1
|
Lee M, Larose H, Gräbeldinger M, Williams J, Baird AM, Brown S, Bruns J, Clark R, Cortes J, Curigliano G, Ferris A, Garrison LP, Gupta Y, Kanesvaran R, Lyman G, Pani L, Pemberton-Whiteley Z, Salmonson T, Sawicki P, Stein B, Suh DC, Velikova G, Grueger J. The evolving value assessment of cancer therapies: Results from a modified Delphi study. HEALTH POLICY OPEN 2024; 6:100116. [PMID: 38464704 PMCID: PMC10924144 DOI: 10.1016/j.hpopen.2024.100116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
The move toward early detection and treatment of cancer presents challenges for value assessment using traditional endpoints. Current cancer management rarely considers the full economic and societal benefits of therapies. Our study used a modified Delphi process to develop principles for defining and assessing value of cancer therapies that aligns with the current trajectory of oncology research and reflects broader notions of value. 24 experts participated in consensus-building activities across 5 months (16 took part in structured interactions, including a survey, plenary sessions, interviews, and off-line discussions, while 8 participated in interviews). Discussion focused on: 1) which oncology-relevant endpoints should be used for assessing treatments for early-stage cancer and access decisions for early-stage treatments, and 2) the importance of additional value components and how these can be integrated in value assessments. The expert group reached consensus on 4 principles in relation to the first area (consider oncology-relevant endpoints other than overall survival; build evidence for endpoints that provide earlier indication of efficacy; develop evidence for the next generation of predictive measures; use managed entry agreements supported by ongoing evidence collection to address decision-maker evidence needs) and 3 principles in relation to the second (routinely use patient reported outcomes in value assessments; assess broad economic impact of new medicines; consider other value aspects of relevance to patients and society).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Giuseppe Curigliano
- Department of Oncology and Hemato-Oncology, University of Milan, Division of Early Drug Development, European Institute of Oncology, IRCCS, Italy
| | | | | | - Y.K. Gupta
- All India Institute of Medical Science Bhopal, India
| | | | - Gary Lyman
- Fred Hutchinson Cancer Research Center, USA
| | - Luca Pani
- University of Miami, Università di Modena e Reggio Emilia, Italy
| | - Zack Pemberton-Whiteley
- Leukaemia Care, UK, Acute Leukemia Advocates Network (ALAN), Switzerland, Blood Cancer Alliance (BCA), UK
| | | | | | | | - Dong-Churl Suh
- Chung-Ang University, South Korea; Rutgers, The State University of New Jersey, USA
| | | | - Jens Grueger
- Boston Consulting Group, Switzerland, Zurich, University of Washington, DC, USA
| |
Collapse
|
2
|
Claus J, De Smet D, Breyne J, Wesolowski J, Himpe U, Demedts I, Martens GA. Patient-centric thresholding of Cobas® EGFR mutation Test v2 for surveillance of EGFR-mutated metastatic non-small cell lung cancer. Sci Rep 2024; 14:18191. [PMID: 39107402 PMCID: PMC11303541 DOI: 10.1038/s41598-024-68350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Cobas EGFR mutation Test v2 was FDA-approved as qualitative liquid biopsy for actionable EGFR variants in non-small cell lung cancer (NSCLC). It generates semiquantitative index (SQI) values that correlate with mutant allele levels, but decision thresholds for clinical use in NSCLC surveillance are lacking. We conducted long-term ctDNA monitoring in 20 subjects with EGFR-mutated NSCLC; resulting in a 155 on-treatment samples. We defined optimal SQI intervals to predict/rule-out progression within 12 weeks from sampling and performed orthogonal calibration versus deep-sequencing and digital PCR. SQI showed significant diagnostic power (AUC 0.848, 95% CI 0.782-0.901). SQI below 5 (63% of samples) had 93% (95% CI 87-96%) NPV, while SQI above 10 (25% of samples) had 69% (95% CI 56-80%) PPV. Cobas EGFR showed perfect agreement with sequencing (Kappa 0.860; 95% CI 0.674-1.00) and digital PCR. SQI values strongly (r: 0.910, 95% 0.821-0.956) correlated to mutant allele concentrations with SQI of 5 and 10 corresponding to 6-9 (0.2-0.3%) and 64-105 (1.1-1.6%) mutant allele copies/mL (VAF) respectively. Our dual-threshold classifier of SQI 0/5/10 yielded informative results in 88% of blood draws with high NPV and good overall clinical utility for patient-centric surveillance of metastatic NSCLC.
Collapse
Affiliation(s)
- Jonas Claus
- Department of Pulmonary Diseases, AZ Delta General Hospital, Roeselare, Belgium
| | - Dieter De Smet
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium
| | - Joke Breyne
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium
| | | | - Ulrike Himpe
- Department of Pulmonary Diseases, AZ Delta General Hospital, Roeselare, Belgium
| | - Ingel Demedts
- Department of Pulmonary Diseases, AZ Delta General Hospital, Roeselare, Belgium
| | - Geert A Martens
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium.
- Department of Biomolecular Medicine, Ghent University, Gent, Belgium.
| |
Collapse
|
3
|
Davidson BA, Miranda AX, Reed SC, Bergman RE, Kemp JDJ, Reddy AP, Pantone MV, Fox EK, Dorand RD, Hurley PJ, Croessmann S, Park BH. An in vitro CRISPR screen of cell-free DNA identifies apoptosis as the primary mediator of cell-free DNA release. Commun Biol 2024; 7:441. [PMID: 38600351 PMCID: PMC11006667 DOI: 10.1038/s42003-024-06129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/29/2024] [Indexed: 04/12/2024] Open
Abstract
ABTRACT Clinical circulating cell-free DNA (cfDNA) testing is now routine, however test accuracy remains limited. By understanding the life-cycle of cfDNA, we might identify opportunities to increase test performance. Here, we profile cfDNA release across a 24-cell line panel and utilize a cell-free CRISPR screen (cfCRISPR) to identify mediators of cfDNA release. Our panel outlines two distinct groups of cell lines: one which releases cfDNA fragmented similarly to clinical samples and purported as characteristic of apoptosis, and another which releases larger fragments associated with vesicular or necrotic DNA. Our cfCRISPR screens reveal that genes mediating cfDNA release are primarily involved with apoptosis, but also identify other subsets of genes such as RNA binding proteins as potential regulators of cfDNA release. We observe that both groups of cells lines identified primarily produce cfDNA through apoptosis. These results establish the utility of cfCRISPR, genetically validate apoptosis as a major mediator of DNA release in vitro, and implicate ways to improve cfDNA assays.
Collapse
Affiliation(s)
- Brad A Davidson
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Adam X Miranda
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Sarah C Reed
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Riley E Bergman
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Justin D J Kemp
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Anvith P Reddy
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Morgan V Pantone
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Ethan K Fox
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - R Dixon Dorand
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Paula J Hurley
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Sarah Croessmann
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Ben Ho Park
- Division of Hematology, Oncology, Department of Medicine, Vanderbilt University Medical Center and the Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
| |
Collapse
|
4
|
Lee MR, Woo SM, Kim MK, Han S, Park S, Lee WJ, Lee D, Choi SI, Choi W, Yoon K, Chun JW, Kim Y, Kong S. Application of plasma circulating KRAS mutations as a predictive biomarker for targeted treatment of pancreatic cancer. Cancer Sci 2024; 115:1283-1295. [PMID: 38348576 PMCID: PMC11007020 DOI: 10.1111/cas.16104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 04/12/2024] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in circulating tumor deoxyribonucleic acid (ctDNA) have been reported as representative noninvasive prognostic markers for pancreatic ductal adenocarcinoma (PDAC). Here, we aimed to evaluate single KRAS mutations as prognostic and predictive biomarkers, with an emphasis on potential therapeutic approaches to PDAC. A total of 128 patients were analyzed for multiple or single KRAS mutations (G12A, G12C, G12D, G12R, G12S, G12V, and G13D) in their tumors and plasma using droplet digital polymerase chain reaction (ddPCR). Overall, KRAS mutations were detected by multiplex ddPCR in 119 (93%) of tumor DNA and 68 (53.1%) of ctDNA, with a concordance rate of 80% between plasma ctDNA and tumor DNA in the metastatic stage, which was higher than the 44% in the resectable stage. Moreover, the prognostic prediction of both overall survival (OS) and progression-free survival (PFS) was more relevant using plasma ctDNA than tumor DNA. Further, we evaluated the selective tumor-suppressive efficacy of the KRAS G12C inhibitor sotorasib in a patient-derived organoid (PDO) from a KRAS G12C-mutated patient using a patient-derived xenograft (PDX) model. Sotorasib showed selective inhibition in vitro and in vivo with altered tumor microenvironment, including fibroblasts and macrophages. Collectively, screening for KRAS single mutations in plasma ctDNA and the use of preclinical models of PDO and PDX with genetic mutations would impact precision medicine in the context of PDAC.
