1
|
Wang QH, Cheng S, Han CY, Yang S, Gao SR, Yin WZ, Song WZ. Tailoring cell-inspired biomaterials to fuel cancer therapy. Mater Today Bio 2025; 30:101381. [PMID: 39742146 PMCID: PMC11683242 DOI: 10.1016/j.mtbio.2024.101381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025] Open
Abstract
Cancer stands as a predominant cause of mortality across the globe. Traditional cancer treatments, including surgery, radiotherapy, and chemotherapy, are effective yet face challenges like normal tissue damage, complications, and drug resistance. Biomaterials, with their advantages of high efficacy, targeting, and spatiotemporal controllability, have been widely used in cancer treatment. However, the biocompatibility limitations of traditional synthetic materials have restricted their clinical translation and application. Natural cell-inspired biomaterials inherently possess the targeting abilities of cells, biocompatibility, and immune evasion capabilities. Therefore, cell-inspired biomaterials can be used alone or in combination with other drugs or treatment strategies for cancer therapy. In this review, we first introduce the timeline of key milestones in cell-inspired biomaterials for cancer therapy. Then, we describe the abnormalities in cancer including biophysics, cellular biology, and molecular biology aspects. Afterwards, we summarize the design strategies of cell-inspired antitumor biomaterials. Subsequently, we elaborate on the application of antitumor biomaterials inspired by various cell types. Finally, we explore the current challenges and prospects of cell-inspired antitumor materials. This review aims to provide new opportunities and references for the development of antitumor cell-inspired biomaterials.
Collapse
Affiliation(s)
- Qi-Hui Wang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun, 130031, PR China
| | - Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Chun-Yu Han
- Department of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun, 130031, PR China
| | - Shuang Yang
- Department of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun, 130031, PR China
| | - Sheng-Rui Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Hospital of Jilin University, Changchun, 130061, PR China
| | - Wan-Zhong Yin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Hospital of Jilin University, Changchun, 130061, PR China
| | - Wen-Zhi Song
- Department of Stomatology, China-Japan Union Hospital, Jilin University, 126#Xiantai Street, Jingkai District, Changchun, 130031, PR China
| |
Collapse
|
2
|
Weiss L, Macleod H, Maguire PB. Platelet-derived extracellular vesicles in cardiovascular disease and treatment - from maintaining homeostasis to targeted drug delivery. Curr Opin Hematol 2025; 32:4-13. [PMID: 39377239 PMCID: PMC11620325 DOI: 10.1097/moh.0000000000000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) remains a major global health burden. Rising incidences necessitate improved understanding of the pathophysiological processes underlying disease progression to foster the development of novel therapeutic strategies. Besides their well recognized role in CVD, platelet-derived extracellular vesicles (PEVs) mediate inter-organ cross talk and contribute to various inflammatory diseases. RECENT FINDINGS PEVs are readily accessible diagnostic biomarkers that mirror pathophysiological disease progression but also may confer cardioprotective properties. Monitoring the effects of modulation of PEV signatures through pharmacotherapies has also provided novel insights into treatment efficacy. Furthermore, exploiting their inherent ability to infiltrate thrombi, atherosclerotic plaques and solid tumours, PEVs as well as platelet-membrane coated nanoparticles are emerging as novel effective and targeted treatment options for CVD and cancer. SUMMARY Collectively, in-depth characterization of PEVs in various diseases ultimately enhances their use as diagnostic or prognostic biomarkers and potential therapeutic targets, making them clinically relevant candidates to positively impact patient outcomes.
Collapse
Affiliation(s)
- Luisa Weiss
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
- AI for Healthcare Hub, Institute for Discovery, O’Brien Centre of Science, University College Dublin, Dublin, Ireland
| | - Hayley Macleod
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
| | - Patricia B. Maguire
- Conway SPHERE Research Group, Conway Institute
- School of Biomolecular and Biomedical Science
- AI for Healthcare Hub, Institute for Discovery, O’Brien Centre of Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Fan Z, Gan Y, Hu Y. The potential utilization of platelet-derived extracellular vesicles in clinical treatment. Platelets 2024; 35:2397592. [PMID: 39287127 DOI: 10.1080/09537104.2024.2397592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/09/2024] [Accepted: 08/02/2024] [Indexed: 09/19/2024]
Abstract
Platelet-derived extracellular vesicles (PEVs) are released by platelets in the blood circulation, which carry a rich bio-molecular cargo influential in intercellular communications. PEVs can enter the lymph, bone marrow, and synovial fluid as nano-sized particles, while platelets cannot cross tissue barriers. Considering the advantages of PEVs such as low immunogenicity, high regulation of signal transduction, and easy obtainment, PEVs may be promising therapeutic tools for medical applications. The exceptional functional roles played by PEVs explain the recent interest in exploring new cell-free therapies that could address needs in angiogenesis, regenerative medicine, and targeted drug delivery. The review takes a critical look at the main advances of PEVs in the treatment of diseases by presenting the latest knowledge from the performed studies, in order to enhance the further translation of the PEVs research into feasible therapeutic applications.
