1
|
Rodriguez-Sevilla JJ, Colla S. Inflammation in myelodysplastic syndrome pathogenesis. Semin Hematol 2024:S0037-1963(24)00107-0. [PMID: 39424469 DOI: 10.1053/j.seminhematol.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/21/2024]
Abstract
Inflammation is a key driver of the progression of preleukemic myeloid conditions, such as clonal hematopoiesis of indeterminate potential (CHIP) and clonal cytopenia of undetermined significance (CCUS), to myelodysplastic syndromes (MDS). Inflammation is a critical mediator in the complex interplay of the genetic, epigenetic, and microenvironmental factors contributing to clonal evolution. Under inflammatory conditions, somatic mutations in TET2, DNMT3A, and ASXL1, the most frequently mutated genes in CHIP and CCUS, induce a competitive advantage to hematopoietic stem and progenitor cells, which leads to their clonal expansion in the bone marrow. Chronic inflammation also drives metabolic reprogramming and immune system deregulation, further promoting the expansion of malignant clones. This review underscores the urgent need to fully elucidate the role of inflammation in MDS initiation and highlights the potential of the therapeutical targeting of inflammatory pathways as an early intervention in MDS.
Collapse
Affiliation(s)
| | - Simona Colla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX.
| |
Collapse
|
2
|
Amokrane K, Cherel M, Rouzaire PO, Walencik A, Dubois V. [Relapse with HLA loss after hematopoietic stem cell transplantation with non-HLA identical donor: Guidelines from the Francophone society of bone marrow transplantation and cellular therapy (SFGM-TC)]. Bull Cancer 2024; 111:S14-S21. [PMID: 37061368 DOI: 10.1016/j.bulcan.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/17/2023]
Abstract
Loss of heterozygosity or HLA loss is a genomic-type escape mechanism highlighted in certain types of relapses after allogeneic hematopoietic stem cell transplantation with a non-HLA identical donor, and especially after haplo-identical transplantation. The diagnosis must be made with certainty because the result conditions the therapy. In this article, the different mechanisms and techniques that can be used for the diagnosis of loss of heterozygosity, as well as the therapeutic options are reviewed, making it possible to establish clinico-biological recommendations for the diagnosis confirmation and management of the patients in relapse.
Collapse
Affiliation(s)
- Kahina Amokrane
- Gustave-Roussy, centre de lutte contre le cancer, 114, rue Édouard-Vaillant, 94805 Villejuif, France
| | | | - Paul-Olivier Rouzaire
- EA(UR)7453 CHELTER-université de Clermont Auvergne, service d'histocompatibilité et d'immunogénétique, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Alexandre Walencik
- EFS Centre-Pays de la Loire, laboratoire histocompatibilité, Nantes, France
| | - Valérie Dubois
- Laboratoire HLA, EFS Auvergne Rhône Alpes, Lyon, France.
| |
Collapse
|
3
|
Liu M, Li N, Tang H, Chen L, Liu X, Wang Y, Lin Y, Luo Y, Wei S, Wen W, Chen M, Wang J, Zhang N, Chen J. The Mutational, Prognostic, and Therapeutic Landscape of Neuroendocrine Neoplasms. Oncologist 2023; 28:e723-e736. [PMID: 37086484 PMCID: PMC10485279 DOI: 10.1093/oncolo/oyad093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/11/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Neuroendocrine neoplasms (NENs) represent clinically and genetically heterogeneous malignancies, thus a comprehensive understanding of underlying molecular characteristics, prognostic signatures, and potential therapeutic targets is urgently needed. METHODS Next-generation sequencing (NGS) and immunohistochemistry were applied to acquire genomic and immune profiles of NENs from 47 patients. RESULTS Difference was distinguished based on differentiation grade and primary localization. Poorly differentiated neuroendocrine carcinomas (NECs) and well-differentiated neuroendocrine tumors (NETs) harbored distinct molecular features; we observed that tumor mutational burden (TMB) and tumor neoantigen burden (TNB) were significantly higher in NECs versus NETs. Notably, we identified a 7-gene panel (MLH3, NACA, NOTCH1, NPAP1, RANBP17, TSC2, and ZFHX4) as a novel prognostic signature in NENs; patients who carried mutations in any of the 7 genes exhibited significantly poorer survival. Furthermore, loss of heterozygosity (LOH) and germline homogeneity in human leukocyte antigen (HLA) are common in NENs, accounting for 39% and 36%, respectively. Notably, HLA LOH was an important prognostic biomarker for a subgroup of NEN patients. Finally, we analyzed clinically actionable targets in NENs, revealing that TMB high (TMB-H) or gene mutations in TP53, KRAS, and HRAS were the most frequently observed therapeutic indicators, which granted eligibility to immune checkpoint blockade (ICB) and targeted therapy. CONCLUSION Our study revealed heterogeneity of NENs, and identified novel prognostic signatures and potential therapeutic targets, which directing improvements of clinical management for NEN patients in the foreseeable future.
