1
|
Abstract
The diversity of the antigen-specific humoral immune response reflects the interaction of the immune system with pathogens and autoantigens. Peptide microarray analysis opens up new perspectives for the use of antibodies as diagnostic biomarkers and provides unique access to a more differentiated view on humoral responses to disease. This review focuses on the latest applications of peptide microarrays for the serologic medical diagnosis of autoimmunity, infectious diseases (including COVID-19), and cancer.
Collapse
Affiliation(s)
- Carsten Grötzinger
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Shi L, Huang R, Lai Y. Identification and validation of signal recognition particle 14 as a prognostic biomarker predicting overall survival in patients with acute myeloid leukemia. BMC Med Genomics 2021; 14:127. [PMID: 33985510 PMCID: PMC8120815 DOI: 10.1186/s12920-021-00975-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study aimed to determine and verify the prognostic value and potential functional mechanism of signal recognition particle 14 (SRP14) in acute myeloid leukemia (AML) using a genome-wide expression profile dataset. METHODS We obtained an AML genome-wide expression profile dataset and clinical prognostic data from The Cancer Genome Atlas (TCGA) and GSE12417 databases, and explored the prognostic value and functional mechanism of SRP14 in AML using survival analysis and various online tools. RESULTS Survival analysis showed that AML patients with high SRP14 expression had poorer overall survival than patients with low SRP14 expression. Time-dependent receiver operating characteristic curves indicated that SRP14 had good accuracy for predicting the prognosis in patients with AML. Genome-wide co-expression analysis suggested that SRP14 may play a role in AML by participating in the regulation of biological processes and signaling pathways, such as cell cycle, cell adhesion, mitogen-activated protein kinase, tumor necrosis factor, T cell receptor, DNA damage response, and nuclear factor-kappa B (NF-κB) signaling. Gene set enrichment analysis indicated that SRP14 was significantly enriched in biological processes and signaling pathways including regulation of hematopoietic progenitor cell differentiation and stem cell differentiation, intrinsic apoptotic signaling pathway by p53 class mediator, interleukin-1, T cell mediated cytotoxicity, and NF-κB-inducing kinase/NF-κB signaling. Using the TCGA AML dataset, we also identified four drugs (phenazone, benzydamine, cinnarizine, antazoline) that may serve as SRP14-targeted drugs in AML. CONCLUSION The current results revealed that high SRP14 expression was significantly related to a poor prognosis and may serve as a prognostic biomarker in patients with AML.
Collapse
Affiliation(s)
- Lingling Shi
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021 Guangxi People’s Republic of China
| | - Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021 Guangxi People’s Republic of China
| | - Yongrong Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
3
|
Liu Z, Wang C, Wang Y, Wang L, Zhang Y, Yan G. 4'-O-Methylbroussochalcone B as a novel tubulin polymerization inhibitor suppressed the proliferation and migration of acute myeloid leukaemia cells. BMC Cancer 2021; 21:91. [PMID: 33482772 PMCID: PMC7825173 DOI: 10.1186/s12885-020-07759-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Recent years, survival rates of human with high-risk acute myeloid leukaemia (AML) have not raised substantially. This research aimed to investigate the role of 4'-O-Methylbroussochalcone B, for the treatment of human AML. METHODS Firstly, we evaluated the effects of six chalcones on AML cells activity by MTT assay. Immunofluorescence staining, tubulin polymerization assay and N,N'-ethylenebis (iodoacetamide) (EBI) competition assay were performed on ML-2 cells. Transwell and apoptosis assay were also utilized in ML-2 cells and OCI-AML5 cells. The expressions of migration-related proteins, apoptosis-related proteins and Wnt/β-catenin pathway were detected by Western Blot. RESULTS The results found six chalcones exhibited the anti-proliferative activity against different AML cell lines. Based on the results of immunofluorescence staining, tubulin polymerization assay and EBI competition assay, 4'-O-Methylbroussochalcone B was discovered to be a novel colchicine site tubulin polymerization inhibitor. 4'-O-Methylbroussochalcone B could induce apoptosis, inhibit proliferation and migration of ML-2 cells and OCI-AML5 cells. The cells were arrested in the G2-M phase by the treatment of 4'-O-Methylbroussochalcone B. In addition, 4'-O-Methylbroussochalcone B regulated MAPK and Wnt/β-catenin pathways in AML cells. CONCLUSION 4'-O-Methylbroussochalcone B might inhibit proliferation and migration of the AML cells by MAPK and Wnt/β-catenin pathways as a tubulin polymerization inhibitor. It is promising for 4'-O-Methylbroussochalcone B to become a new drug to treat AML.