Collapse
Affiliation(s)
- Mi Rim Lee
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Molecular Imaging Branch, Division of Convergence TechnologyResearch Institute of National Cancer CenterGoyangKorea
| | - Sang Myung Woo
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Center for Liver and Pancreatobiliary Cancer, Hospital, National Cancer CenterGoyangKorea
- Immuno‐Oncology Branch, Division of Rare and Refractory CenterResearch Institute of National Cancer CenterGoyangKorea
| | - Min Kyeong Kim
- Targeted Therapy Branch, Division of Rare and Refractory CenterResearch Institute of National Cancer CenterGoyangKorea
| | - Sung‐Sik Han
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Center for Liver and Pancreatobiliary Cancer, Hospital, National Cancer CenterGoyangKorea
| | - Sang‐Jae Park
- Center for Liver and Pancreatobiliary Cancer, Hospital, National Cancer CenterGoyangKorea
| | - Woo Jin Lee
- Center for Liver and Pancreatobiliary Cancer, Hospital, National Cancer CenterGoyangKorea
- Interventional Medicine Branch, Division of Clinical ResearchResearch Institute of National Cancer CenterGoyangKorea
| | - Dong‐eun Lee
- Biostatistics Collaboration TeamResearch Core Center, National Cancer CenterGoyangKorea
| | - Sun Il Choi
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Molecular Imaging Branch, Division of Convergence TechnologyResearch Institute of National Cancer CenterGoyangKorea
- Henan Key Laboratory of Brain Targeted Bio‐Nanomedicine, School of Life Sciences & School of PharmacyHenan UniversityKaifengHenanChina
| | - Wonyoung Choi
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Center for Clinical Trials, Hospital, National Cancer CenterGoyangKorea
- Cancer Molecular Biology Branch, Division of Cancer BiologyResearch Institute of National Cancer CenterGoyangKorea
| | - Kyong‐Ah Yoon
- College of Veterinary MedicineKonkuk UniversitySeoulKorea
| | - Jung Won Chun
- Center for Liver and Pancreatobiliary Cancer, Hospital, National Cancer CenterGoyangKorea
- Interventional Medicine Branch, Division of Clinical ResearchResearch Institute of National Cancer CenterGoyangKorea
| | - Yun‐Hee Kim
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Molecular Imaging Branch, Division of Convergence TechnologyResearch Institute of National Cancer CenterGoyangKorea
| | - Sun‐Young Kong
- Department of Cancer Biomedical ScienceNational Cancer Center Graduate School of Cancer Science and PolicyGoyangKorea
- Targeted Therapy Branch, Division of Rare and Refractory CenterResearch Institute of National Cancer CenterGoyangKorea
- Department of Laboratory MedicineHospital, National Cancer CenterGoyangKorea
| |
Collapse
|
5
|
Nguyen MTN, Rajavuori A, Huhtinen K, Hietanen S, Hynninen J, Oikkonen J, Hautaniemi S. Circulating tumor DNA-based copy-number profiles enable monitoring treatment effects during therapy in high-grade serous carcinoma. Biomed Pharmacother 2023; 168:115630. [PMID: 37806091 DOI: 10.1016/j.biopha.2023.115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023] Open
Abstract
Circulating tumor DNA (ctDNA) analysis has emerged as a promising tool for detecting and profiling longitudinal genomics changes in cancer. While copy-number alterations (CNAs) play a major role in cancers, treatment effect monitoring using copy-number profiles has received limited attention as compared to mutations. A major reason for this is the insensitivity of CNA analysis for the real-life tumor-fraction ctDNA samples. We performed copy-number analysis on 152 plasma samples obtained from 29 patients with high-grade serous ovarian cancer (HGSC) using a sequencing panel targeting over 500 genes. Twenty-one patients had temporally matched tissue and plasma sample pairs, which enabled assessing concordance with tissues sequenced with the same panel or whole-genome sequencing and to evaluate sensitivity. Our approach could detect concordant CNA profiles in most plasma samples with as low as 5% tumor content and highly amplified regions in samples with ∼1% of tumor content. Longitudinal profiles showed changes in the CNA profiles in seven out of 11 patients with high tumor-content plasma samples at relapse. These changes included focal acquired or lost copy-numbers, even though most of the genome remained stable. Two patients displayed major copy-number profile changes during therapy. Our analysis revealed ctDNA-detectable subclonal selection resulting from both surgical operations and chemotherapy. Overall, longitudinal ctDNA data showed acquired and diminished CNAs at relapse when compared to pre-treatment samples. These results highlight the importance of genomic profiling during treatment as well as underline the usability of ctDNA.
Collapse
Affiliation(s)
- Mai T N Nguyen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland
| | - Anna Rajavuori
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4, Turku 20521, Finland
| | - Kaisa Huhtinen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland; Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, Turku 20014, Finland
| | - Sakari Hietanen
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4, Turku 20521, Finland
| | - Johanna Hynninen
- Department of Obstetrics and Gynecology, Turku University Hospital, Kiinamyllynkatu 4, Turku 20521, Finland
| | - Jaana Oikkonen
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland.
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki 00291, Finland.
| |
Collapse
|
6
|
Tsimberidou AM, Kahle M, Vo HH, Baysal MA, Johnson A, Meric-Bernstam F. Molecular tumour boards - current and future considerations for precision oncology. Nat Rev Clin Oncol 2023; 20:843-863. [PMID: 37845306 DOI: 10.1038/s41571-023-00824-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Over the past 15 years, rapid progress has been made in developmental therapeutics, especially regarding the use of matched targeted therapies against specific oncogenic molecular alterations across cancer types. Molecular tumour boards (MTBs) are panels of expert physicians, scientists, health-care providers and patient advocates who review and interpret molecular-profiling results for individual patients with cancer and match each patient to available therapies, which can include investigational drugs. Interpretation of the molecular alterations found in each patient is a complicated task that requires an understanding of their contextual functional effects and their correlations with sensitivity or resistance to specific treatments. The criteria for determining the actionability of molecular alterations and selecting matched treatments are constantly evolving. Therefore, MTBs have an increasingly necessary role in optimizing the allocation of biomarker-directed therapies and the implementation of precision oncology. Ultimately, increased MTB availability, accessibility and performance are likely to improve patient care. The challenges faced by MTBs are increasing, owing to the plethora of identifiable molecular alterations and immune markers in tumours of individual patients and their evolving clinical significance as more and more data on patient outcomes and results from clinical trials become available. Beyond next-generation sequencing, broader biomarker analyses can provide useful information. However, greater funding, resources and expertise are needed to ensure the sustainability of MTBs and expand their outreach to underserved populations. Harmonization between practice and policy will be required to optimally implement precision oncology. Herein, we discuss the evolving role of MTBs and current and future considerations for their use in precision oncology.
Collapse
Affiliation(s)
- Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Michael Kahle
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehmet A Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Johnson
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Funda Meric-Bernstam
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Lockwood CM, Borsu L, Cankovic M, Earle JSL, Gocke CD, Hameed M, Jordan D, Lopategui JR, Pullambhatla M, Reuther J, Rumilla KM, Tafe LJ, Temple-Smolkin RL, Terraf P, Tsimberidou AM. Recommendations for Cell-Free DNA Assay Validations: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn 2023; 25:876-897. [PMID: 37806433 DOI: 10.1016/j.jmoldx.2023.09.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Diagnosing, selecting therapy for, and monitoring cancer in patients using a minimally invasive blood test represents a significant advance in precision medicine. Wide variability exists in how circulating tumor DNA (ctDNA) assays are developed, validated, and reported in the literature, which hinders clinical adoption and may negatively impact patient care. Standardization is needed for factors affecting ctDNA assay performance and reporting, including pre-analytical variables, analytical considerations, and elements of laboratory assay reporting. The Association for Molecular Pathology Clinical Practice Committee's Liquid Biopsy Working Group (LBxWG), including organizational representation from the American Society of Clinical Oncology and the College of American Pathologists, has undertaken a full-text data extraction of 1228 ctDNA publications that describe assays performed in patients with lymphoma and solid tumor malignancies. With an emphasis on clinical assay validation, the LBxWG has developed a set of 13 best practice consensus recommendations for validating, reporting, and publishing clinical ctDNA assays. Recommendations include reporting key pre-analytical considerations and assay performance metrics; this analysis demonstrates these elements are inconsistently included in publications. The LBxWG recommendations are intended to assist clinical laboratories with validating and reporting ctDNA assays and to ensure high-quality data are included in publications. It is expected that these recommendations will need to be updated as the body of literature continues to mature.