Collapse
Affiliation(s)
- Man Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Na Li
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, People’s Republic of China
| | - Hongzhen Tang
- Department of Medicine, YuceBio Technology Co., Ltd, Shenzhen, People’s Republic of China
| | - Luohai Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, People’s Republic of China
| | - Yu Wang
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuan Lin
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shaozhen Wei
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, People’s Republic of China
| | - Wenli Wen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jiaqian Wang
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, People’s Republic of China
| | - Ning Zhang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jie Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Center for Neuroendocrine Tumors, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| |
Collapse
|
4
|
Horwath M, Tvrdik T, Saxe D, Deeb KK, Roback JD, Gebel HM, Bray RA, Sullivan HC. Loss of heterozygosity leading to incorrect HLA typing for platelet-transfusion refractory patient. Transfusion 2023; 63:263-268. [PMID: 36426572 DOI: 10.1111/trf.17189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Management of platelet-transfusion refractory (PR) patients due to anti-HLA antibodies includes the provision of HLA-matched (HLAm) platelets (PLT) or PLTs that are negative for HLA antigens corresponding to the recipient antibodies. Obtaining HLAm PLTs is predicated on accurate HLA antigen typing of the recipient and donor. Here, we present the clinical implications of a case involving loss of heterozygosity (LOH) in a patient presented for PR workup. STUDY DESIGN AND METHODS HLA typing was performed by three methods: (1) Real-time PCR; (2) Sequence-specific oligonucleotide (SSO) typing test; and (3) Next-Generation Sequencing (NGS). Cytogenomic SNP microarray was utilized to assess LOH. RESULTS A 30-year-old female with newly diagnosed acute myelogenous leukemia was found to be PR secondary to HLA sensitization. A peripheral blood (PB) sample, containing 93% myeloid blast cells, was sent for HLA typing for the provision of HLAm PLTs. HLA typing revealed homozygosity at the HLA-A locus but was heterozygous at the -B and -C loci. After chemotherapy, HLA typing on a new PB sample, devoid of blast cells, identified HLA-A locus heterozygosity, which was subsequently confirmed by real-time PCR and NGS. Cytogenomic SNP microarray analysis demonstrated LOH of the HLA-A locus on chromosome 6p in the pretreatment sample but not in the posttreatment sample. CONCLUSION In hematologic patients with high tumor burden, HLA homozygosity should be viewed with suspicion for potential LOH. Therefore, HLA testing should be repeated, preferably with a non-hematological source (e.g., buccal swab) or following successful reduction of the tumor burden.
Collapse
Affiliation(s)
- Michael Horwath
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Tatiana Tvrdik
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Debra Saxe
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kristin K Deeb
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John D Roback
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Howard M Gebel
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert A Bray
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Harold Clifford Sullivan
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Montes P, Guerra-Librero A, García P, Cornejo-Calvo ME, López MDS, de Haro T, Martínez-Ruiz L, Escames G, Acuña-Castroviejo D. Effect of 5-Azacitidine Treatment on Redox Status and Inflammatory Condition in MDS Patients. Antioxidants (Basel) 2022; 11:antiox11010139. [PMID: 35052643 PMCID: PMC8773071 DOI: 10.3390/antiox11010139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
This study focused on the impact of the treatment with the hypomethylating agent 5-azacitidine on the redox status and inflammation in 24 MDS patients. Clinical and genetic features of MDS patients were recorded, and peripheral blood samples were used to determine the activity of the endogenous antioxidant defense system (superoxide dismutase, SOD; catalase, CAT; glutathion peroxidase, GPx; and reductase, GRd, activities), markers of oxidative damage (lipid peroxidation, LPO, and advanced oxidation protein products, AOPP). Moreover, pro-inflammatory cytokines and plasma nitrite plus nitrate levels as markers of inflammation, as well as CoQ10 plasma levels, were also measured. Globally, MDS patients showed less redox status in terms of a reduction in the GSSG/GSH ratio and in the LPO levels, as well as increased CAT activity compared with healthy subjects, with no changes in SOD, GPx, and GRd activities, or AOPP levels. When analyzing the evolution from early to advanced stages of the disease, we found that the GPx activity, GSSG/GSH ratio, LPO, and AOPP increased, with a reduction in CAT. GPx changes were related to the presence of risk factors such as high-risk IPSS-R or mutational score. Moreover, there was an increase in IL-2, IL-6, IL-8, and TNF-α plasma levels, with a further increase of IL-2 and IL-10 from early to advanced stages of the disease. However, we did not observe any association between inflammation and oxidative stress. Finally, 5-azacitidine treatment generated oxidative stress in MDS patients, without affecting inflammation levels, suggesting that oxidative status and inflammation are two independent processes.