Collapse
Affiliation(s)
- Ziying Liu
- Department of pediatrics, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Changshui Wang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, China
| | - Yali Wang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, China
| | - Lei Wang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, China
| | - Yueyuan Zhang
- Department of Clinical & Translational Medicine, Jining Life Science Center, Jining, China
| | - Genquan Yan
- Department of pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
4
|
Li B, Hu J, He D, Chen Q, Liu S, Zhu X, Yu M. PPM1D Knockdown Suppresses Cell Proliferation, Promotes Cell Apoptosis, and Activates p38 MAPK/p53 Signaling Pathway in Acute Myeloid Leukemia. Technol Cancer Res Treat 2020; 19:1533033820942312. [PMID: 32691668 PMCID: PMC7375723 DOI: 10.1177/1533033820942312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES This study was to explore the effect of protein phosphatase, Mg2+/Mn2+ dependent 1D knockdown on proliferation and apoptosis as well as p38 MAPK/p53 signaling pathway in acute myeloid leukemia. METHODS The expression of protein phosphatase, Mg2+/Mn2+ dependent 1D was detected in acute myeloid leukemia cell lines including SKM-1, KG-1, AML-193, and THP-1 cells, and normal bone marrow mononuclear cells isolated from healthy donors. The knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D was conducted by transfecting small interfering RNA into AML-193 cells and KG-1 cells. RESULTS The relative messenger RNA/protein expressions of protein phosphatase, Mg2+/Mn2+ dependent 1D were higher in SKM-1, KG-1, AML-193, and THP-1 cells compared with control cells (normal bone marrow mononuclear cells). After transfecting protein phosphatase, Mg2+/Mn2+ dependent 1D small interfering RNA into AML-193 cells and KG-1 cells, both messenger RNA and protein expressions of protein phosphatase, Mg2+/Mn2+ dependent 1D were significantly reduced, indicating the successful transfection. Most importantly, knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D suppressed cell proliferation and promoted cell apoptosis in AML-193 cells and KG-1 cells. In addition, knockdown of protein phosphatase, Mg2+/Mn2+ dependent 1D enhanced the expressions of p-p38 and p53 in AML-193 cells and KG-1 cells. The above observation suggested that protein phosphatase, Mg2+/Mn2+ dependent 1D knockdown suppressed cell proliferation, promoted cell apoptosis, and activated p38 MAPK/p53 signaling pathway in acute myeloid leukemia cells. CONCLUSION Protein phosphatase, Mg2+/Mn2+ dependent 1D is implicated in acute myeloid leukemia carcinogenesis, which illuminates its potential role as a treatment target for acute myeloid leukemia.
Collapse
Affiliation(s)
- Bin Li
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Jie Hu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Di He
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Qi Chen
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Suna Liu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Xiaoling Zhu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| | - Meijia Yu
- Department of Hematology, The Second People's Hospital of Yunnan Province, Yunnan, China
| |
Collapse
|
5
|
Ling H, Ji X, Lei Y, Jia Y, Liu F, Xia H, Tan H, Zeng X, Yi L, He J, Su Q. Diallyl disulfide induces downregulation and inactivation of cofilin 1 differentiation via the Rac1/ROCK1/LIMK1 pathway in leukemia cells. Int J Oncol 2020; 56:772-782. [PMID: 32124958 PMCID: PMC7010219 DOI: 10.3892/ijo.2020.4968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Cofilin is associated with cell differentiation; however, to the best of our knowledge, no data have indicated an association between the cofilin 1 pathway and leukemia cell differentiation. The present study investigated the involvement of the cofilin 1 signaling pathway in diallyl disulfide (DADS)-induced differentiation and the inhibitory effects on the proliferation, migration, and invasion of human leukemia HL-60 cells. First, it was identified that 8 µM DADS suppressed cell proliferation, migration and invasion, and induced differentiation based on the reduced nitroblue tetrazolium ability and increased CD11b and CD33 expression. DADS significantly downregulated the expression of cofilin 1 and phosphorylated cofilin 1 in HL-60 leukemia cells. Second, it was verified that silencing cofilin 1 markedly promoted 8 µM DADS-induced differentiation and the inhibitory effect on cell proliferation and invasion. Overexpression of cofilin 1 obviously suppressed 8 µM DADS-induced differentiation and the inhibitory effect on cell proliferation and invasion. Third, the present study examined the mechanisms by which 8 µM DADS decreases cofilin 1 expression and activation. The results revealed that 8 µM DADS inhibited the mRNA and protein expression of Rac1, Rho-associated protein kinase 1 (ROCK1) and LIM domain kinase 1 (LIMK1) as well as the phosphorylation of LIMK1 in HL-60 cells, while 8 µM DADS enhanced the effects of the Rac1-ROCK1-LIMK1 pathway in cells overexpressing cofilin 1 compared with that in control HL-60 cells. These results suggest that the anticancer function of DADS on HL-60 leukemia cells is regulated by the Rac1-ROCK1-LIMK1-cofilin 1 pathway, indicating that DADS could be a promising anti-leukemia therapeutic compound.
Collapse
Affiliation(s)
- Hui Ling
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoxia Ji
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanping Lei
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanhong Jia
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Fang Liu
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hong Xia
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Hui Tan
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi Zeng
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Lan Yi
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jie He
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Qi Su
- Key Laboratory of Tumor Cellular and Molecular Pathology (University of South China), College of Hunan Province, Cancer Research Institute, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|