Collapse
Affiliation(s)
- Christina M Lockwood
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington; Brotman Baty Institute for Precision Medicine, Seattle, Washington.
| | - Laetitia Borsu
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Milena Cankovic
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jonathan S L Earle
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Hartford Hospital, Hartford, Connecticut; Hartford Pathology Associates, Hartford, Connecticut
| | - Christopher D Gocke
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Meera Hameed
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Jean R Lopategui
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | | | - Jacquelyn Reuther
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Invitae, San Francisco, California
| | - Kandelaria M Rumilla
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Laura J Tafe
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | | | - Panieh Terraf
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Apostolia M Tsimberidou
- Liquid Biopsy Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Investigational Cancer Therapeutics, Unit 455, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Song IW, Vo HH, Chen YS, Baysal MA, Kahle M, Johnson A, Tsimberidou AM. Precision Oncology: Evolving Clinical Trials across Tumor Types. Cancers (Basel) 2023; 15:1967. [PMID: 37046628 PMCID: PMC10093499 DOI: 10.3390/cancers15071967] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
Advances in molecular technologies and targeted therapeutics have accelerated the implementation of precision oncology, resulting in improved clinical outcomes in selected patients. The use of next-generation sequencing and assessments of immune and other biomarkers helps optimize patient treatment selection. In this review, selected precision oncology trials including the IMPACT, SHIVA, IMPACT2, NCI-MPACT, TAPUR, DRUP, and NCI-MATCH studies are summarized, and their challenges and opportunities are discussed. Brief summaries of the new ComboMATCH, MyeloMATCH, and iMATCH studies, which follow the example of NCI-MATCH, are also included. Despite the progress made, precision oncology is inaccessible to many patients with cancer. Some patients' tumors may not respond to these treatments, owing to the complexity of carcinogenesis, the use of ineffective therapies, or unknown mechanisms of tumor resistance to treatment. The implementation of artificial intelligence, machine learning, and bioinformatic analyses of complex multi-omic data may improve the accuracy of tumor characterization, and if used strategically with caution, may accelerate the implementation of precision medicine. Clinical trials in precision oncology continue to evolve, improving outcomes and expediting the identification of curative strategies for patients with cancer. Despite the existing challenges, significant progress has been made in the past twenty years, demonstrating the benefit of precision oncology in many patients with advanced cancer.
Collapse
Affiliation(s)
- I-Wen Song
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Ying-Shiuan Chen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Mehmet A. Baysal
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Michael Kahle
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Amber Johnson
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Apostolia M. Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| |
Collapse
|
9
|
Dameri M, Cirmena G, Ravera F, Ferrando L, Cuccarolo P, Stabile M, Fanelli GN, Nuzzo PV, Calabrese M, Tagliafico A, Ballestrero A, Zoppoli G. Standard Operating Procedures (SOPs) for non-invasive multiple biomarkers detection in an academic setting: a critical review of the literature for the RENOVATE study protocol. Crit Rev Oncol Hematol 2023; 185:103963. [PMID: 36931614 DOI: 10.1016/j.critrevonc.2023.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Liquid biopsy has the potential to drastically change clinical practice, paving the way to a novel non-invasive approach for cancer diagnosis and treatment. One of the limitations for the implementation of liquid biopsy in clinical practice is the lack of shared and reproducible standard operating procedures (SOPs) for sample collection, processing and storage. Here, we present a critical review of the literature focusing on the available SOPs to guide liquid biopsy management in research settings and describe SOPs that our laboratory developed and employed in the context of a prospective clinical-translational trial (RENOVATE, NCT04781062). The main aim of this manuscript is to address common issues, towards the implementation of interlaboratory shared protocols for optimized preanalytical handling of blood and urine samples. To our knowledge, this work is one of the few up-to-date, freely available comprehensive reports on trial-level procedures for the handling of liquid biopsy.
Collapse
Affiliation(s)
- Martina Dameri
- Department of Internal Medicine and Medical Specialties DiMI, University of Genoa, 16132, Genoa, Italy
| | | | - Francesco Ravera
- Department of Internal Medicine and Medical Specialties DiMI, University of Genoa, 16132, Genoa, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 10044, New York, NY, USA
| | | | - Paola Cuccarolo
- Department of Internal Medicine and Medical Specialties DiMI, University of Genoa, 16132, Genoa, Italy
| | - Mario Stabile
- Department of Internal Medicine and Medical Specialties DiMI, University of Genoa, 16132, Genoa, Italy
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 10021, New York, NY, USA; First Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 10044, New York, NY, USA
| | | | - Alberto Tagliafico
- IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy; Department of Health Sciences DISSAL, University of Genoa, 16132, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties DiMI, University of Genoa, 16132, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specialties DiMI, University of Genoa, 16132, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| |
Collapse
|
10
|
Horndalsveen H, Alver TN, Dalsgaard AM, Rogg LV, Helbekkmo N, Grønberg BH, Halvorsen TO, Ramberg C, Haakensen VD, Öjlert ÅK, Bjaanaes MM, Helland Å. Atezolizumab and stereotactic body radiotherapy in patients with advanced non-small cell lung cancer: safety, clinical activity and ctDNA responses-the ComIT-1 trial. Mol Oncol 2023; 17:487-498. [PMID: 36330681 PMCID: PMC9980306 DOI: 10.1002/1878-0261.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/02/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
The introduction of immune checkpoint inhibitors has transformed the treatment landscape of metastatic non-small cell lung cancer. However, challenges remain to increase the fraction of patients achieving durable clinical responses to these drugs and to help monitor the treatment effect. In this phase II trial, we investigated the toxicity, systemic responses and circulating tumour DNA responses in patients (n = 21) with advanced non-small-cell lung cancer treated with atezolizumab and stereotactic body radiotherapy in the second or later line. We found the combined treatment to be safe with grade 3 toxicity reported in three patients. As the best overall response, four patients had a partial response, eight had stable disease and five had progressive disease. Median overall survival time was still not reached after a median follow-up of 26.5 months and 10/15 patients with programmed death-ligand 1 negative tumours were alive >18 months after the start of the study treatment. ctDNA was detectable at baseline in 11 patients. A rapid decline in ctDNA to <30% of baseline levels was seen in three patients, two of which were radiographic responders and one was considered clinically benefiting from therapy for almost 1 year.
Collapse
Affiliation(s)
- Henrik Horndalsveen
- Department of Oncology, Oslo University Hospital, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Tine Norman Alver
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway.,Department of Clinical Medicine, University of Oslo, Norway
| | - Astrid Marie Dalsgaard
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway
| | | | - Nina Helbekkmo
- Department of Pulmonology, University Hospital of North Norway, Tromsø, Norway
| | - Bjørn Henning Grønberg
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Norway
| | - Tarje Onsøien Halvorsen
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Norway
| | | | - Vilde Drageset Haakensen
- Department of Oncology, Oslo University Hospital, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Åsa Kristina Öjlert
- Department of Oncology, Oslo University Hospital, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway
| | | | - Åslaug Helland
- Department of Oncology, Oslo University Hospital, Norway.,Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway.,Department of Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
11
|
Olmos M, Lutz R, Büntemeyer TO, Glajzer J, Nobis CP, Ries J, Möst T, Eckstein M, Hecht M, Gostian AO, Erdmann M, Foerster Y, Kesting M, Weber M. Case report: Patient specific combination of surgery and immunotherapy in advanced squamous cell carcinoma of the head and neck - a case series and review of literature. Front Immunol 2022; 13:970823. [PMID: 36389668 PMCID: PMC9646561 DOI: 10.3389/fimmu.2022.970823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/10/2022] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Prognosis of patients with recurrent or metastatic head and neck cancer is generally poor. Adjuvant immunotherapy (IT) featuring immune checkpoint inhibition (ICI) is standard of care in advanced stage head and neck squamous cell carcinoma (HNSCC) and cutaneous squamous cell carcinoma (CSCC). ICI response rates in CSCC are described as higher than in HNSCC. IT is constantly shifting into earlier disease stages which confronts the surgeon with immunotherapeutically pre-treated patients. It is therefore becoming increasingly difficult to assess which patients with symptomatic tumor disease and a lack of curative surgical option might benefit from salvage surgery. CASE PRESENTATIONS The following 6 cases describe therapeutic decision-making regarding ICI and (salvage) surgery in patients with advanced stage HNSCC or CSCC. Cases A and B focus on neoadjuvant ICI followed by salvage surgery. In Cases C and D salvage surgery was performed after short-term stabilization with partial response to ICI. The last two cases (Cases E and F) address the surgical approach after failure of ICI. All cases are discussed in the context of the current study landscape and with focus on individual decision-making. For better understanding, a timetable of the clinical course is given for each case. CONCLUSIONS ICI is rapidly expanding its frontiers into the neoadjuvant setting, frequently confronting the surgeon with heavily pretreated patients. Salvage surgery is a viable therapeutic concept despite the rise of systemic treatment options. Decision-making on surgical intervention in case of a salvage surgery remains an individual choice. For neoadjuvant ICI monitoring regarding pathological tumor response or tumor necrosis rate, we suggest correlation between the initial biopsy and the definite tumor resectate in order to increase its significance as a surrogate marker. Scheduling of neoadjuvant ICI should be further investigated, as recent studies indicate better outcomes with shorter time frames.