Collapse
Affiliation(s)
- Zhijia Fan
- Department of Laboratory Medicine, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, PR China
| | - Yixiao Gan
- Department of Transfusion Medicine, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yanwei Hu
- Department of Laboratory Medicine, Beijing Chaoyang Hospital, Beijing Center for Clinical Laboratories, The Third Clinical Medical College of Capital Medical University, Beijing, PR China
| |
Collapse
|
4
|
Guo J, Cui B, Zheng J, Yu C, Zheng X, Yi L, Zhang S, Wang K. Platelet-derived microparticles and their cargos: The past, present and future. Asian J Pharm Sci 2024; 19:100907. [PMID: 38623487 PMCID: PMC11016590 DOI: 10.1016/j.ajps.2024.100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/05/2024] [Accepted: 01/31/2024] [Indexed: 04/17/2024] Open
Abstract
All eukaryotic cells can secrete extracellular vesicles, which have a double-membrane structure and are important players in the intercellular communication involved in a variety of important biological processes. Platelets form platelet-derived microparticles (PMPs) in response to activation, injury, or apoptosis. This review introduces the origin, pathway, and biological functions of PMPs and their importance in physiological and pathological processes. In addition, we review the potential applications of PMPs in cancer, vascular homeostasis, thrombosis, inflammation, neural regeneration, biomarkers, and drug carriers to achieve targeted drug delivery. In addition, we comprehensively report on the origin, biological functions, and applications of PMPs. The clinical transformation, high heterogeneity, future development direction, and limitations of the current research on PMPs are also discussed in depth. Evidence has revealed that PMPs play an important role in cell-cell communication, providing clues for the development of PMPs as carriers for relevant cell-targeted drugs. The development history and prospects of PMPs and their cargos are explored in this guidebook.
Collapse
Affiliation(s)
- Jingwen Guo
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001 China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Bufeng Cui
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001 China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Jie Zheng
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001 China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Chang Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xuran Zheng
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Lixin Yi
- School of Pharmacy, China Medical University, Shenyang 110122, China
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Simeng Zhang
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Keke Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001 China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
5
|
Uslu D, Abas BI, Demirbolat GM, Cevik O. Effect of platelet exosomes loaded with doxorubicin as a targeted therapy on triple-negative breast cancer cells. Mol Divers 2024; 28:449-460. [PMID: 36576666 DOI: 10.1007/s11030-022-10591-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Exosomes have come to the fore in drug delivery systems due to their biological-based and immune-suppressing properties. In this study, we investigated the effect of doxorubicin loading of exosomes isolated from human platelets on breast cancer.Exosomes released from ADP (1 µM)-activated platelets were isolated by the ultracentrifugation method, and their size and charge were measured with a TEM and zeta sizer. Then doxorubicin (Dox) loading into exosomes (PLT-Exo-Dox) was done by electroporation and incubated with MDA-MB-231 cells. In exosome characterization, CD62 positivity was higher in platelet pellets, while CD9 positivity was higher in released exosomes. The size of PLT-Exo and PLT-Exo-Dox was 82.02 ± 5.21 nm and 116 ± 3.73 nm, with a polydispersity index of 0.26 ± 0.04 and 0.39 ± 0.06, and the Zeta potential was - 16.45 mV and 24.07 mV, respectively. The encapsulation efficiency of the preparation was 86.02 ± 6.16%, with a drug loading capacity of 4.75 ± 0.16 µg/µg of the exosome. In MDA-MB-231 cells, PLT-Exo increased cell viability, while PLT-Exo-Dox decreased in 24 h. The Annexin-V binding level and Bax gene expression were increased in PLT-Exo-Dox and Bcl-2 gene expression was decreased. This study will shed light on the development of release systems that can be effective with chemotherapeutic agents by using exosomes released by cells in the development of personalized treatments.
Collapse
Affiliation(s)
- Dilara Uslu
- Department of Molecular Biotechnology, Graduate School of Health Sciences, Aydin Adnan Menderes University, Aydin, Turkey
| | - Burcin Irem Abas
- Department of Medicinal Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin, Turkey
| | - Gulen Melike Demirbolat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ozge Cevik
- Department of Medicinal Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin, Turkey.