Collapse
Affiliation(s)
- Paola Montes
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.d.S.L.); (T.d.H.)
| | - Ana Guerra-Librero
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
- CIBERfes, Ibs.Granada, 18016 Granada, Spain
| | - Paloma García
- UGC de Hematología y Hemoterapia, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (P.G.); (M.E.C.-C.)
| | - María Elena Cornejo-Calvo
- UGC de Hematología y Hemoterapia, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (P.G.); (M.E.C.-C.)
| | - María del Señor López
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.d.S.L.); (T.d.H.)
| | - Tomás de Haro
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.d.S.L.); (T.d.H.)
| | - Laura Martínez-Ruiz
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
| | - Germaine Escames
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
- CIBERfes, Ibs.Granada, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Departamento de Fisiología, Facultad de Medicina, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain; (P.M.); (A.G.-L.); (L.M.-R.); (G.E.)
- UGC de Laboratorios Clínicos, Hospital Universitario Clínico San Cecilio, 18016 Granada, Spain; (M.d.S.L.); (T.d.H.)
- CIBERfes, Ibs.Granada, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-000 (ext. 20196)
| |
Collapse
|
6
|
Wang A, Li W, Zhao F, Zheng Z, Yang T, Wang S, Yan J, Lan J, Fan S, Zhao M, Shen J, Li X, Yang T, Lu Q, Lu Y, Bai H, Zhang H, Cai D, Wang L, Yuan Z, Jiang E, Zhou F, Song X. Clinical Characteristics and Outcome Analysis for HLA Loss Patients Following Partially Mismatched Related Donor Transplantation Using HLA Chimerism for Loss of Heterozygosity Analysis by Next-Generation Sequencing. Cell Transplant 2022; 31:9636897221102902. [PMID: 35670196 PMCID: PMC9178980 DOI: 10.1177/09636897221102902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Genomic loss of mismatched human leukocyte antigen (HLA loss) is one of the most vital immune escape mechanisms of leukemic cells after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the methods currently used for HLA loss analysis have some shortcomings. Limited literature has been published, especially in lymphoid malignancies. This study aims to evaluate the incidences, risk factors of HLA loss, and clinical outcomes of HLA loss patients. In all, 160 patients undergoing partially mismatched related donor (MMRD) transplantation from 18 centers in China were selected for HLA loss analysis with the next-generation sequencing (NGS)-based method, which was validated by HLA-KMR. Variables of the prognostic risk factors for HLA loss or HLA loss–related relapse were identified with the logistic regression or the Fine and Gray regression model. An HLA loss detection system, HLA-CLN [HLA chimerism for loss of heterozygosity (LOH) analysis by NGS], was successfully developed. Forty (25.0%) patients with HLA loss were reported, including 27 with myeloid and 13 with lymphoid malignancies. Surprisingly, 6 of those 40 patients did not relapse. The 2-year cumulative incidences of HLA loss (22.7% vs 22.0%, P = 0.731) and HLA loss–related relapse (18.4% vs 20.0%, P = 0.616) were similar between patients with myeloid and lymphoid malignancies. The number of HLA mismatches (5/10 vs <5/10) was significantly associated with HLA loss in the whole cohort [odds ratio (OR): 3.15, P = 0.021] and patients with myeloid malignancies (OR: 3.94, P = 0.021). A higher refined-disease risk index (OR: 6.91, P = 0.033) and donor–recipient ABO incompatibility (OR: 4.58, P = 0.057) contributed to HLA loss in lymphoid malignancies. To sum up, HLA-CLN could overcome the limitations of HLA-KMR and achieve a better HLA coverage for more patients. The clinical characteristics and outcomes were similar in patients with HLA loss between myeloid and lymphoid malignancies. In addition, the results suggested that a patient with HLA loss might not always relapse.