Collapse
Affiliation(s)
- Manuel Olmos
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Rainer Lutz
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Tjark-Ole Büntemeyer
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jacek Glajzer
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christopher-Philipp Nobis
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jutta Ries
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Tobias Möst
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Hecht
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Radiation Oncology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Antoniu-Oreste Gostian
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Otorhinolaryngology – Head and Neck Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Erdmann
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
- Department of Dermatology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Yannick Foerster
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Manuel Weber
- Department of Oral and Cranio-Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nürnberg (CCC ER-EMN), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
12
|
Liquid Biopsy and the Translational Bridge from the TIME to the Clinic. Cells 2022; 11:cells11193114. [PMID: 36231076 PMCID: PMC9563580 DOI: 10.3390/cells11193114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Research and advancing understanding of the tumor immune microenvironment (TIME) is vital to optimize and direct more effective cancer immune therapy. Pre-clinical bench research is vital to better understand the genomic interplay of the TIME and immune therapy responsiveness. However, a vital key to effective translational cancer research is having a bridge of translation to bring that understanding from the bench to the bedside. Without that bridge, research into the TIME will lack an efficient and effective translation into the clinic and cancer treatment decision making. As a clinical oncologist, the purpose of this commentary is to emphasize the importance of researching and improving clinical utility of the bridge, as well as the TIME research itself.
Collapse
|
13
|
Fountzilas E, Tsimberidou AM, Vo HH, Kurzrock R. Clinical trial design in the era of precision medicine. Genome Med 2022; 14:101. [PMID: 36045401 PMCID: PMC9428375 DOI: 10.1186/s13073-022-01102-1] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
Recent rapid biotechnological breakthroughs have led to the identification of complex and unique molecular features that drive malignancies. Precision medicine has exploited next-generation sequencing and matched targeted therapy/immunotherapy deployment to successfully transform the outlook for several fatal cancers. Tumor and liquid biopsy genomic profiling and transcriptomic, immunomic, and proteomic interrogation can now all be leveraged to optimize therapy. Multiple new trial designs, including basket and umbrella trials, master platform trials, and N-of-1 patient-centric studies, are beginning to supplant standard phase I, II, and III protocols, allowing for accelerated drug evaluation and approval and molecular-based individualized treatment. Furthermore, real-world data, as well as exploitation of digital apps and structured observational registries, and the utilization of machine learning and/or artificial intelligence, may further accelerate knowledge acquisition. Overall, clinical trials have evolved, shifting from tumor type-centered to gene-directed and histology-agnostic trials, with innovative adaptive designs and personalized combination treatment strategies tailored to individual biomarker profiles. Some, but not all, novel trials now demonstrate that matched therapy correlates with superior outcomes compared to non-matched therapy across tumor types and in specific cancers. To further improve the precision medicine paradigm, the strategy of matching drugs to patients based on molecular features should be implemented earlier in the disease course, and cancers should have comprehensive multi-omic (genomics, transcriptomics, proteomics, immunomic) tumor profiling. To overcome cancer complexity, moving from drug-centric to patient-centric individualized combination therapy is critical. This review focuses on the design, advantages, limitations, and challenges of a spectrum of clinical trial designs in the era of precision oncology.
Collapse
Affiliation(s)
- Elena Fountzilas
- Department of Medical Oncology, St. Lukes's Hospital, Thessaloniki, Greece
- European University Cyprus, Limassol, Cyprus
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
14
|
Recent Developments of Circulating Tumor Cell Analysis for Monitoring Cutaneous Melanoma Patients. Cancers (Basel) 2022; 14:cancers14040859. [PMID: 35205608 PMCID: PMC8870206 DOI: 10.3390/cancers14040859] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Circulating tumor cells (CTCs) originating from cutaneous melanoma patients have been studied for several decades as surrogates for real-time clinical status and disease outcomes. Here, we will review clinical studies from the last 15 years that assessed CTCs and disease outcomes for melanoma patients. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, to address tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single-center trials. Recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. Abstract Circulating tumor cells (CTCs) have been studied using multiple technical approaches for interrogating various cancers, as they allow for the real-time assessment of tumor progression, disease recurrence, treatment response, and tumor molecular profiling without the need for a tumor tissue biopsy. Here, we will review studies from the last 15 years on the assessment of CTCs in cutaneous melanoma patients in relation to different clinical outcomes. The focus will be on CTC detection in blood samples obtained from cutaneous melanoma patients of different clinical stages and treatments utilizing multiple platforms. Assessment of multiple molecular melanoma-associated antigen (MAA) markers by quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) was the most common assay allowing for the improvement of assay sensitivity, tumor heterogeneity, and to predict patient outcomes. Multicenter studies demonstrate the utility of CTC assays reducing the bias observed in single- center trials. The recent development of CTC enrichment platforms has provided reproducible methods. CTC assessment enables both multiple mRNAs and DNAs genomic aberration profiling. CTC provides specific important translational information on tumor progression, prediction of treatment response, and survival outcomes for cutaneous melanoma patients. The molecular studies on melanoma CTCs have provided and may set standards for other solid tumor CTC analyses.
Collapse
|
15
|
RAS Mutation Conversion in Bevacizumab-Treated Metastatic Colorectal Cancer Patients: A Liquid Biopsy Based Study. Cancers (Basel) 2022; 14:cancers14030802. [PMID: 35159069 PMCID: PMC8833999 DOI: 10.3390/cancers14030802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Recent evidence has been provided that the clonal evolution of mutant RAS colorectal tumors may lead to the negative selection of mutant RAS clones, with the appearance of a time window characterized by the disappearance of RAS mutant clones in plasma. We demonstrate here for the first time that the use of bevacizumab in the first-line treatment is the most significant factor for RAS conversion from mutant to wild type in plasma. The frequent appearance of this “RAS wild-type * window” in patients treated with a first line treatment containing bevacizumab could possibly present them as candidates for second line treatment with anti-EGFR monoclonal antibodies, which are otherwise precluded. Abstract Liquid biopsies have shown that, in RAS mutant colorectal cancer, the conversion to RAS wild-type * status during the course of the disease is a frequent event, supporting the concept that the evolutionary landscape of colorectal cancer can lead to an unexpected negative selection of RAS mutant clones. The aim of the present study was to clarify whether the negative selection of RAS mutation in plasma might be drug-dependent. For this purpose, we used liquid biopsy to compare the rate of conversion from RAS mutant to RAS wild-type * in two groups of originally RAS mutant mCRC patients: the first treated with chemotherapy alone, while the second was treated with chemotherapy combined with bevacizumab. Serial liquid biopsies were performed at 3 months (T1), 6 months (T2), 9 months (T3), and 12 months (T4) after starting first line treatments. We found that the only independent variable significantly associated to RAS status conversion was the use of bevacizumab. RAS conversion was not found associated to tumor burden reduction, although bevacizumab-treated patients who converted to RAS wild-type * had a significantly longer PFS compared to patients who remained RAS mutant. The appearance of a “RAS wild-type * window”, mainly in bevacizumab-treated patients, might present them as candidates for second line treatment with anti-EGFR, which was otherwise precluded.
Collapse
|
16
|
Roller JF, Veeramachaneni NK, Zhang J. Exploring the Evolving Scope of Neoadjuvant Immunotherapy in NSCLC. Cancers (Basel) 2022; 14:741. [PMID: 35159008 PMCID: PMC8833612 DOI: 10.3390/cancers14030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/23/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
While lung cancer remains the leading cause of cancer death worldwide, lung cancer mortality has notably decreased in the past decade. Immunotherapy with immune checkpoint inhibitors have played a noteworthy role in contributing to this improved survival, particularly for patients with non-small cell lung cancer (NSCLC). However, until now the benefits have primarily been seen in patients with advanced or metastatic disease. Several recent early phase and ongoing phase III trials have been assessing whether the treatment benefit of immunotherapy in NSCLC can extend to the neoadjuvant setting for resectable diseases. In this comprehensive narrative review, we evaluate the most recent efficacy and safety data from these studies. We also outline questions that will need to be further examined to legitimate neoadjuvant immunotherapy's role in NSCLC treatment, including the best surrogate marker of response, the incorporation of liquid biopsy for disease monitoring, the ability to be combined with other treatment modalities, the need for further adjuvant therapy, and potential future treatment combinations.