| |
Collapse
|
6
|
Wu YW, Lee DY, Lu YL, Delila L, Nebie O, Barro L, Changou CA, Lu LS, Goubran H, Burnouf T. Platelet extracellular vesicles are efficient delivery vehicles of doxorubicin, an anti-cancer drug: preparation and in vitro characterization. Platelets 2023; 34:2237134. [PMID: 37580876 DOI: 10.1080/09537104.2023.2237134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/16/2023]
Abstract
Platelet extracellular vesicles (PEVs) are an emerging delivery vehi for anticancer drugs due to their ability to target and remain in the tumor microenvironment. However, there is still a lack of understanding regarding yields, safety, drug loading efficiencies, and efficacy of PEVs. In this study, various methods were compared to generate PEVs from clinical-grade platelets, and their properties were examined as vehicles for doxorubicin (DOX). Sonication and extrusion produced the most PEVs, with means of 496 and 493 PEVs per platelet (PLT), respectively, compared to 145 and 33 by freeze/thaw and incubation, respectively. The PEVs were loaded with DOX through incubation and purified by chromatography. The size and concentration of the PEVs and PEV-DOX were analyzed using dynamic light scattering and nanoparticle tracking analysis. The results showed that the population sizes and concentrations of PEVs and PEV-DOX were in the ranges of 120-150 nm and 1.2-6.2 × 1011 particles/mL for all preparations. The loading of DOX determined using fluorospectrometry was found to be 2.1 × 106, 1.7 × 106, and 0.9 × 106 molecules/EV using freeze/thaw, extrusion, and sonication, respectively. The internalization of PEVs was determined to occur through clathrin-mediated endocytosis. PEV-DOX were more efficiently taken up by MDA-MB-231 breast cancer cells compared to MCF7/ADR breast cancer cells and NIH/3T3 cells. DOX-PEVs showed higher anticancer activity against MDA-MB-231 cells than against MCF7/ADR or NIH/3T3 cells and better than acommercial liposomal DOX formulation. In conclusion, this study demonstrates that PEVs generated by PLTs using extrusion, freeze/thaw, or sonication can efficiently load DOX and kill breast cancer cells, providing a promising strategy for further evaluation in preclinical animal models. The study findings suggest that sonication and extrusion are the most efficient methods to generate PEVs and that PEVs loaded with DOX exhibit significant anticancer activity against MDA-MB-231 breast cancer cells.
Collapse
Affiliation(s)
- Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Deng-Yao Lee
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Yeh-Lin Lu
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Lassina Barro
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chun Austin Changou
- Core Facility Center, Office of Research and Development, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, Center for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Long-Sheng Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, Center for Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei, Taiwan
- Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, Center for Translational Medicine, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Burnouf T, Chou ML, Lundy DJ, Chuang EY, Tseng CL, Goubran H. Expanding applications of allogeneic platelets, platelet lysates, and platelet extracellular vesicles in cell therapy, regenerative medicine, and targeted drug delivery. J Biomed Sci 2023; 30:79. [PMID: 37704991 PMCID: PMC10500824 DOI: 10.1186/s12929-023-00972-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023] Open
Abstract
Platelets are small anucleated blood cells primarily known for their vital hemostatic role. Allogeneic platelet concentrates (PCs) collected from healthy donors are an essential cellular product transfused by hospitals to control or prevent bleeding in patients affected by thrombocytopenia or platelet dysfunctions. Platelets fulfill additional essential functions in innate and adaptive immunity and inflammation, as well as in wound-healing and tissue-repair mechanisms. Platelets contain mitochondria, lysosomes, dense granules, and alpha-granules, which collectively are a remarkable reservoir of multiple trophic factors, enzymes, and signaling molecules. In addition, platelets are prone to release in the blood circulation a unique set of extracellular vesicles (p-EVs), which carry a rich biomolecular cargo influential in cell-cell communications. The exceptional functional roles played by platelets and p-EVs explain the recent interest in exploring the use of allogeneic PCs as source material to develop new biotherapies that could address needs in cell therapy, regenerative medicine, and targeted drug delivery. Pooled human platelet lysates (HPLs) can be produced from allogeneic PCs that have reached their expiration date and are no longer suitable for transfusion but remain valuable source materials for other applications. These HPLs can substitute for fetal bovine serum as a clinical grade xeno-free supplement of growth media used in the in vitro expansion of human cells for transplantation purposes. The use of expired allogeneic platelet concentrates has opened the way for small-pool or large-pool allogeneic HPLs and HPL-derived p-EVs as biotherapy for ocular surface disorders, wound care and, potentially, neurodegenerative diseases, osteoarthritis, and others. Additionally, allogeneic platelets are now seen as a readily available source of cells and EVs that can be exploited for targeted drug delivery vehicles. This article aims to offer an in-depth update on emerging translational applications of allogeneic platelet biotherapies while also highlighting their advantages and limitations as a clinical modality in regenerative medicine and cell therapies.
Collapse
Affiliation(s)
- Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Li Chou
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - David J Lundy
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Ching-Li Tseng
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| |
Collapse
|
8
|
Abstract
Platelet-derived extracellular vesicles (PEVs) are a subset of EVs that are released from platelets, which are small nuclear cell fragments that play a critical role in hemostasis and thrombosis. PEVs have been shown to have important roles in a variety of physiological and pathological processes, including inflammation, angiogenesis, and cancer. Recently, researchers, including our group have utilized PEVs as drug delivery platforms as PEVs could target inflammatory sites both passively and actively. This review summarizes the biological function of PEVs, introduces recent applications of PEVs in targeted drug delivery, and provides an outlook for the further development of utilizing PEVs for drug delivery.
