1
|
Kot M, Simiczyjew A, Wądzyńska J, Ziętek M, Matkowski R, Nowak D. Characterization of two melanoma cell lines resistant to BRAF/MEK inhibitors (vemurafenib and cobimetinib). Cell Commun Signal 2024; 22:410. [PMID: 39175042 PMCID: PMC11342534 DOI: 10.1186/s12964-024-01788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND BRAF (v-raf murine sarcoma viral oncogene homolog B1)/MEK (mitogen-activated protein kinase kinase) inhibitors are used for melanoma treatment. Unfortunately, patients treated with this combined therapy develop resistance to treatment quite quickly, but the mechanisms underlying this phenomenon are not yet fully understood. Here, we report and characterize two melanoma cell lines (WM9 and Hs294T) resistant to BRAF (vemurafenib) and MEK (cobimetinib) inhibitors. METHODS Cell viability was assessed via the XTT test. The level of selected proteins as well as activation of signaling pathways were evaluated using Western blotting. The expression of the chosen genes was assessed by RT-PCR. The distribution of cell cycle phases was analyzed by flow cytometry, and confocal microscopy was used to take photos of spheroids. The composition of cytokines secreted by cells was determined using a human cytokine array. RESULTS The resistant cells had increased survival and activation of ERK kinase in the presence of BRAF/MEK inhibitors. The IC50 values for these cells were over 1000 times higher than for controls. Resistant cells also exhibited elevated activation of AKT, p38, and JNK signaling pathways with increased expression of EGFR, ErbB2, MET, and PDGFRβ receptors as well as reduced expression of ErbB3 receptor. Furthermore, these cells demonstrated increased expression of genes encoding proteins involved in drug transport and metabolism. Resistant cells also exhibited features of epithelial-mesenchymal transition and cancer stem cells as well as reduced proliferation rate and elevated cytokine secretion. CONCLUSIONS In summary, this work describes BRAF/MEK-inhibitor-resistant melanoma cells, allowing for better understanding the underlying mechanisms of resistance. The results may thus contribute to the development of new, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| | - Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marcin Ziętek
- Department of Oncology, Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
| | - Rafał Matkowski
- Department of Oncology, Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| |
Collapse
|
2
|
3D Spheroid Configurations Are Possible Indictors for Evaluating the Pathophysiology of Melanoma Cell Lines. Cells 2023; 12:cells12050759. [PMID: 36899895 PMCID: PMC10000690 DOI: 10.3390/cells12050759] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
To study the molecular mechanisms responsible for inducing the spatial proliferation of malignant melanomas (MM), three-dimension (3D) spheroids were produced from several MM cell lines including SK-mel-24, MM418, A375, WM266-4, and SM2-1, and their 3D architectures and cellular metabolisms were evaluated by phase-contrast microscopy and Seahorse bio-analyzer, respectively. Several transformed horizontal configurations were observed within most of these 3D spheroids, and the degree of their deformity was increased in the order: WM266-4, SM2-1, A375, MM418, and SK-mel-24. An increased maximal respiration and a decreased glycolytic capacity were observed within the lesser deformed two MM cell lines, WM266-4 and SM2-1, as compared with the most deformed ones. Among these MM cell lines, two distinct cell lines, WM266-4 and SK-mel-24, whose 3D appearances were the closest and farthest, respectively, from being horizontally circular-shaped, were subjected to RNA sequence analyses. Bioinformatic analyses of the differentially expressed genes (DEGs) identified KRAS and SOX2 as potential master regulatory genes for inducing these diverse 3D configurations between WM266-4 and SK-mel-24. The knockdown of both factors altered the morphological and functional characteristics of the SK-mel-24 cells, and in fact, their horizontal deformity was significantly reduced. A qPCR analysis indicated that the levels of several oncogenic signaling related factors, including KRAS and SOX2, PCG1α, extracellular matrixes (ECMs), and ZO1 had fluctuated among the five MM cell lines. In addition, and quite interestingly, the dabrafenib and trametinib resistant A375 (A375DT) cells formed globe shaped 3D spheroids and showed different profiles in cellular metabolism while the mRNA expression of these molecules that were tested as above were different compared with A375 cells. These current findings suggest that 3D spheroid configuration has the potential for serving as an indicator of the pathophysiological activities associated with MM.