Collapse
Affiliation(s)
- John F. Roller
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA;
| | - Nirmal K. Veeramachaneni
- Department of Cardiovascular and Thoracic Surgery, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66205, USA;
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66205, USA
| |
Collapse
|
17
|
Guven DC, Sahin TK, Yildirim HC, Aktepe OH, Dizdar O, Yalcin S. A systematic review and meta-analysis of the association between circulating tumor DNA (ctDNA) and prognosis in pancreatic cancer. Crit Rev Oncol Hematol 2021; 168:103528. [PMID: 34800650 DOI: 10.1016/j.critrevonc.2021.103528] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 02/08/2023] Open
Abstract
Pancreatic cancer is a deadly disease with limited therapeutic options. Several strategies are being investigated to improve disease management, including the early diagnosis of recurrences and treatment tailoring by better prognosis estimation. Circulating tumor DNA (ctDNA) could be a promising tool in this regard, although the data is limited. Therefore, we conducted a systemical review and meta-analysis of the published studies on the association of ctDNA and survival outcomes in pancreatic cancer. In the pooled analysis, positive preoperative or postoperative ctDNA was associated with lower RFS/PFS (HR: 2.27, 95 % CI: 1.59-3.24, p < 0.001) and OS (HR: 2.04, 95 % CI: 1.29-3.21, p = 0.002) in localized pancreatic cancer. Similarly, positive baseline ctDNA was associated with lower RFS/PFS (HR: 2.61, 95 % CI: 1.94-3.51, p < 0.001) and OS (HR: 2.41, 95 % CI: 1.74-3.34, p < 0.001) in advanced pancreatic cancer. In conclusion, ctDNA could be a promising tool to individualize treatment planning and to improve outcomes in pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | - Omer Dizdar
- Hacettepe University Cancer Institute, Ankara, Turkey
| | - Suayib Yalcin
- Hacettepe University Cancer Institute, Ankara, Turkey
| |
Collapse
|
18
|
Yang X, Liao M, Zhang H, Gong J, Yang F, Xu M, Tremblay PL, Zhang T. An electrochemiluminescence resonance energy transfer biosensor for the detection of circulating tumor DNA from blood plasma. iScience 2021; 24:103019. [PMID: 34522862 PMCID: PMC8426273 DOI: 10.1016/j.isci.2021.103019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
A liquid biopsy is a noninvasive approach for detecting double-stranded circulating tumor DNA (ctDNA) of 90-320 nucleotides in blood plasma from patients with cancer. Most techniques employed for ctDNA detection are time consuming and require expensive DNA purification kits. Electrochemiluminescence resonance energy transfer (ECL-RET) biosensors exhibit high sensitivity, a wide response range, and are promising for straightforward sensing applications. Until now, ECL-RET biosensors have been designed for sensing short single-stranded oligonucleotides of less than 45 nucleotides. In this work, an ECL-RET biosensor comprising graphitic carbon nitride quantum dots was assessed for the amplification-free detection in the blood plasma of DNA molecules coding for the EGFR L858R mutation, which is associated with non-small-cell lung cancer. Following a low-cost pre-treatment, the highly specific ECL-RET biosensor quantified double-stranded EGFR L858R DNA of 159 nucleotides diluted into the blood within a linear range of 0.01 fM to 1 pM, demonstrating its potential for noninvasive biopsies.
Collapse
Affiliation(s)
- Xidong Yang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
| | - Meiyan Liao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hanfei Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - JinBo Gong
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Fan Yang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
| | - Mengying Xu
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan 430070, PR China
- Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing 312300, PR China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
19
|
Han JY, Ahn KS, Kim TS, Kim YH, Cho KB, Shin DW, Baek WK, Suh SI, Jang BC, Kang KJ. Liquid Biopsy from Bile-Circulating Tumor DNA in Patients with Biliary Tract Cancer. Cancers (Basel) 2021; 13:cancers13184581. [PMID: 34572808 PMCID: PMC8466375 DOI: 10.3390/cancers13184581] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Utilization of cell free DNA for diagnosing and monitoring patients with biliary tract cancers is emerging and promising. The strength of the present study is in its description of a novel approach using bile rather than blood or tissue samples, which is particularly relevant in biliary tract cancers. This paper largely serves as a proof of concept that ctDNA from bile is potentially feasible. Abstract Although liquid biopsy of blood is useful for cancer diagnosis and prediction of prognosis, diagnostic and prognostic value of ctDNA in bile fluid for BTCs are not clear yet. To determine whether liquid biopsy for circulating tumor DNA (ctDNA) can replace tissue biopsy when assessing somatic mutations in biliary tract cancers (BTCs). Bile samples were obtained from 42 patients with BTC. Matched formalin-fixed paraffin-embedded (FFPE) samples were obtained from 20 of these patients and matched plasma samples from 16 of them. Droplet digital PCR (ddPCR) was used for detection KRAS somatic mutation. KRAS mutations were identified in the bile ctDNA of 20 of 42 (48%) patients. Patients with mutant KRAS showed significantly worse survival than those with wild-type KRAS (2-year survival rates: 0% vs. 55.5%, respectively; p = 0.018). There was 80.0% mutational concordance between the paired bile ctDNA and FFPE samples, and 42.9% between the plasma and FFPE samples. On transcriptomic sequencing of one set of paired bile and FFPE samples, expression level of KRAS-associated signaling oncogenes in the bile and tissue samples showed a strong positive correlation (r = 0.991, p < 0.001). Liquid biopsy of bile reliably detect mutational variants within the bile ctDNA of BTC patients. These results suggest that bile is an effective biopsy fluid for ctDNA analysis.
Collapse
Affiliation(s)
- Jin-Yi Han
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Keimyung University Dongsan Hospital, Daegu 1035, Korea; (J.-Y.H.); (T.-S.K.); (Y.H.K.); (K.J.K.)
| | - Keun Soo Ahn
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Keimyung University Dongsan Hospital, Daegu 1035, Korea; (J.-Y.H.); (T.-S.K.); (Y.H.K.); (K.J.K.)
- Correspondence: ; Tel.: +82-(53)-258-7878
| | - Tae-Seok Kim
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Keimyung University Dongsan Hospital, Daegu 1035, Korea; (J.-Y.H.); (T.-S.K.); (Y.H.K.); (K.J.K.)
| | - Yong Hoon Kim
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Keimyung University Dongsan Hospital, Daegu 1035, Korea; (J.-Y.H.); (T.-S.K.); (Y.H.K.); (K.J.K.)
| | - Kwang Bum Cho
- Department of Internal Medicine, Division of Gastroenterology, Keimyung University Dongsan Hospital, Daegu 1035, Korea; (K.B.C.); (D.W.S.)
| | - Dong Woo Shin
- Department of Internal Medicine, Division of Gastroenterology, Keimyung University Dongsan Hospital, Daegu 1035, Korea; (K.B.C.); (D.W.S.)
| | - Won-Ki Baek
- Department of Microbiology, Keimyung University School of Medicine, Daegu 1095, Korea; (W.-K.B.); (S.-I.S.)
| | - Seong-Il Suh
- Department of Microbiology, Keimyung University School of Medicine, Daegu 1095, Korea; (W.-K.B.); (S.-I.S.)
| | - Byeong-Churl Jang
- Department of Molecular Medicine, Keimyung University School of Medicine, Daegu 1095, Korea;
| | - Koo Jeong Kang
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Keimyung University Dongsan Hospital, Daegu 1035, Korea; (J.-Y.H.); (T.-S.K.); (Y.H.K.); (K.J.K.)
| |
Collapse
|
20
|
Noh KW, Buettner R, Klein S. Shifting Gears in Precision Oncology-Challenges and Opportunities of Integrative Data Analysis. Biomolecules 2021; 11:biom11091310. [PMID: 34572523 PMCID: PMC8465238 DOI: 10.3390/biom11091310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
For decades, research relating to modification of host immunity towards antitumor response activation has been ongoing, with the breakthrough discovery of immune-checkpoint blockers. Several biomarkers with potential predictive value have been reported in recent studies for these novel therapies. However, with the plethora of therapeutic options existing for a given cancer entity, modern oncology is now being confronted with multifactorial interpretation to devise “the best therapy” for the individual patient. Into the bargain come the multiverse guidelines for established and emerging diagnostic biomarkers, as well as the complex interplay between cancer cells and tumor microenvironment, provoking immense challenges in the therapy decision-making process. Through this review, we present various molecular diagnostic modalities and techniques, such as genomics, immunohistochemistry and quantitative image analysis, which have the potential of becoming powerful tools in the development of an optimal treatment regime when analogized with patient characteristics. We will summarize the underlying complexities of these methods and shed light upon the necessary considerations and requirements for data integration. It is our hope to provide compelling evidence to emphasize on the need for inclusion of integrative data analysis in modern cancer therapy, and thereupon paving a path towards precision medicine and better patient outcomes.