Collapse
Affiliation(s)
- Chenlu Yao
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| | - Chao Wang
- Laboratory for Biomaterial and ImmunoEngineering, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
9
|
Chen J, Wang M, Zhang Y, Zhu F, Xu Y, Yi G, Zheng R, Wu B. Platelet extracellular vesicles: Darkness and light of autoimmune diseases. Int Rev Immunol 2023; 43:63-73. [PMID: 37350464 DOI: 10.1080/08830185.2023.2225551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
Autoimmune diseases are characterized by a breakdown of immune tolerance, leading to inflammation and irreversible end-organ tissue damage. Platelet extracellular vesicles are cellular elements that are important in blood circulation and actively participate in inflammatory and immune responses through intercellular communication and interactions between inflammatory cells, immune cells, and their secreted factors. Therefore, platelet extracellular vesicles are the "accelerator" in the pathological process of autoimmune diseases; however, this robust set of functions of platelet extracellular vesicles has also prompted new advances in therapeutic strategies for autoimmune diseases. In this review, we update fundamental mechanisms based on platelet extracellular vesicles communication function in autoimmune diseases. We also focus on the potential role of platelet extracellular vesicles for the treatment of autoimmune diseases. Some recent studies have found that antiplatelet aggregation drugs, specific biological agents can reduce the release of platelet extracellular vesicles. Platelet extracellular vesicles can also serve as vehicles to deliver drugs to targeted cells. It seems that we can try to silence or inhibit microRNA carried by platelet extracellular vesicles transcription and regulate the target cells to treat autoimmune diseases as platelet extracellular vesicles can transfer microRNA to other cells to regulate immune-inflammatory responses. Hopefully, the information presented here will provide hope for patients with autoimmune diseases.
Collapse
Affiliation(s)
- Jingru Chen
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Miao Wang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Ying Zhang
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Fenglin Zhu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Yanqiu Xu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Guoxiang Yi
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
| | - Runxiu Zheng
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| | - Bin Wu
- Department of Rheumatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, P.R. China
- Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
| |
Collapse
|
10
|
Mabrouk M, Guessous F, Naya A, Merhi Y, Zaid Y. The Pathophysiological Role of Platelet-Derived Extracellular Vesicles. Semin Thromb Hemost 2023; 49:279-283. [PMID: 36174608 DOI: 10.1055/s-0042-1756705] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Platelets are very abundant in the blood, where they play a role in hemostasis, inflammation, and immunity. When activated, platelets undergo a conformational change that allows the release of numerous effector molecules as well as the production of extracellular vesicles, which are circulating submicron vesicles (10 to 1,000 nm in diameter) released into the extracellular space. Extracellular vesicles are formed by the budding of platelet and they carry some of its contents, including nucleic acids, surface proteins, and organelles. While platelets cannot cross tissue barriers, platelet-derived extracellular vesicles can enter the lymph, bone marrow, and synovial fluid. This allows the transfer of diverse contents carried by these platelet-derived vesicles to cell recipients and organs inaccessible to platelets where they can perform many functions. This review highlights the importance of these platelet-derived extracellular vesicles under different physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Meryem Mabrouk
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.,Department of Biology, Faculty of Sciences, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca, Morocco
| | - Fadila Guessous
- Research of Center, Faculty of Medicine, Mohammed VI University of Health Sciences (UM6SS), Casablanca, Morocco
| | - Abdallah Naya
- Department of Biology, Faculty of Sciences, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca, Morocco
| | - Yahye Merhi
- Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, Research Center, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Younes Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.,Department of Biology, Faculty of Sciences, Immunology and Biodiversity Laboratory, Hassan II University, Casablanca, Morocco
| |
Collapse
|
11
|
Huang SJ, Zhang Y, Wang GH, Lu J, Chen PP, Zhang JX, Li XQ, Yuan BY, Liu XQ, Jiang TT, Wang MY, Liu WT, Ruan XZ, Liu BC, Ma KL. Deposition of platelet-derived microparticles in podocytes contributes to diabetic nephropathy. Int Urol Nephrol 2023; 55:355-366. [PMID: 35931920 DOI: 10.1007/s11255-022-03332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/25/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease in the developed world. Podocyte injury is a critical cellular event involved in the progression of DN. Our previous studies demonstrated that platelet-derived microparticles (PMPs) mediated endothelial injury in diabetic rats. This study aimed to investigate whether PMPs are deposited in podocytes and to assess their potential effects on podocyte injury in DN. METHODS The deposition of PMPs in podocytes was assessed by immunofluorescent staining and electron microscopy. The changes in renal pathology and ultra-microstructure were assessed by periodic acid-Schiff staining and electron microscopy, respectively. The expression of inflammatory cytokines and extracellular matrix proteins was measured by immuno-histochemical staining and western blot. RESULTS PMPs were widely deposited in podocytes of glomeruli in diabetic patients and animal models and closely associated with DN progression. Interestingly, aspirin treatment significantly inhibited the accumulation of PMPs in the glomeruli of diabetic rats, alleviated mesangial matrix expansion and fusion of foot processes, and decreased the protein expression of inflammatory cytokines and extracellular matrix secretion. An in vitro study further confirmed the deposition of PMPs in podocytes. Moreover, PMP stimulation induced the phenotypic transition of podocytes through decreased podocin protein expression and increased protein expression of α-SMA and fibronectin, which was correlated with increased production of inflammatory cytokines. CONCLUSION Our findings demonstrated for the first time that the deposition of PMPs in podocytes contributed to the development of DN.
