1
|
Sikder S, Bhattacharya A, Agrawal A, Sethi G, Kundu TK. Micro-RNAs in breast cancer progression and metastasis: A chromatin and metabolic perspective. Heliyon 2024; 10:e38193. [PMID: 39386816 PMCID: PMC11462366 DOI: 10.1016/j.heliyon.2024.e38193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Breast cancer is a highly complex disease with multiple subtypes. While many of the breast cancer cases are sporadic some can be familial or hereditary. Genomic integrity is closely monitored by several mechanisms, such as DNA damage machinery and mitotic checkpoints. Any defect in the key genes involved in the regulation of these mechanisms often results in genomic instability, predisposing the cells to malignancy. This results in altered expression of many coding and noncoding genes. The noncoding RNAs especially the long noncoding RNA (lncRNAs) and microRNA (miRNAs) act as key regulators of cancer gene networks. Some miRNAs repress the expression of the heterochromatin-associated proteins, inducing the formation of open chromatin, and promoting the expression of genes required for oncogenesis. Additionally, specific miRNAs may also favour cancer progression and metastasis by regulating the expression of genes that support the metabolic microenvironment essential for cancer cell growth and proliferation. Understanding how these noncoding RNAs contribute to breast cancer development opens potential avenues for therapeutic intervention, targeting their dysregulated activity.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Aditya Bhattacharya
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Aayushi Agrawal
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore
| | - Tapas K. Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
2
|
Mo WY, Cao SQ. MiR-29a-3p: a potential biomarker and therapeutic target in colorectal cancer. Clin Transl Oncol 2023; 25:563-577. [PMID: 36355327 PMCID: PMC9941256 DOI: 10.1007/s12094-022-02978-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Cancer is frequently caused by microRNAs, which control post-transcriptional levels of gene expression by binding to target mRNAs. MiR-29a-3p has recently been shown to play a twofold function in the majority of malignancies, including colorectal cancer (CRC), according to mounting evidence. Here, we not only briefly summarize such connection between miR-29a-3p and cancers, but aslo primarily evaluate the miR-29a-3p expression pattern, clinical applicability, and molecular mechanisms in CRC to provide a guide for future studies. This review established the diagnostic and prognostic value of miR-29a-3p abnormalty in a variety of clinical samples for CRC. Furthermore, current molecular mechanisms of miR-29a-3p for regulating cancerous biological processes such growth, invasion, metastasis, the epithelial-mesenchymal transformation process, and immunomodulation through its upstream regulatory factors and downstream targeted genes were briefly explored. More specifically, miR-29a-3p has been linked to a few medications that have been shown to have anticancer benefits. To sum up, miR-29a-3p is a promising biomarker and prospective therapeutic target for the diagnosis and prognosis of CRC, but further research is still needed to establish a theoretical basis for more practical applications.
Collapse
Affiliation(s)
- Wen-Yan Mo
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, Hubei, China
| | - Shi-Qiong Cao
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430077, Hubei, China.
| |
Collapse
|
3
|
Zhang J, Liao H, Xun X, Hou X, Zhu X, Xing Q, Huang X, Hu J, Bao Z. Identification, characterization and expression analyses of PC4 genes in Yesso scallop (Patinopecten yessoensis) reveal functional differentiations in response to ocean acidification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106099. [PMID: 35114458 DOI: 10.1016/j.aquatox.2022.106099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/15/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Transcriptional coactivator p15 (PC4), considered a multifunctional chromosome associated protein, is actively involved in transcription regulation, DNA replication, damage repair and chromosome formation. Although studies have reported significant effects of PC4 in most vertebrates and some invertebrates, the complete PC4 gene members are less systematically identified and characterized in scallops. In this study, seven PC4 genes (PyPC4s) were identified in the Yesso scallop Patinopecten yessoensis using whole-genome scanning via bioinformatic analyses. Phylogenetic and protein structural analyses were performed to determine the identities and evolutionary relationships of the seven genes. Expression profiles of PyPC4s were further investigated in embryos/larvae at all developmental stages, healthy adult tissues, and mantles that were exposed to low pH stress (pH 6.5 and 7.5) with different time durations (3, 6, 12 and 24 h). Spatiotemporal expression patterns indicated the functional roles of PyPC4s at all development stages and in healthy adult tissues, with PY-3235.33 demonstrating remarkably high constitutive expressions. Expression regulations (up- and down-regulation) of PyPC4s under low pH stress levels demonstrated a time-dependent pattern with functional complementation and/or enhancement, revealing that PyPC4s exhibited differentiated functions in response to ocean acidification (OA). Collectively, our data offer a novel perspective stating that low pH is a potential inducer leading to functional differentiation of PyPC4s in scallops. The results provide preliminary information on the versatile roles of PC4(s) in bivalves in response to OA.
Collapse
Affiliation(s)
- Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Huan Liao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; College of Animal Biotechnology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaogang Xun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Qilu University of Technology (Shandong Academy of Sciences), China
| | - Xiujiang Hou
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Xinghai Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Xiaoting Huang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution of the Ocean University of China (SOI-OUC), Sanya 572000, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|