Collapse
Affiliation(s)
- Ka-Won Noh
- Institute for Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (K.-W.N.); (R.B.)
| | - Reinhard Buettner
- Institute for Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (K.-W.N.); (R.B.)
| | - Sebastian Klein
- Gerhard-Domagk-Institute of Pathology, University Hospital Münster, 48149 Münster, Germany
- Correspondence: ; Tel.: +49-251-83-57670
| |
Collapse
|
21
|
Hsiehchen D, Espinoza M, Gerber DE, Beg MS. Clinical and biological determinants of circulating tumor DNA detection and prognostication using a next-generation sequencing panel assay. Cancer Biol Ther 2021; 22:455-464. [PMID: 34392779 PMCID: PMC8489910 DOI: 10.1080/15384047.2021.1963166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
Abstract
Circulating tumor DNA (ctDNA) is utilized for molecular profiling of cancers, and is under investigation for a growing number of applications based on the assumption that ctDNA levels faithfully reflect disease burden. Our objective was to investigate whether patient and tumor characteristics may impact ctDNA detection or levels and the prognostic significance of ctDNA levels or mutations. We performed a retrospective cohort analysis of a comprehensively annotated cohort of 561 patients at a National Cancer Institute-designated comprehensive cancer center with advanced solid cancers who underwent ctDNA testing using a commercial targeted next-generation sequencing assay. ctDNA detection in advanced cancers was associated with older age, non-obese body mass index, and diabetes, but not with tumor diameter, volume, lesion number, or other pathological features. Regression models indicate that no more than 14.3% of the variance in ctDNA levels between patients was explained by known clinical factors and disease burden. Even after adjusting for established prognostic factors and tumor burden, ctDNA levels were associated with worse survival among patients without prior systemic therapy, while ctDNA mutations were associated with survival among patients who previously received systemic treatment. These findings uncover clinical factors that affect ctDNA detection in patients with advanced cancers and challenge the convention that ctDNA is a surrogate for tumor burden. Our study also indicates that the prognostic value of ctDNA levels and mutations are independent of tumor burden and dependent on treatment context.
Collapse
Affiliation(s)
- David Hsiehchen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TXUSA
| | - Magdalena Espinoza
- Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TXUSA
| | - David E. Gerber
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TXUSA
| | - Muhammad S. Beg
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TXUSA
| |
Collapse
|
22
|
Kuo KK, Hsiao PJ, Chang WT, Chuang SC, Yang YH, Wuputra K, Ku CC, Pan JB, Li CP, Kato K, Liu CJ, Wu DC, Yokoyama KK. Therapeutic Strategies Targeting Tumor Suppressor Genes in Pancreatic Cancer. Cancers (Basel) 2021; 13:3920. [PMID: 34359820 PMCID: PMC8345812 DOI: 10.3390/cancers13153920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
The high mortality of pancreatic cancer is attributed to the insidious progression of this disease, which results in a delayed diagnosis and advanced disease stage at diagnosis. More than 35% of patients with pancreatic cancer are in stage III, whereas 50% are in stage IV at diagnosis. Thus, understanding the aggressive features of pancreatic cancer will contribute to the resolution of problems, such as its early recurrence, metastasis, and resistance to chemotherapy and radiotherapy. Therefore, new therapeutic strategies targeting tumor suppressor gene products may help prevent the progression of pancreatic cancer. In this review, we discuss several recent clinical trials of pancreatic cancer and recent studies reporting safe and effective treatment modalities for patients with advanced pancreatic cancer.
Collapse
Affiliation(s)
- Kung-Kai Kuo
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (K.-K.K.); (W.-T.C.); (S.-C.C.); (Y.-H.Y.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pi-Jung Hsiao
- Department of Internal Medicine, Division of Endocrinology and Metabolism, EDA Hospital, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
| | - Wen-Tsan Chang
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (K.-K.K.); (W.-T.C.); (S.-C.C.); (Y.-H.Y.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Chang Chuang
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (K.-K.K.); (W.-T.C.); (S.-C.C.); (Y.-H.Y.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ya-Han Yang
- Division of General & Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (K.-K.K.); (W.-T.C.); (S.-C.C.); (Y.-H.Y.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kenly Wuputra
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Chen Ku
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jia-Bin Pan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Pei Li
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, the University of Tsukuba, Tsukuba 305-8577, Japan;
| | - Chung-Jung Liu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| | - Kazunari K. Yokoyama
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (K.W.); (C.-C.K.); (J.-B.P.); (C.-P.L.); (C.-J.L.); (D.-C.W.)
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan
| |
Collapse
|
23
|
Ulrich B, Pradines A, Mazières J, Guibert N. Detection of Tumor Recurrence via Circulating Tumor DNA Profiling in Patients with Localized Lung Cancer: Clinical Considerations and Challenges. Cancers (Basel) 2021; 13:cancers13153759. [PMID: 34359659 PMCID: PMC8345193 DOI: 10.3390/cancers13153759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Circulating tumor DNA is a novel biomarker with emerging uses in the clinical care of patients with cancer, including non-small-cell lung cancer. Already approved for use in various clinical settings in patients with metastatic non-small-cell lung cancer, recent research has focused on the ability of circulating tumor DNA to predict relapse of patients with localized disease after treatment with curative intent. Identifying patients at increased risk of relapse after treatment with curative intent remains challenging, but several groups have identified circulating tumor DNA kinetics as a potential means of aiding our risk stratification. Herein, we discuss current research that identifies longitudinal circulating tumor DNA kinetics as a highly sensitive and specific marker for relapse. Then, we identify important clinical considerations and challenges for moving forward with further studying and eventually using this biomarker for patients with localized disease in clinic. Abstract Approximately 30% of patients with non-small-cell lung cancer (NSCLC) present with localized/non-metastatic disease and are eligible for surgical resection or other “treatment with curative intent”. Due to the high prevalence of recurrence after treatment, adjuvant therapy is standard care for most patients. The effect of adjuvant chemotherapy is, however, modest, and new tools are needed to identify candidates for adjuvant treatments (chemotherapy, immunotherapy, or targeted therapies), especially since expanded lung cancer screening programs will increase the rate of patients detected with localized NSCLC. Circulating tumor DNA (ctDNA) has shown strong potential to detect minimal residual disease (MRD) and to guide adjuvant therapies. In this manuscript, we review the technical aspects and performances of the main ctDNA sequencing platforms (TRACERx, CAPP-seq) investigated in this purpose, and discuss the potential of this approach to guide or spare adjuvant therapies after definitive treatment of NSCLC.
Collapse
Affiliation(s)
- Bryan Ulrich
- Internal Medicine Department, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - Anne Pradines
- Cancer Research Centre of Toulouse (CRCT), Inserm, National Scientific Research Centre (CNRS), 31100 Toulouse, France; (A.P.); (J.M.)
- Medical Laboratory, Claudius Regaud Institute, Toulouse University Cancer Institute (IUCT-O), 31100 Toulouse, France
| | - Julien Mazières
- Cancer Research Centre of Toulouse (CRCT), Inserm, National Scientific Research Centre (CNRS), 31100 Toulouse, France; (A.P.); (J.M.)
- Pulmonology Department, Hôpital Larrey, University Hospital of Toulouse, 31059 Toulouse, France
| | - Nicolas Guibert
- Cancer Research Centre of Toulouse (CRCT), Inserm, National Scientific Research Centre (CNRS), 31100 Toulouse, France; (A.P.); (J.M.)
- Pulmonology Department, Hôpital Larrey, University Hospital of Toulouse, 31059 Toulouse, France
- Correspondence: ; Tel.: +33-567771836
| |
Collapse
|
24
|
Malapelle U, Buono M, Pisapia P, Russo G, Tufano R, Pepe F, Rolfo C, Troncone G. Circulating tumor DNA in cancer: Predictive molecular pathology meets mathematics. Crit Rev Oncol Hematol 2021; 163:103394. [PMID: 34119656 DOI: 10.1016/j.critrevonc.2021.103394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022] Open
Abstract
The cancer secretome is a valuable reservoir of cancer biomarkers. Besides containing circulating tumor cells, extracellular vesicles, and proteins, it is also rich in circulating tumor DNA (ctDNA)-a subpopulation of cell free DNA. The most efficient technology to capture ctDNA is next generation sequencing (NGS). Indeed, this analysis enables the identification of both quantitative (e.g., mutant allelic fraction - MAF) and qualitative (e.g., the variant type) information. Strikingly, by calculating these data in relation to time, cytopathologists can decodify and graphically report the ctDNA "message", which may help to diagnose cancer, define treatment, and monitor disease evolution. In this paper, we report the most compelling evidence steadily accumulating on the successful application of NGS-based ctDNA analysis in cancer diagnosis, treatment decision, and monitoring of cancer progression. We also propose a mathematical model that calculates MAF evolution in relation to time.