Collapse
Affiliation(s)
- Si Jia Huang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yang Zhang
- Renal Department, Nanjing First Hospital, Nanjing, 210006, China
| | - Gui Hua Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jian Lu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Pei Pei Chen
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Jia Xiu Zhang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xue Qi Li
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ben Yin Yuan
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiao Qi Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ting Ting Jiang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Meng Ying Wang
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Wen Tao Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiong Zhong Ruan
- John Moorhead Research Laboratory, Department of Renal Medicine, University College London (UCL) Medical School, Royal Free Campus, London, NW3 2PF, UK
| | - Bi Cheng Liu
- Institute of Nephrology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Kun Ling Ma
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Zhan M, Shi S, Zheng X, Chen W, Sun L, Zhang Y, Liu J. Research landscape of exosomes in platelets from 2000 to 2022: A bibliometric analysis. Front Cardiovasc Med 2022; 9:1054816. [PMID: 36606281 PMCID: PMC9810141 DOI: 10.3389/fcvm.2022.1054816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Background Blood-derived exosomes are involved in developing multiple pathological processes, with platelets being the most well-known source. Related studies have become an area of research with significant value and potential. However, no bibliometric studies in this field have yet been identified. We aimed to analyze the hotspots and academic trends of platelet exosome research through bibliometric visualization to actively grasp the research base in this field and track its developmental orientation. Methods From 2000 to 2022, we screened all relevant publications on platelet exosome-related research from the Web of Science database, generated knowledge maps using VOSviewer and CiteSpace software, and analyzed research trends in the field. Results A total of 722 articles were screened for inclusion based on the search strategy. The number of articles on exosome studies in platelets has expanded vastly. The USA and the People's Republic of China contributed substantially among 69 countries or regions. Amsterdam University and Semmelweis University are the research institutions with the most publications. The most studied and co-cited journals were the International Journal of Molecular Sciences and the Journal of Extracellular Vesicles. We identified 4,598 authors, with Nieuwland Rienk having the highest number of articles and Bruno Stefania having the most cited publications. Keywords of great interest include "thrombosis," "anti-inflammatory," "anti-apoptosis," "angiogenesis," "microparticles," "miRNAs," "stem cells," and "biomarkers," which are key research areas for future development. Conclusion We used bibliometric and visualization methods to identify hotspots and trends in platelet exosome research. Platelet exosome research is widely expanding. Future research will most likely focus on "thrombosis," "anti-inflammatory," "anti-apoptosis," "angiogenesis," "microparticles," "miRNAs," "stem cells," and "biomarkers."
Collapse
Affiliation(s)
- Min Zhan
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengnan Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Zheng
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linjuan Sun
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Linjuan Sun,
| | - Yehao Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Yehao Zhang,
| | - Jianxun Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Jianxun Liu,
| |
Collapse
|
13
|
Dai Z, Zhao T, Song N, Pan K, Yang Y, Zhu X, Chen P, Zhang J, Xia C. Platelets and platelet extracellular vesicles in drug delivery therapy: A review of the current status and future prospects. Front Pharmacol 2022; 13:1026386. [PMID: 36330089 PMCID: PMC9623298 DOI: 10.3389/fphar.2022.1026386] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
Platelets are blood cells that are primarily produced by the shedding of megakaryocytes in the bone marrow. Platelets participate in a variety of physiological and pathological processes in vivo, including hemostasis, thrombosis, immune-inflammation, tumor progression, and metastasis. Platelets have been widely used for targeted drug delivery therapies for treating various inflammatory and tumor-related diseases. Compared to other drug-loaded treatments, drug-loaded platelets have better targeting, superior biocompatibility, and lower immunogenicity. Drug-loaded platelet therapies include platelet membrane coating, platelet engineering, and biomimetic platelets. Recent studies have indicated that platelet extracellular vesicles (PEVs) may have more advantages compared with traditional drug-loaded platelets. PEVs are the most abundant vesicles in the blood and exhibit many of the functional characteristics of platelets. Notably, PEVs have excellent biological efficacy, which facilitates the therapeutic benefits of targeted drug delivery. This article provides a summary of platelet and PEVs biology and discusses their relationships with diseases. In addition, we describe the preparation, drug-loaded methods, and specific advantages of platelets and PEVs targeted drug delivery therapies for treating inflammation and tumors. We summarize the hot spots analysis of scientific articles on PEVs and provide a research trend, which aims to give a unique insight into the development of PEVs research focus.