Collapse
|
3
|
Cerretti G, Cecchin D, Denaro L, Caccese M, Padovan M, Zagonel V, Lombardi G. Impressive response to dabrafenib and trametinib plus silybin in a heavily pretreated IDH wild-type glioblastoma patient with BRAFV600E -mutant and SOX2 amplification. Anticancer Drugs 2023; 34:190-193. [PMID: 35946547 DOI: 10.1097/cad.0000000000001376] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Isocitrate dehydrogenase wild-type glioblastoma is the most frequent primary brain tumor in adult patients and its prognosis is still dismal with a median survival of about 1 year. BRAF V600E mutation, an important target for personalized therapy, has been identified in about 3% of these patients, but few data are available from prospective studies on the role of anti-BRAF drugs in adult glioblastoma patients. Moreover, SOX2 gene amplification and overexpression can represent an important mechanism of resistance to BRAF inhibitors by STAT3 gene activation. We present the case of a heavily pretreated 42-year-old man with BRAF V600E mutant and SOX2 amplification glioblastoma having a radiologic and metabolic [analyzed by a brain 18F-fluoro-ethyl-tyrosine([18F]FET) PET/MRI] complete response to the combination therapy with dabrafenib plus trametinib and silybin, a potent STAT3 inhibitor. The patient is currently undergoing treatment after a total of 24 months of continuation therapy with a good safety profile. In conclusion, we showed a promising activity of the personalized treatment of BRAF and MEK inhibitors in patient with BRAF V600E mutant glioblastoma; silybin can play an important role in decreasing drug resistance during BRAF inhibitor therapy, especially in patients with SOX2 amplification.
Collapse
Affiliation(s)
- Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua
| | - Diego Cecchin
- Department of Medicine, Nuclear Medicine Unit, University-Hospital of Padova
| | - Luca Denaro
- Neurosurgery Department, University of Padua
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS
- Clinical and Experimental Oncology and Immunology PhD Program, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS
- Clinical and Experimental Oncology and Immunology PhD Program, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS
| |
Collapse
|
4
|
Liu J, Tao H, Yuan T, Li J, Li J, Liang H, Huang Z, Zhang E. Immunomodulatory effects of regorafenib: Enhancing the efficacy of anti-PD-1/PD-L1 therapy. Front Immunol 2022; 13:992611. [PMID: 36119072 PMCID: PMC9479218 DOI: 10.3389/fimmu.2022.992611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/14/2022] Open
Abstract
Anti-PD-1/PD-L1 therapy has shown significant benefits in the treatment of a variety of malignancies. However, not all cancer patients can benefit from this strategy due to drug resistance. Therefore, there is an urgent need for methods that can effectively improve the efficacy of anti-PD-1/PD-L1 therapy. Combining anti-PD-1/PD-L1 therapy with regorafenib has been demonstrated as an effective method to enhance its therapeutic effect in several clinical studies. In this review, we describe common mechanisms of resistance to anti-PD-1/PD-L1 therapy, including lack of tumor immunogenicity, T cell dysfunction, and abnormal expression of PD-L1. Then, we illustrate the role of regorafenib in modifying the tumor microenvironment (TME) from multiple aspects, which is different from other tyrosine kinase inhibitors. Regorafenib not only has immunomodulatory effects on various immune cells, but can also regulate PD-L1 and MHC-I on tumor cells and promote normalization of abnormal blood vessels. Therefore, studies on the synergetic mechanism of the combination therapy may usher in a new era for cancer treatment and help us identify the most appropriate individuals for more precise treatment.
Collapse
Affiliation(s)
- Junjie Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haisu Tao
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Erlei Zhang, ; Zhiyong Huang, ; Huifang Liang,
| |
Collapse
|
5
|
Predictors of the CD24/CD11b Biomarker among Healthy Subjects. J Pers Med 2021; 11:jpm11090939. [PMID: 34575716 PMCID: PMC8471999 DOI: 10.3390/jpm11090939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
The CD24 gene has raised considerable interest in tumor biology as a new prognostic factor and a biomarker for the early detection of cancer. There are currently no studies that assess predictors of CD24 in blood tests among healthy individuals. Our aims were (1) to evaluate predictors of the CD24/CD11b biomarker among healthy subjects and (2) to assess CD24/CD11b levels of participants with and without benign tumors. Our cohort included 1640 healthy subjects, aged 20-85, recruited at the Health Promotion and Integrated Cancer Prevention Center (ICPC) in the Tel Aviv Medical Center. Eligible subjects completed a detailed questionnaire on medical history and other epidemiologic information. CD24/CD11b expression in peripheral blood leukocytes (PBLs) obtained from blood samples of participants was analyzed by flow cytometry. Our results showed that the average levels of CD24/CD11b in healthy patients (22.8 ± 9.3) was statistically significant lower compared to subjects with benign cancers (26.1 ± 10.5, p < 0.001). Our multivariable analysis demonstrated that elevated levels of CRP (coefficient β: 1.98, p = 0.011) were significantly associated with high levels of CD24/CD11b expression among healthy participants. Other risk factors of cancer were not associated with elevated CD24 levels among healthy subjects. In conclusion, our findings may assist in further development and optimization of the CD24/CD11b biomarker to serve as a cancer screening test for early detection of cancer among the healthy population.