Collapse
Affiliation(s)
- Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Mauro Buono
- School of Specialization in Medical Physics, University of Naples Federico II, Naples, Italy
| | - Pasquale Pisapia
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Gianluca Russo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Francesco Pepe
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Mount Sinai Medical System & Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Giancarlo Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
25
|
Russo A, Incorvaia L, Del Re M, Malapelle U, Capoluongo E, Gristina V, Castiglia M, Danesi R, Fassan M, Giuffrè G, Gori S, Marchetti A, Normanno N, Pinto C, Rossi G, Santini D, Sartore-Bianchi A, Silvestris N, Tagliaferri P, Troncone G, Cinieri S, Beretta GD. The molecular profiling of solid tumors by liquid biopsy: a position paper of the AIOM-SIAPEC-IAP-SIBioC-SIC-SIF Italian Scientific Societies. ESMO Open 2021; 6:100164. [PMID: 34091263 PMCID: PMC8182269 DOI: 10.1016/j.esmoop.2021.100164] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/02/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023] Open
Abstract
The term liquid biopsy (LB) refers to the use of various biological fluids as a surrogate for neoplastic tissue to achieve information for diagnostic, prognostic and predictive purposes. In the current clinical practice, LB is used for the identification of driver mutations in circulating tumor DNA derived from both tumor tissue and circulating neoplastic cells. As suggested by a growing body of evidence, however, there are several clinical settings where biological samples other than tissue could be used in the routine practice to identify potentially predictive biomarkers of either response or resistance to targeted treatments. New applications are emerging as useful clinical tools, and other blood derivatives, such as circulating tumor cells, circulating tumor RNA, microRNAs, platelets, extracellular vesicles, as well as other biofluids such as urine and cerebrospinal fluid, may be adopted in the near future. Despite the evident advantages compared with tissue biopsy, LB still presents some limitations due to both biological and technological issues. In this context, the absence of harmonized procedures corresponds to an unmet clinical need, ultimately affecting the rapid implementation of LB in clinical practice. In this position paper, based on experts’ opinions, the AIOM–SIAPEC-IAP–SIBIOC–SIF Italian Scientific Societies critically discuss the most relevant technical issues of LB, the current and emerging evidences, with the aim to optimizing the applications of LB in the clinical setting. In the current clinical practice LB is used for the identification of driver mutations in circulating tumor DNA (ctDNA). New applications in tumors other than non-small-cell lung cancer (NSCLC) are emerging as useful clinical tools. Other blood derivatives, together with other biofluids, are an active field of research and may be adopted in the near future. Despite the evident advantages, liquid biopsy still presents limitations due to both biological and technological issues. Standardization of the procedures needs to be addressed to ensure widespread implementation in clinical practice.
Collapse
Affiliation(s)
- A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy.
| | - L Incorvaia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - M Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - U Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - E Capoluongo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; CEINGE, Biotecnologie Avanzate, Naples, Italy
| | - V Gristina
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - M Castiglia
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - R Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - M Fassan
- Department of Medicine (DIMED), Surgical Pathology Unit, University of Padua, Padua, Italy; Veneto Institute of Oncology (IOV-IRCCS), Padua, Italy
| | - G Giuffrè
- Department of Human Pathology in Adult and Developmental Age 'Gaetano Barresi', Section of Pathology, University of Messina, Messina, Italy
| | - S Gori
- Department of Oncology, IRCCS Ospedale Sacro Cuore Don Calabria, Negrar di Valpolicella, Italy
| | - A Marchetti
- Center of Predictive Molecular Medicine, University-Foundation, CeSI Biotech Chieti, Chieti, Italy
| | - N Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, Italy
| | - C Pinto
- Medical Oncology Unit, Clinical Cancer Centre, IRCCS-AUSL di Reggio Emilia, Reggio Emilia, Italy
| | - G Rossi
- Pathology Unit, Ospedale Santa Maria Delle Croci, Ravenna, Italy
| | - D Santini
- Department of Medical Oncology, University Campus Biomedico, Rome, Italy
| | - A Sartore-Bianchi
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - N Silvestris
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori 'Giovanni Paolo II' of Bari, Bari, Italy; Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - P Tagliaferri
- Medical and Translational Oncology Unit, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - G Troncone
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - S Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy
| | - G D Beretta
- Department of Oncology, Humanitas Gavazzeni, Bergamo, Italy
| |
Collapse
|
26
|
Profiling Colorectal Cancer in the Landscape Personalized Testing-Advantages of Liquid Biopsy. Int J Mol Sci 2021; 22:ijms22094327. [PMID: 33919272 PMCID: PMC8122648 DOI: 10.3390/ijms22094327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/14/2021] [Accepted: 04/18/2021] [Indexed: 12/11/2022] Open
Abstract
Drug-specific therapeutic approaches for colorectal cancer (CRC) have contributed to significant improvements in patient health. Nevertheless, there is still a great need to improve the personalization of treatments based on genetic and epigenetic tumor profiles to maximize the quality and efficacy while limiting cytotoxicity. Currently, CEA and CA 19-9 are the only validated blood biomarkers in clinical practice. For this reason, laboratories are trying to identify new specific prognostics and, more importantly, predictive biomarkers for CRC patient profiling. Thus, the unique landscape of personalized biomarker data should have a clinical impact on CRC treatment strategies and molecular genetic screening tests should become the standard method for diagnosing CRC. This review concentrates on recent molecular testing in CRC and discusses the potential modifications in CRC assay methodology with the upcoming clinical application of novel genomic approaches. While mechanisms for analyzing circulating tumor DNA have been proven too inaccurate, detecting and analyzing circulating tumor cells and protein analysis of exosomes represent more promising options. Blood liquid biopsy offers good prospects for the future if the results align with pathologists’ tissue analyses. Overall, early detection, accurate diagnosis and treatment monitoring for CRC with specific markers and targeted molecular testing may benefit many patients.
Collapse
|
27
|
Naqvi MF, Vo HH, Vining D, Tsimberidou AM. Prolonged response to treatment based on cell-free DNA analysis and molecular profiling in three patients with metastatic cancer: a case series. Ther Adv Med Oncol 2021; 13:17588359211001538. [PMID: 33995588 PMCID: PMC8107674 DOI: 10.1177/17588359211001538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Patients with advanced and/or metastatic solid tumors have limited treatment options. Mutations that serve as biomarkers of carcinogenesis can be found in cell-free DNA of patients’ plasma. Analysis of circulating tumor DNA (ctDNA) was developed as a non-invasive, cost-effective alternative to tumor biopsy when such biopsy is not technically feasible or it is associated with high risk for complications. The role of ctDNA in precision oncology is promising but its clinical significance across tumor types remains to be validated. We report a case series of three heavily pretreated patients with advanced solid tumors who received matched targeted therapy based on ctDNA analysis and/or tumor molecular profiling. Case presentation: Three patients with advanced, metastatic cancer and the following characteristics are presented: a 71-year-old woman with ovarian cancer and BRCA2 mutation identified in ctDNA and tumor tissue was treated with a PARP inhibitor and achieved partial response by RECIST (Response Evaluation Criteria in Solid Tumors) for 22.6+ months; a 40-year-old woman with adenoid cystic carcinoma of the parotid gland was treated with a MEK/RAF pathway inhibitor on the basis of RAF1 amplification on ctDNA analysis and had stable disease for 20.2 months; and a 56-year-old woman with breast cancer and a BRCA1 mutation identified by ctDNA analysis was treated with a PARP inhibitor and achieved stable disease for 9.1 months. All three patients are alive at the time of this report. Conclusions: These results suggest that ctDNA analysis can contribute to selection of targeted therapy in patients with advanced, metastatic cancer. Prospective clinical trials to evaluate and optimize ctDNA biomarkers, as well as the integration of novel and/or alternative targeted therapies, are warranted to fully assess the role of ctDNA analysis in cancer therapy. Trial registration: www.clinicaltrials.gov (NCT02152254). Registered May 28, 2014. https://www.clinicaltrials.gov/ct2/show/NCT02152254. MD Anderson protocol # PA12-1161 (approval ID IRB1 FWA00000121) and # PA11-0377 (approval ID IRB4 FWA00005015).