Collapse
Affiliation(s)
- Zhanqiu Dai
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Tingxiao Zhao
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
| | - Nan Song
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kaifeng Pan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yang Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Xunbin Zhu
- Department of Orthopaedics, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| | - Chen Xia
- Department of Spine Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College People’s Hospital, Hangzhou, Zhejiang, China
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
- *Correspondence: Pengfei Chen, ; Jun Zhang, ; Chen Xia,
| |
Collapse
|
14
|
Tang X, Li D, Gu Y, Zhao Y, Li A, Qi F, Liu J. Natural cell based biomimetic cellular transformers for targeted therapy of digestive system cancer. Theranostics 2022; 12:7080-7107. [PMID: 36276645 PMCID: PMC9576611 DOI: 10.7150/thno.75937] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Digestive system cancer is the most common cause of cancer death in the world. Although cancer treatment options are increasingly diversified, the mortality rate of malignant cancer of the digestive system remains high. Therefore, it is necessary to explore effective cancer treatment methods. Recently, biomimetic nanoparticle delivery systems based on natural cells that organically integrate the low immunogenicity, high biocompatibility, cancer targeting, and controllable, versatile functionality of smart nanocarrier design with natural cells have been expected to break through the bottleneck of tumor targeted therapy. In this review, we focus on the dynamic changes and complex cellular communications that occur in vivo in natural cells based vehicles. Recent studies on the development of advanced targeted drug delivery systems using the dynamic behaviors such as specific surface protein affinity, morphological changes, and phenotypic polarization of natural cells are summarized. In addition to drug delivery mediated by dynamic behavior, functional "delivery" based on the natural cell themselves is also involved. Aiming to make the best use of the functions of cells, providing clues for the development of advanced drug delivery platforms.
Collapse
Affiliation(s)
- Xiaomeng Tang
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yongwei Gu
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yunan Zhao
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Aixue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Fu Qi
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pharmacy, Shanghai Proton and Heavy Ion Center, Shanghai 201315, China
| |
Collapse
|
15
|
Morris K, Schnoor B, Papa AL. Platelet cancer cell interplay as a new therapeutic target. Biochim Biophys Acta Rev Cancer 2022; 1877:188770. [DOI: 10.1016/j.bbcan.2022.188770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 10/16/2022]
|
16
|
Xiao G, Zhang Z, Chen Q, Wu T, Shi W, Gan L, Liu X, Huang Y, Lv M, Zhao Y, Wu P, Zhong L, He J. Platelets for cancer treatment and drug delivery. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 24:1231-1237. [PMID: 35218523 DOI: 10.1007/s12094-021-02771-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022]
Abstract
Extensive research is currently being conducted into a variety of bio-inspired biomimetic nanoparticles (NPs) with new cell simulation functions across the fields of materials science, chemistry, biology, physics, and engineering. Cells such as erythrocytes, platelets, and stem cells have been engineered as new drug carriers. The platelet-derived drug delivery system, which is a new targeted drug delivery system (TDDS), can effectively navigate the blood circulatory system and interact with the complex tumor microenvironment; it appears to outperform traditional anticancer drugs; hence, it has attracted considerable research interest. In this review, we describe innovative studies and outline the latest progress regarding the use of platelets as tumor targeting and drug delivery vehicles; we also highlight opportunities and challenges relevant to the manufacture of tumor-related platelet TDDSs.
Collapse
Affiliation(s)
- Gaozhe Xiao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhikun Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qiaoying Chen
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tao Wu
- The First People's Hospital of Changde City, Changde, 41500, China
| | - Wei Shi
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, China
| | - Lu Gan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiuli Liu
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengyu Lv
- The First Affiliated Hospital, Guangxi University of Chinese Medicine, Nanning, 530023, China
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Pan Wu
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Liping Zhong
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jian He
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, 530021, Guangxi, China. .,The First People's Hospital of Changde City, Changde, 41500, China.
| |
Collapse
|
17
|
Georgatzakou HT, Fortis SP, Papageorgiou EG, Antonelou MH, Kriebardis AG. Blood Cell-Derived Microvesicles in Hematological Diseases and beyond. Biomolecules 2022; 12:803. [PMID: 35740926 PMCID: PMC9220817 DOI: 10.3390/biom12060803] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Microvesicles or ectosomes represent a major type of extracellular vesicles that are formed by outward budding of the plasma membrane. Typically, they are bigger than exosomes but smaller than apoptotic vesicles, although they may overlap with both in size and content. Their release by cells is a means to dispose redundant, damaged, or dangerous material; to repair membrane lesions; and, primarily, to mediate intercellular communication. By participating in these vital activities, microvesicles may impact a wide array of cell processes and, consequently, changes in their concentration or components have been associated with several pathologies. Of note, microvesicles released by leukocytes, red blood cells, and platelets, which constitute the vast majority of plasma microvesicles, change under a plethora of diseases affecting not only the hematological, but also the nervous, cardiovascular, and urinary systems, among others. In fact, there is evidence that microvesicles released by blood cells are significant contributors towards pathophysiological states, having inflammatory and/or coagulation and/or immunomodulatory arms, by either promoting or inhibiting the relative disease phenotypes. Consequently, even though microvesicles are typically considered to have adverse links with disease prognosis, progression, or outcomes, not infrequently, they exert protective roles in the affected cells. Based on these functional relations, microvesicles might represent promising disease biomarkers with diagnostic, monitoring, and therapeutic applications, equally to the more thoroughly studied exosomes. In the current review, we provide a summary of the features of microvesicles released by blood cells and their potential implication in hematological and non-hematological diseases.