Collapse
|
6
|
Potu H, Kandarpa M, Peterson LF, Durham A, Donato NJ, Talpaz M. Downregulation of SOX2 by inhibition of Usp9X induces apoptosis in melanoma. Oncotarget 2021; 12:160-172. [PMID: 33613844 PMCID: PMC7869572 DOI: 10.18632/oncotarget.27869] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Melanoma tumors driven by BRAF mutations often do not respond to BRAF/MEK/ERK pathway inhibitors currently used in treatment. One documented mechanism of resistance is upregulation of SOX2, a transcription factor that is essential for tumor growth and expansion, particularly in melanoma tumors with BRAF mutations. Targeting transcription factors pharmacologically has been elusive for drug developers, limiting treatment options. Here we show that ubiquitin-specific peptidase 9, X-linked (Usp9x), a deubiquitinase (DUB) enzyme controls SOX2 levels in melanoma. Usp9x knockdown in melanoma increased SOX2 ubiquitination, leading to its depletion, and enhanced apoptotic effects of BRAF inhibitor and MEK inhibitors. Primary metastatic melanoma samples demonstrated moderately elevated Usp9x and SOX2 protein expression compared to tumors without metastatic potential. Usp9x knockdown, as well as inhibition with DUB inhibitor, G9, blocked SOX2 expression, suppressed in vitro colony growth, and induced apoptosis of BRAF-mutant melanoma cells. Combined treatment with Usp9x and mutant BRAF inhibitors fully suppressed melanoma growth in vivo. Our data demonstrate a novel mechanism for targeting the transcription factor SOX2, leveraging Usp9x inhibition. Thus, development of DUB inhibitors may add to the limited repertoire of current melanoma treatments.
Collapse
Affiliation(s)
- Harish Potu
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan, School of Medicine and Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | - Malathi Kandarpa
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan, School of Medicine and Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | - Luke F Peterson
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan, School of Medicine and Comprehensive Cancer Center, Ann Arbor, MI 48109, USA
| | - Alison Durham
- Department of Dermatology, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Nicholas J Donato
- Center for Scientific Review, National Institutes of Health, Bethesda, MD 20892, USA.,These authors jointly supervised this work
| | - Moshe Talpaz
- Department of Internal Medicine/Division of Hematology/Oncology, University of Michigan, School of Medicine and Comprehensive Cancer Center, Ann Arbor, MI 48109, USA.,These authors jointly supervised this work
| |
Collapse
|
7
|
Shih CY, Cheng YC, Hsieh C, Tseng T, Jiang S, Lee SC. Drug-selected population in melanoma A2058 cells as melanoma stem-like cells retained angiogenic features - the potential roles of heparan-sulfate binding ANGPTL4 protein. Aging (Albany NY) 2020; 12:22700-22718. [PMID: 33196458 PMCID: PMC7746371 DOI: 10.18632/aging.103890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Malignant cancer may contain highly heterogeneous populations of cells, including stem-like cells which were resistant to chemotherapy agents, radiation, mechanical stress, and immune surveillance. The characterization of these specific subpopulations might be critical to develop novel strategy to remove malignant tumors. We selected and enriched small population of human melanoma A2058 cells by repetitive selection cycles (selection, restoration, and amplification). These subpopulation of melanoma cells persisted the characteristics of slower cell proliferation, enhanced drug-resistance, elevated percentage of side population as analyzed by Hoechst33342 exclusion, in vitro sphere formation, and in vivo xenograft tumor formation by small amount of tumor cells. The selected populations would be melanoma stem-like cells with high expression of stem cell markers and altered kinase activation. Microarray and bioinformatics analysis highlighted the high expression of angiopoietin-like 4 protein in drug-selected melanoma stem-like cells. Further validation by specific shRNA demonstrated the role of angiopoietin-like 4 protein in drug-selected subpopulation associated with enhanced drug-resistance, sphere formation, reduced kinase activation, in vitro tube-forming ability correlated with heparan-sulfate proteoglycans. Our finding would be applicable to explore the mechanism of melanoma stemness and use angiopoietin-like 4 as potential biomarkers to identify melanoma stem-like cells.
Collapse
Affiliation(s)
- Chia-Yu Shih
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Yu-Che Cheng
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan.,Proteomics Laboratory, Cathay Medical Research Institute, Cathay General Hospital, Taipei, Taiwan.,Department of Biomedical Science and Engineering, National Central University, Jhongli, Taiwan
| | - ChiaoHui Hsieh
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - TingTing Tseng
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - ShihSheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shao-Chen Lee
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|