Collapse
Affiliation(s)
- Andi Wang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Li
- Department of Hematology, No. 960 Hospital of People's Liberation Army, Jinan, China
| | - Fei Zhao
- Department of Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | | | - Ting Yang
- Department of Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Sanbin Wang
- Department of Hematology, 920th Hospital of Joint Logistics Support Force, Kunming, China
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Second Hospital of Dalian Medical University, Dalian, China
| | - Jianpin Lan
- Department of Hematology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shengjin Fan
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Jianpin Shen
- Department of Hematology, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China
| | - Xin Li
- Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Tonghua Yang
- Department of Hematology, First People's Hospital of Yunnan Province, Kunming University of Science and Technology Affiliated Kun Hua Hospital, Kunming, China
| | - Quanyi Lu
- Department of Hematology, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Hai Bai
- Department of Hematology, The 940th Hospital of the Joint Logistic Support Force of PLA, Lanzhou, China
| | - Haiyan Zhang
- Department of Hematology, Linyi People's Hospital, Linyi, China
| | - Dali Cai
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Ling Wang
- Department of Hematology, Affiliated Qingdao Central Hospital, Qingdao University, Qingdao, China
| | - Zhiyang Yuan
- Tissuebank Biotechnology Co., Ltd, Shanghai, China
| | - Erlie Jiang
- Department of Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fang Zhou
- Department of Hematology, No. 960 Hospital of People's Liberation Army, Jinan, China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Engineering Technology Research Center of Cell Therapy and Clinical Translation, Shanghai Science and Technology Committee, Shanghai, China
| |
Collapse
|
7
|
Garrido MA, Perea F, Vilchez JR, Rodríguez T, Anderson P, Garrido F, Ruiz-Cabello F, Aptsiauri N. Copy Neutral LOH Affecting the Entire Chromosome 6 Is a Frequent Mechanism of HLA Class I Alterations in Cancer. Cancers (Basel) 2021; 13:cancers13205046. [PMID: 34680201 PMCID: PMC8534100 DOI: 10.3390/cancers13205046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 07/28/2021] [Accepted: 10/07/2021] [Indexed: 01/05/2023] Open
Abstract
Total or partial loss of HLA class I antigens reduce the recognition of specific tumor peptides by cytotoxic T lymphocytes favoring cancer immune escape during natural tumor evolution. These alterations can be caused by genomic defects, such as loss of heterozygosity at chromosomes 6 and 15 (LOH-6 and LOH-15), where HLA class I genes are located. There is growing evidence indicating that LOH in HLA contributes to the immune selection of HLA loss variants and influences the resistance to immunotherapy. Nevertheless, the incidence and the mechanism of this chromosomal aberration involving HLA genes has not been systematically assessed in different types of tumors and often remains underestimated. Here, we used SNP arrays to investigate the incidence and patterns of LOH-6 and LOH-15 in a number of human cancer cell lines and tissues of different histological types. We observed that LOH in HLA is a common event in cancer samples with a prevalence of a copy neutral type of LOH (CN-LOH) that affects entire chromosome 6 or 15 and involves chromosomal duplications. LOH-6 was observed more often and was associated with homozygous HLA genotype and partial HLA loss of expression. We also discuss the immunologic and clinical implications of LOH in HLA on tumor clonal expansion and association with the cancer recurrence after treatment.
Collapse
Affiliation(s)
- Maria Antonia Garrido
- Servicio de Radiología, UGC de Radiología, Hospital Virgen de la Nieves, 18014 Granada, Spain;
| | - Francisco Perea
- Servicio de Análisis Clínicos e Inmunología, UGC de Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (F.P.); (J.R.V.); (T.R.); (P.A.); (F.G.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18014 Granada, Spain
| | - Jose Ramon Vilchez
- Servicio de Análisis Clínicos e Inmunología, UGC de Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (F.P.); (J.R.V.); (T.R.); (P.A.); (F.G.)
| | - Teresa Rodríguez
- Servicio de Análisis Clínicos e Inmunología, UGC de Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (F.P.); (J.R.V.); (T.R.); (P.A.); (F.G.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18014 Granada, Spain
| | - Per Anderson
- Servicio de Análisis Clínicos e Inmunología, UGC de Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (F.P.); (J.R.V.); (T.R.); (P.A.); (F.G.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18014 Granada, Spain
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC de Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (F.P.); (J.R.V.); (T.R.); (P.A.); (F.G.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18071 Granada, Spain
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, UGC de Laboratorio Clínico, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (F.P.); (J.R.V.); (T.R.); (P.A.); (F.G.)
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18071 Granada, Spain
- Correspondence: (F.R.-C.); (N.A.)
| | - Natalia Aptsiauri
- Instituto de Investigación Biosanitaria IBS.GRANADA, 18014 Granada, Spain
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18071 Granada, Spain
- Correspondence: (F.R.-C.); (N.A.)
| |
Collapse
|
8
|
Tumor Escape Phenotype in Bladder Cancer Is Associated with Loss of HLA Class I Expression, T-Cell Exclusion and Stromal Changes. Int J Mol Sci 2021; 22:ijms22147248. [PMID: 34298868 PMCID: PMC8307653 DOI: 10.3390/ijms22147248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer eradication and clinical outcome of immunotherapy depend on tumor cell immunogenicity, including HLA class I (HLA-I) and PD-L1 expression on malignant cells, and on the characteristics of the tumor microenvironment, such as tumor immune infiltration and stromal reaction. Loss of tumor HLA-I is a common mechanism of immune escape from cytotoxic T lymphocytes and is linked to cancer progression and resistance to immunotherapy with the inhibitors of PD-L1/PD-1 signaling. Here we observed that HLA-I loss in bladder tumors is associated with T cell exclusion and tumor encapsulation with stromal elements rich in FAP-positive cells. In addition, PD-L1 upregulation in HLA-I negative tumors demonstrated a correlation with high tumor grade and worse overall- and cancer-specific survival of the patients. These changes define common immuno-morphological signatures compatible with cancer immune escape and acquired resistance to therapeutic interventions across different types of malignancy. They also may contribute to the search of new targets for cancer treatment, such as FAP-expressing cancer-associated fibroblasts, in refractory bladder tumors.