Collapse
Affiliation(s)
- Hara T. Georgatzakou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Sotirios P. Fortis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| | - Marianna H. Antonelou
- Department of Biology, Section of Cell Biology and Biophysics, National & Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Caring Sciences, University of West Attica (UniWA), 12243 Egaleo, Greece; (H.T.G.); (S.P.F.); (E.G.P.)
| |
Collapse
|
18
|
Gautam D, Kailashiya J, Tiwari A, Chaurasia RN, Annarapu GK, Guchhait P, Dash D. Fibrinogen Mitigates Prion-Mediated Platelet Activation and Neuronal Cell Toxicity. Front Cell Dev Biol 2022; 10:834016. [PMID: 35386203 PMCID: PMC8977893 DOI: 10.3389/fcell.2022.834016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
Prion peptide (PrP) misfolds to infectious scrapie isoform, the β pleat-rich insoluble fibrils responsible for neurodegeneration and fatal conformational diseases in humans. The amino acid sequence 106–126 from prion proteins, PrP(106–126), is highly amyloidogenic and implicated in prion-induced pathologies. Here, we report a novel interaction between PrP(106–126) and the thrombogenic plasma protein fibrinogen that can lead to mitigation of prion-mediated pro-thrombotic responses in human platelets as well as significant decline in neuronal toxicity. Thus, prior exposure to fibrinogen-restrained PrP-induced rise in cytosolic calcium, calpain activation, and shedding of extracellular vesicles in platelets while it, too, averted cytotoxicity of neuronal cells triggered by prion peptide. Interestingly, PrP was found to accelerate fibrin-rich clot formation, which was resistant to plasmin-mediated fibrinolysis, consistent with enhanced thrombus stability provoked by PrP. We propose that PrP-fibrinogen interaction can be clinically exploited further for prevention and management of infectious prion related disorders. Small molecules or peptides mimicking PrP-binding sites on fibrinogen can potentially mitigate PrP-induced cellular toxicity while also preventing the negative impact of PrP on fibrin clot formation and lysis.
Collapse
Affiliation(s)
- Deepa Gautam
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Jyotsna Kailashiya
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Arundhati Tiwari
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Rameshwar Nath Chaurasia
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gowtham K. Annarapu
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Debabrata Dash
- Center for Advanced Research on Platelet Signaling and Thrombosis Biology, Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- *Correspondence: Debabrata Dash,
| |
Collapse
|
19
|
Ci T, Zhang W, Qiao Y, Li H, Zang J, Li H, Feng N, Gu Z. Delivery strategies in treatments of leukemia. Chem Soc Rev 2022; 51:2121-2144. [PMID: 35188506 DOI: 10.1039/d1cs00755f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leukemia is a hematological malignancy associated with the uncontrolled proliferation of mutant progenitors, suppressing the production of normal blood cells. Current treatments, including chemotherapy, radiotherapy, and immunotherapy, still lead to unsatisfactory results with a 5 year survival rate of only 30-50%. The poor prognosis is related to both disease relapse and treatment-associated toxicity. Delivery strategies can improve the in vivo pharmacokinetics of drugs, navigating the therapeutics to target cells or the tumor microenvironment and reversing drug resistance, which maximizes tumor elimination and alleviates systematic adverse effects. This review discusses available FDA-approved anti-leukemia drugs and therapies with a focus on the advances in the development of anti-leukemia drug delivery systems. Additionally, challenges in clinical translation of the delivery strategies and future research opportunities in leukemia treatment are also included.
