, the majority of cases develop in the posterior fossa and can be classified into two distinct molecular entities: EPN posterior fossa A (PF-EPN-A) and EPN posterior fossa B (PF-EPN-B). Patients with PF-EPN-A have poor outcome and are in demand of new therapies. In general, PF-EPN-A tumors show a balanced chromosome copy number profile and have no recurrent somatic nucleotide variants. However, these tumors present abundant epigenetic deregulations, thereby suggesting that epigenetic therapies could provide new opportunities for PF-EPN-A patients. In vitro epigenetic drug screening of 11 compounds showed that histone deacetylase inhibitors (HDACi) had the highest anti-proliferative activity in two PF-EPN-A patient-derived cell lines. Further screening of 5 new brain-penetrating HDACi showed that CN133 induced apoptosis in vitro, reduced tumor growth in vivo and significantly extended the survival of mice with orthotopically-implanted EPN tumors by modulation of the unfolded protein response, PI3K/Akt/mTOR signaling, and apoptotic pathways among others. In summary, our results provide solid preclinical evidence for the use of CN133 as a new therapeutic agent against PF-EPN-A tumors.
Collapse
|