Collapse
|
9
|
Mizumaki H, Hosomichi K, Hosokawa K, Yoroidaka T, Imi T, Zaimoku Y, Katagiri T, Anh Thi Nguyen M, Cao Tran D, Ibrahim Yousef Elbadry M, Chonabayashi K, Yoshida Y, Takamatsu H, Ozawa T, Azuma F, Kishi H, Fujii Y, Ogawa S, Tajima A, Nakao S. A frequent nonsense mutation in exon 1 across certain HLA-A and -B alleles in leukocytes of patients with acquired aplastic anemia. Haematologica 2021; 106:1581-1590. [PMID: 32439725 PMCID: PMC8168509 DOI: 10.3324/haematol.2020.247809] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Indexed: 12/24/2022] Open
Abstract
Leukocytes that lack HLA allelic expression are frequently detected in patients with acquired aplastic anemia (AA) who respond to immunosuppressive therapy (IST), although the exact mechanisms underlying the HLA loss and HLA allele repertoire likely to acquire loss-of-function mutations are unknown. We identified a common nonsense mutation at position 19 (c.19C>T, p.R7X) in exon 1 (Exon1mut) of different HLA-A and -B alleles in HLA-lacking granulocytes from AA patients. A droplet digital PCR (ddPCR) assay capable of detecting as few as 0.07% Exon1mut HLA alleles in total DNA revealed the mutation was present in 29% (101/353) of AA patients, with a median allele frequency of 0.42% (range, 0.071% to 21.3%). Exon1mut occurred in only 12 different HLA-A (n=4) and HLA-B (n=8) alleles, including B*40:02 (n=31) and A*02:06 (n=15), which correspond to 4 HLA supertypes (A02, A03, B07, and B44). The percentages of patients who possessed at least one of these 12 HLA alleles were significantly higher in the 353 AA patients (92%, P.
Collapse
Affiliation(s)
- Hiroki Mizumaki
- Department of Hematology, Kanazawa University, Kanazawa, Japan
| | - Kazuyoshi Hosomichi
- Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Japan
| | - Kohei Hosokawa
- Department of Hematology, Kanazawa University, Kanazawa, Japan
| | | | - Tatsuya Imi
- Department of Hematology, Kanazawa University, Kanazawa, Japan
| | | | - Takamasa Katagiri
- Clinical Laboratory Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | | | - Dung Cao Tran
- Department of Hematology, Kanazawa University, Kanazawa, Japan
| | | | | | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | | | - Tatsuhiko Ozawa
- Department of Immunology, University of Toyama, Toyama, Japan
| | - Fumihiro Azuma
- HLA Laboratory, Japanese Red Cross Kanto-Koshinetsu Block Blood Center, Kotoku, Japan
| | - Hiroyuki Kishi
- Department of Immunology, University of Toyama, Toyama, Japan
| | - Yoichi Fujii
- Dept. of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Seishi Ogawa
- Dept. of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Atsushi Tajima
- Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Nakao
- Department of Hematology, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
10
|
Dubois V, Amokrane K, Crocchiolo R, Fort M, Guillaume N, Kennel A, Michiels S, Ralazamahaleo M, Rouzaire PO, Yakoub-Agha I, Faucher C. [Definition and standardization of histocompatibility requests depending on patient course and donor type: Guidelines from the Francophone Society of Bone Marrow Transplantation and Cellular Therapy (SFGM-TC) and the Francophone Society of Histocompatibility and Immunogenetics (SFHI)]. Bull Cancer 2021; 108:S45-S52. [PMID: 33966883 DOI: 10.1016/j.bulcan.2021.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 10/21/2022]
Abstract
Standardization of histocompatibility tests for allogeneic hematopoietic cell transplants, harmonization of information transmitted to clinicians are part of quality improvement and optimization of human and economic resources. New HLA typing technologies provide high-resolution information within a reasonable time frame. Knowledge of high-resolution HLA typing for the patient and their relatives is essential for a better interpretation of compatibilities. HLA-DPB1 typing must be considered in transplant field regardless of the donor type. The benefits of using search and match programs are considerable. It saves time and reduces additional typing costs by providing rapid information about the likelihood to identify a matched unrelated donor. A backup therapy considering alternative cell sources or treatment can therefore be quickly implemented. The importance of knowledge and consideration of patient immunization for donor choice was explored in previous workshops of the SFGM-TC (2018 and 2019). The published recommendations remain applicable. The routine follow-up protocol and in case of desensitization will be detailed here. This harmonization must be accompanied by the standardization of information to be returned to the clinician regarding the donor finding possibilities for the patient. This will guarantee a similar quality level in every center.