Collapse
Affiliation(s)
- Tianyuan Ci
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wentao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Yingyu Qiao
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Huangjuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu Province, 210009, China
| | - Jing Zang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hongjun Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
20
|
Wu J, Piao Y, Liu Q, Yang X. Platelet-rich plasma-derived extracellular vesicles: A superior alternative in regenerative medicine? Cell Prolif 2021; 54:e13123. [PMID: 34609779 PMCID: PMC8666280 DOI: 10.1111/cpr.13123] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 02/06/2023] Open
Abstract
Platelet-rich plasma (PRP), due to its promising therapeutic properties, has been used in regenerative medicine for more than 30 years and numerous encouraging outcomes have been obtained. Currently, by benefiting from new insights into PRP mechanisms and the excellent performance of extracellular vesicles (EVs) in the field of tissue repair and regeneration, studies have found that a large number of EVs released from activated platelets also participate in the regulation of tissue repair. A growing number of preclinical studies are exploring the functions of PRP-derived EVs (PRP-EVs), especially in tissue regeneration. Here, we summarize the latest progress in PRP-EVs as a superior alternative cell-free therapeutic strategy in regenerative medicine, clarify their underlying molecular mechanisms, and discuss the advantages and limitations of the upcoming clinical applications. This review highlights the potential of PRP-EVs to replace the application of PRP or even become a superior alternative in regenerative medicine.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, China
| | - Yingxin Piao
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Qinyi Liu
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, China
| | - Xiaoyu Yang
- Department of Orthopaedics, The Second Hospital, Jilin University, Changchun, China
| |
Collapse
|
21
|
Platelets and extracellular vesicles and their cross talk with cancer. Blood 2021; 137:3192-3200. [PMID: 33940593 DOI: 10.1182/blood.2019004119] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Platelets play significant and varied roles in cancer progression, as detailed throughout this review series, via direct interactions with cancer cells and by long-range indirect interactions mediated by platelet releasates. Microvesicles (MVs; also referred to as microparticles) released from activated platelets have emerged as major contributors to the platelet-cancer nexus. Interactions of platelet-derived MVs (PMVs) with cancer cells can promote disease progression through multiple mechanisms, but PMVs also harbor antitumor functions. This complex relationship derives from PMVs' binding to both cancer cells and nontransformed cells in the tumor microenvironment and transferring platelet-derived contents to the target cell, each of which can have stimulatory or modulatory effects. MVs are extracellular vesicles of heterogeneous size, ranging from 100 nm to 1 µm in diameter, shed by living cells during the outward budding of the plasma membrane, entrapping local cytosolic contents in an apparently stochastic manner. Hence, PMVs are encapsulated by a lipid bilayer harboring surface proteins and lipids mirroring the platelet exterior, with internal components including platelet-derived mature messenger RNAs, pre-mRNAs, microRNAs, and other noncoding RNAs, proteins, second messengers, and mitochondria. Each of these elements engages in established and putative PMV functions in cancer. In addition, PMVs contribute to cancer comorbidities because of their roles in coagulation and thrombosis and via interactions with inflammatory cells. However, separating the effects of PMVs from those of platelets in cancer contexts continues to be a major hurdle. This review summarizes our emerging understanding of the complex roles of PMVs in the development and progression of cancer and cancer comorbidities.
Collapse
|
22
|
Johnson J, Wu YW, Blyth C, Lichtfuss G, Goubran H, Burnouf T. Prospective Therapeutic Applications of Platelet Extracellular Vesicles. Trends Biotechnol 2020; 39:598-612. [PMID: 33160678 DOI: 10.1016/j.tibtech.2020.10.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
There is much interest in the use of extracellular vesicles (EVs) as a subcellular therapy for regenerative medicine and drug delivery. Blood-borne platelets represent a source of therapeutic EVs that is so far largely unexplored. Advantages of platelets as a cellular source of EVs include their established clinical value, regulated collection procedures, availability in a concentrated form, propensity to generate EVs, and unique composition and tissue-targeting capacity. This review analyzes the unique potential of platelet-derived (p-) EVs as therapeutic modalities and presents their inherent translational advantages for hemostasis, for regenerative medicine, and as drug-delivery vehicles.
Collapse
Affiliation(s)
- Jancy Johnson
- Exopharm Ltd, Level 17, 31 Queen Street, Melbourne, VIC 3000, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yu-Wen Wu
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chantelle Blyth
- Exopharm Ltd, Level 17, 31 Queen Street, Melbourne, VIC 3000, Australia
| | - Gregor Lichtfuss
- Exopharm Ltd, Level 17, 31 Queen Street, Melbourne, VIC 3000, Australia; Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC 3010, Australia
| | - Hadi Goubran
- Saskatoon Cancer Centre and College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
23
|
Platelets Extracellular Vesicles as Regulators of Cancer Progression-An Updated Perspective. Int J Mol Sci 2020; 21:ijms21155195. [PMID: 32707975 PMCID: PMC7432409 DOI: 10.3390/ijms21155195] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are a diverse group of membrane-bound structures secreted in physiological and pathological conditions by prokaryotic and eukaryotic cells. Their role in cell-to-cell communications has been discussed for more than two decades. More attention is paid to assess the impact of EVs in cancer. Numerous papers showed EVs as tumorigenesis regulators, by transferring their cargo molecules (miRNA, DNA, protein, cytokines, receptors, etc.) among cancer cells and cells in the tumor microenvironment. During platelet activation or apoptosis, platelet extracellular vesicles (PEVs) are formed. PEVs present a highly heterogeneous EVs population and are the most abundant EVs group in the circulatory system. The reason for the PEVs heterogeneity are their maternal activators, which is reflected on PEVs size and cargo. As PLTs role in cancer development is well-known, and PEVs are the most numerous EVs in blood, their feasible impact on cancer growth is strongly discussed. PEVs crosstalk could promote proliferation, change tumor microenvironment, favor metastasis formation. In many cases these functions were linked to the transfer into recipient cells specific cargo molecules from PEVs. The article reviews the PEVs biogenesis, cargo molecules, and their impact on the cancer progression.
Collapse
|