Collapse
Affiliation(s)
- Valérie Dubois
- Établissement Français du Sang, laboratoire Histocompatibilité, 69150 Décines, France.
| | - Kahina Amokrane
- Hôpital Saint Louis, laboratoire d'Immunologie Histocompatibilité, 75010 Paris, France
| | - Roberto Crocchiolo
- Servizio di Immunoematologia e Medicina Trasfusionale, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italie
| | - Marylise Fort
- CHU de Toulouse, laboratoire d'Histocompatibilité, Hôpital de RANGUEIL, 31059 Toulouse, France
| | | | - Anne Kennel
- Établissement Français du Sang, laboratoire Histocompatibilité, 42000 Saint-Étienne, France
| | - Sandra Michiels
- Institut Jules Bordet, Département d'Hématologie, Université Libre de Bruxelles, 1000 Bruxelles, Belgique
| | - Mamy Ralazamahaleo
- CHU de Bordeaux, laboratoire d'Immunologie-Immunogénétique, 33076 Bordeaux
| | - Paul-Olivier Rouzaire
- CHU de Clermont-Ferrand, Service d'Histocompatibilité et d'Immunogénétique, Université Clermont Auvergne, EA 7453 CHELTER, 63003 Clermont-Ferrand
| | | | - Catherine Faucher
- Direction prélèvements et greffes de CSH, Direction médicale et scientifique, Agence de la biomédecine, 93212 St-Denis, La Plaine
| |
Collapse
|
11
|
Hwang MS, Mog BJ, Douglass J, Pearlman AH, Hsiue EHC, Paul S, DiNapoli SR, Konig MF, Pardoll DM, Gabelli SB, Bettegowda C, Papadopoulos N, Vogelstein B, Zhou S, Kinzler KW. Targeting loss of heterozygosity for cancer-specific immunotherapy. Proc Natl Acad Sci U S A 2021; 118:e2022410118. [PMID: 33731480 PMCID: PMC8000272 DOI: 10.1073/pnas.2022410118] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Developing therapeutic agents with potent antitumor activity that spare normal tissues remains a significant challenge. Clonal loss of heterozygosity (LOH) is a widespread and irreversible genetic alteration that is exquisitely specific to cancer cells. We hypothesized that LOH events can be therapeutically targeted by "inverting" the loss of an allele in cancer cells into an activating signal. Here we describe a proof-of-concept approach utilizing engineered T cells approximating NOT-gate Boolean logic to target counterexpressed antigens resulting from LOH events in cancer. The NOT gate comprises a chimeric antigen receptor (CAR) targeting the allele of human leukocyte antigen (HLA) that is retained in the cancer cells and an inhibitory CAR (iCAR) targeting the HLA allele that is lost in the cancer cells. We demonstrate that engineered T cells incorporating such NOT-gate logic can be activated in a genetically predictable manner in vitro and in mice to kill relevant cancer cells. This therapeutic approach, termed NASCAR (Neoplasm-targeting Allele-Sensing CAR), could, in theory, be extended to LOH of other polymorphic genes that result in altered cell surface antigens in cancers.
Collapse
Affiliation(s)
- Michael S Hwang
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Brian J Mog
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Jacqueline Douglass
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Alexander H Pearlman
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Emily Han-Chung Hsiue
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Suman Paul
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Sarah R DiNapoli
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Maximilian F Konig
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | - Sandra B Gabelli
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Chetan Bettegowda
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Nickolas Papadopoulos
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Bert Vogelstein
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- HHMI, Chevy Chase, MD 20815
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Shibin Zhou
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287;
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
| | - Kenneth W Kinzler
- Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287;
- Lustgarten Laboratory for Pancreatic Cancer Research, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287
- Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
12
|
KIR3DL1 and HLA-Bw4 Interaction Showed a Favorable Role in Patients with Myelodysplastic Syndromes in Chinese Southern Han. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6215435. [PMID: 32420357 PMCID: PMC7210520 DOI: 10.1155/2020/6215435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/15/2020] [Indexed: 11/17/2022]
Abstract
Background The association studies of killer cell immunoglobulin-like receptors (KIRs) with the occurrence of myelodysplastic syndromes (MDS) are limited worldwide; this study investigated the genetic risk/protective factors of MDS in KIR and human leucocyte antigen (HLA) systems to gain a better understanding of the role played by KIR and their cognate HLA ligands in MDS pathogenesis. Methods We genotyped a total number of 77 patients with MDS from Chinese Southern Han and 745 healthy controls for the KIR loci and HLA class I. The carrier frequencies of KIR genes, KIR genotypes, class I HLA ligands, and KIR-HLA combinations were calculated by direct counting. The effect of individual KIR genes and HLA ligands on MDS risk was evaluated by logistic regression analyses using SAS 9.2 software. Results We found that neither the KIR genes nor the KIR genotypes were associated with the occurrence of MDS. However, we observed that the frequencies for the strong inhibitory ligand HLA-Bw4 as well as KIR3DL1-HLA-Bw4 combination were significantly higher in healthy controls than those in the MDS patient group, respectively (73.42% vs. 62.34%, P = 0.038; 70.87% vs. 59.74%, P = 0.043). Conclusion Our results showed that HLA-Bw4 ligand and KIR3DL1-HLA-Bw4 combination could confer a protective effect against MDS in Chinese Southern Han.
Collapse
|
13
|
Hospital MA, Vey N. Myelodysplastic Syndromes: How to Recognize Risk and Avoid Acute Myeloid Leukemia Transformation. Curr Oncol Rep 2020; 22:4. [PMID: 31974774 DOI: 10.1007/s11912-020-0869-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW To understand how myelodysplastic syndromes (MDS) transform to AML and to describe how transformation can be predicted and prevented. RECENT FINDINGS Recent genomic analyses have shown that MDS progression to AML is associated with clonal expansion and clonal evolution. Mutation profiles of MDS change during progression and new mutations in signaling genes and transcription factors emerge. AML transformation can be predicted by several parameters including International Prognostic Scoring System IPSS risk category and transfusion requirements. The prognostic relevance of the acquisition of some gene mutations (i.e., IDH1 and 2, CBL, FT3, RAS, NPM1, TP53, and ASXL1) has to be prospectively validated. The most effective preventive therapy for AML transformation is allogeneic stem cell transplantation. Hypomethylating agents have been associated with prolonged time to AML transformation even in patients who did not achieve an objective response. The recent progress in the understanding of the molecular events leading to transformation and the event of new effective therapies open new avenues for a better prediction and prevention of AML transformation in patients with MDS.
Collapse
Affiliation(s)
| | - Norbert Vey
- Aix-Marseille Univ, Inserm, CNRS, CRCM, Institut Paoli-Calmettes, 232 Bvd Sainte Marguerite, 13009, Marseille, France.
| |
Collapse
|
14
|
Montes P, Bernal M, Campo LN, González-Ramírez AR, Jiménez P, Garrido P, Jurado M, Garrido F, Ruiz-Cabello F, Hernández F. Tumor genetic alterations and features of the immune microenvironment drive myelodysplastic syndrome escape and progression. Cancer Immunol Immunother 2019; 68:2015-2027. [PMID: 31705171 DOI: 10.1007/s00262-019-02420-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022]
Abstract
The transformation and progression of myelodysplastic syndromes (MDS) to secondary acute myeloid leukemia (sAML) involve genetic, epigenetic, and microenvironmental factors. Driver mutations have emerged as valuable markers for defining risk groups and as candidates for targeted treatment approaches in MDS. It is also evident that the risk of transformation to sAML is increased by evasion of adaptive immune surveillance. This study was designed to explore the immune microenvironment, immunogenic tumor-intrinsic mechanisms (HLA and PD-L1 expression), and tumor genetic features (somatic mutations and altered karyotypes) in MDS patients and to determine their influence on the progression of the disease. We detected major alterations of the immune microenvironment in MDS patients, with a reduced count of CD4+ T cells, a more frequent presence of markers related to T cell exhaustion, a more frequent presence of myeloid-derived suppressor cells (MDSCs), and changes in the functional phenotype of NK cells. HLA Class I (HLA-I) expression was normally expressed in CD34+ blasts and during myeloid differentiation. Only two out of thirty-six patients with homozygosity for HLA-C groups acquired complete copy-neutral loss of heterozygosity in the HLA region. PD-L1 expression on the leukemic clone was also increased in MDS patients. Finally, no interplay was observed between the anti-tumor immune microenvironment and mutational genomic features. In summary, extrinsic and intrinsic immunological factors might severely impair immune surveillance and contribute to clonal immune escape. Genomic alterations appear to make an independent contribution to the clonal evolution and progression of MDS.
Collapse
Affiliation(s)
- Paola Montes
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avda. Fuerzas Arnadas s/n, 18014, Granada, Spain
- Programa de doctorado en Biomedicina, Universidad de Granada, Granada, Spain
| | - Mónica Bernal
- Servicio de Hematología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Laura N Campo
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avda. Fuerzas Arnadas s/n, 18014, Granada, Spain
| | - Amanda Rocío González-Ramírez
- Hospital Universitario San Cecilio, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Fundación de Investigación, Biosanitaria Alejandro Otero, FIBAO, Granada, Spain
| | - Pilar Jiménez
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avda. Fuerzas Arnadas s/n, 18014, Granada, Spain
| | - Pilar Garrido
- Servicio de Hematología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Manuel Jurado
- Servicio de Hematología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avda. Fuerzas Arnadas s/n, 18014, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Departamento Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Francisco Ruiz-Cabello
- Servicio de Análisis Clínicos e Inmunología, Hospital Universitario Virgen de las Nieves, Avda. Fuerzas Arnadas s/n, 18014, Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
- Departamento Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain.
| | - Francisca Hernández
- Servicio de Hematología, Hospital Universitario Virgen de las Nieves, Granada, Spain
| |
Collapse
|
15
|
Balas A, Planelles D, Goterris R, Rodríguez-Cebriá M, Vicario JL. Somatic mutation in the two HLA-B genes of a patient with acute myelogenous leukemia. HLA 2019; 94:360-364. [PMID: 31338977 DOI: 10.1111/tan.13640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 12/28/2022]
Abstract
In this report, we describe a case of somatic mutations in the two HLA-B genes in a patient with acute myelogenous leukemia. The HLA-B*15:01 allele showed an insertion of two nucleotides within exon 2 leading to a premature stop codon. HLA-B*40:01 showed one nucleotide substitution within exon 3, identical to that described for B*15:258N. The restriction of these mutations in leukemic cells was confirmed in patient's samples from buccal epithelial cells and hematopoietic cells obtained when the patient was in remission. The clinical significance of somatic HLA mutations in cancer seems to be associated with escape from immune surveillance and clonal evolution. The analysis of possible mutations in HLA genes of tumor cells would be valuable information for the outcome of the disease and stem cell donor selection.
Collapse
Affiliation(s)
- Antonio Balas
- Histocompatibilidad, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| | - Dolores Planelles
- Histocompatibilidad, Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - Rosa Goterris
- Hematología, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | - José L Vicario
- Histocompatibilidad, Centro de Transfusión de la Comunidad de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Varypataki EM, Hasler F, Waeckerle-Men Y, Vogel-Kindgen S, Høgset A, Kündig TM, Gander B, Halin C, Johansen P. Combined Photosensitization and Vaccination Enable CD8 T-Cell Immunity and Tumor Suppression Independent of CD4 T-Cell Help. Front Immunol 2019; 10:1548. [PMID: 31333674 PMCID: PMC6624637 DOI: 10.3389/fimmu.2019.01548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) are key players in fighting cancer, and their induction is a major focus in the design of therapeutic vaccines. Yet, therapeutic vaccine efficacy is limited, in part due to the suboptimal vaccine processing by antigen-presenting cells (APCs). Such processing typically takes place via the MHC class II pathway for CD4 T-cell activation and MHC class I pathway for activation of CD8 CTLs. We show that a combination of skin photochemical treatment and immunization, so-called photochemical internalization (PCI) facilitated CTL activation due to the photochemical adjuvant effect induced by photosensitizer, oxygen, and light. Mice were immunized intradermally with antigen and photosensitizer, followed by controlled light exposure. PCI-treated mice showed strong activation of CD8 T cells, with improved IFN-γ production and cytotoxicity, as compared to mice immunized without parallel PCI treatment. Surprisingly, the CD8 T-cell effector functions were not impaired in MHC class II- or CD4 T-cell-deficient mice. Moreover, PCI-based vaccination caused tumor regression independent of MHC class II or CD4 T cells presence in melanoma bearing mice. Together, the data demonstrate that PCI can act as a powerful adjuvant in cancer vaccines, even in hosts with impaired T-helper functions.
Collapse
Affiliation(s)
| | - Fabio Hasler
- Department of Dermatology, University of Zurich, Zurich, Switzerland
| | | | | | | | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Bruno Gander
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Abstract
In this chapter I describe Tumour Immune Escape mechanisms associated with MHC/HLA class I loss in human and experimental tumours. Different altered HLA class-I phenotypes can be observed that are produced by different molecular mechanisms. Experimental and histological evidences are summarized indicating that at the early stages of tumour development there is an enormous variety of tumour clones with different MHC class I expression patterns. This phase is followed by a strong T cell mediated immune-selection of MHC/HLA class-I negative tumour cells in the primary tumour lesion. This transition period results in a formation of a tumour composed only of HLA-class I negative cells. An updated description of this process observed in a large variety of human tumors is included. In the second section I focus on MHC/HLA class I alterations observed in mouse and human metastases, and describe the generation of different tumor cell clones with altered MHC class I phenotypes, which could be similar or different from the original tumor clone. The biological and immunological relevance of these observations is discussed. Finally, the interesting phenomenon of metastatic dormancy is analyzed in association with a particular MHC class I negative tumor phenotype.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Analisis Clinicos e Inmunologia, Hospital Universitario Virgen de las Nieves, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|