Collapse
Affiliation(s)
- Mohammad Faraz Naqvi
- Department of Investigational Cancer Therapeutics, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Henry Hiep Vo
- Department of Investigational Cancer Therapeutics, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Vining
- Department of Abdominal Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia-Maria Tsimberidou
- Department of Investigational Cancer Therapeutics, Phase I Clinical Trials Program, The University of Texas MD Anderson Cancer Center, Unit 455, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
28
|
Syeda MM, Wiggins JM, Corless BC, Long GV, Flaherty KT, Schadendorf D, Nathan PD, Robert C, Ribas A, Davies MA, Grob JJ, Gasal E, Squires M, Marker M, Garrett J, Brase JC, Polsky D. Circulating tumour DNA in patients with advanced melanoma treated with dabrafenib or dabrafenib plus trametinib: a clinical validation study. Lancet Oncol 2021; 22:370-380. [PMID: 33587894 PMCID: PMC8034833 DOI: 10.1016/s1470-2045(20)30726-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Melanoma lacks validated blood-based biomarkers for monitoring and predicting treatment efficacy. Cell-free circulating tumour DNA (ctDNA) is a promising biomarker; however, various detection methods have been used, and, to date, no large studies have examined the association between serial changes in ctDNA and survival after BRAF, MEK, or BRAF plus MEK inhibitor therapy. We aimed to evaluate whether baseline ctDNA concentrations and kinetics could predict survival outcomes. METHODS In this clinical validation study, we used analytically validated droplet digital PCR assays to measure BRAFV600-mutant ctDNA in pretreatment and on-treatment plasma samples from patients aged 18 years or older enrolled in two clinical trials. COMBI-d (NCT01584648) was a double-blind, randomised phase 3 study of dabrafenib plus trametinib versus dabrafenib plus placebo in previously untreated patients with BRAFV600 mutation-positive unresectable or metastatic melanoma. Patients had an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1. COMBI-MB (NCT02039947) was an open-label, non-randomised, phase 2 study evaluating dabrafenib plus trametinib in patients with BRAFV600 mutation-positive metastatic melanoma and brain metastases. Patients in cohort A of COMBI-MB had asymptomatic brain metastases, no previous local brain-directed therapy, and an ECOG performance status of 0 or 1. Biomarker analysis was a prespecified exploratory endpoint in both trials and performed in the intention-to-treat populations in COMBI-d and COMBI-MB. We investigated the association between mutant copy number (baseline or week 4 or zero conversion status) and efficacy endpoints (progression-free survival, overall survival, and best overall response). We used Cox models, Kaplan-Meier plots, and log-rank tests to explore the association of pretreatment ctDNA concentrations with progression-free survival and overall survival. The effect of additional prognostic variables such as lactate dehydrogenase was also investigated in addition to the mutant copy number. FINDINGS In COMBI-d, pretreatment plasma samples were available from 345 (82%) of 423 patients and on-treatment (week 4) plasma samples were available from 224 (53%) of 423 patients. In cohort A of COMBI-MB, pretreatment and on-treatment samples were available from 38 (50%) of 76 patients with intracranial and extracranial metastatic melanoma. ctDNA was detected in pretreatment samples from 320 (93%) of 345 patients (COMBI-d) and 34 (89%) of 38 patients (COMBI-MB). When assessed as a continuous variable, elevated baseline BRAFV600 mutation-positive ctDNA concentration was associated with worse overall survival outcome (hazard ratio [HR] 1·13 [95% CI 1·09-1·18], p<0·0001 by univariate analysis), independent of treatment group and baseline lactate dehydrogenase concentrations (1·08 [1·03-1·13], p=0·0020), in COMBI-d. A ctDNA cutoff point of 64 copies per mL of plasma stratified patients enrolled in COMBI-d as high risk or low risk with respect to survival outcomes (HR 1·74 [95% CI 1·37-2·21], p<0·0001 for progression-free survival; 2·23 [1·73-2·87], p<0·0001 for overall survival) and was validated in the COMBI-MB cohort (3·20 [1·39-7·34], p=0·0047 for progression-free survival; 2·94 [1·18-7·32], p=0·016 for overall survival). In COMBI-d, undetectable ctDNA at week 4 was significantly associated with extended progression-free and overall survival, particularly in patients with elevated lactate dehydrogenase concentrations (HR 1·99 [95% CI 1·08-3·64], p=0·027 for progression-free survival; 2·38 [1·24-4·54], p=0·0089 for overall survival). INTERPRETATION Pretreatment and on-treatment BRAFV600-mutant ctDNA measurements could serve as independent, predictive biomarkers of clinical outcome with targeted therapy. FUNDING Novartis.
Collapse
Affiliation(s)
| | | | | | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Keith T Flaherty
- Dana-Farber Cancer Institute/Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Dirk Schadendorf
- University Hospital Essen, Essen, Germany; German Cancer Consortium, Heidelberg, Germany
| | | | - Caroline Robert
- Institute Gustave Roussy and Paris-Sud University, Villejuif, France
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean Jacques Grob
- Dermatology and Skin Cancer Department, Aix-Marseille University, Marseille, France
| | | | - Matthew Squires
- Novartis Institute for BioMedical Research, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
29
|
Ricciuti B, Jones G, Severgnini M, Alessi JV, Recondo G, Lawrence M, Forshew T, Lydon C, Nishino M, Cheng M, Awad M. Early plasma circulating tumor DNA (ctDNA) changes predict response to first-line pembrolizumab-based therapy in non-small cell lung cancer (NSCLC). J Immunother Cancer 2021; 9:e001504. [PMID: 33771889 PMCID: PMC7996662 DOI: 10.1136/jitc-2020-001504] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Currently available biomarkers are imperfect in their ability to predict responses to the multiple first-line treatment options available for patients with advanced non-small cell lung cancer (NSCLC). Having an early pharmacodynamic marker of treatment resistance may help redirect patients onto more effective alternative therapies. We sought to determine if changes in circulating tumor DNA (ctDNA) levels after initiation of first-line pembrolizumab±chemotherapy in NSCLC would enable early prediction of response prior to radiological assessment. METHODS Plasma collected from patients with advanced NSCLC prior to and serially after starting first-line pembrolizumab±platinum doublet chemotherapy was analyzed by next-generation sequencing using enhanced tagged-amplicon sequencing of hotspots and coding regions from 36 genes. Early change in ctDNA allele fraction (AF) was correlated with radiographic responses and long-term clinical outcomes. RESULTS Among 62 patients who received first-line pembrolizumab±platinum/pemetrexed and underwent ctDNA assessment, 45 had detectable ctDNA alterations at baseline. The median change in AF at the first follow-up (at a median of 21 days after treatment initiation) was -90.1% (range -100% to +65%) among patients who subsequently had a radiologic response (n=18), -19.9% (range: -100% to +1884%) among stable disease cases (n=15), and +28.8% (range: -100% to +410%) among progressive disease cases (n=12); p=0.003. In addition, there was a significant correlation between the percent change in ctDNA at the first follow-up and the percent change in tumor target lesions from baseline (R=0.66, p<0.001). AF decrease between the pretreatment and first on-treatment blood draw was associated with significantly higher response rate (60.7% vs 5.8%, p=0.0003), and significantly longer median progression-free survival (8.3 vs 3.4 months, HR: 0.29 (95% CI: 0.14 to 0.60), p=0.0007) and median overall survival (26.2 vs 13.2 months, HR: 0.34 (95% CI: 0.15 to 0.75), p=0.008) compared with cases with an AF increase. CONCLUSION In patients with advanced NSCLC, rapid decreases in ctDNA prior to radiological assessment correlated with clinical benefit. These results suggest a potential role for ctDNA as an early pharmacodynamic biomarker of response or resistance to immunotherapies.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/blood
- Carcinoma, Non-Small-Cell Lung/diagnostic imaging
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Circulating Tumor DNA/blood
- Circulating Tumor DNA/genetics
- Disease Progression
- Early Diagnosis
- Female
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/therapeutic use
- Lung Neoplasms/blood
- Lung Neoplasms/diagnostic imaging
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Male
- Middle Aged
- Predictive Value of Tests
- Progression-Free Survival
- Retrospective Studies
- Time Factors
Collapse
Affiliation(s)
- Biagio Ricciuti
- Medical Oncology, Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Greg Jones
- Inivata, Research Triangle Park, North Carolina, USA
| | - Mariano Severgnini
- Medical Oncology, Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Center for Immuno-Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Joao V Alessi
- Medical Oncology, Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Gonzalo Recondo
- Medical Oncology, Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Marissa Lawrence
- Medical Oncology, Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Tim Forshew
- Inivata, Research Triangle Park, North Carolina, USA
| | - Christine Lydon
- Medical Oncology, Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mizuki Nishino
- Radiology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Radiology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Michael Cheng
- Medical Oncology, Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mark Awad
- Medical Oncology, Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Gómez-Peregrina D, García-Valverde A, Pilco-Janeta D, Serrano C. Liquid Biopsy in Gastrointestinal Stromal Tumors: Ready for Prime Time? Curr Treat Options Oncol 2021; 22:32. [PMID: 33641024 DOI: 10.1007/s11864-021-00832-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
OPINION STATEMENT Gastrointestinal stromal tumor (GIST) constitutes a paradigm for clinically effective targeted inhibition of oncogenic driver mutations. Therefore, GIST has emerged as a compelling clinical and biological model to study oncogene addiction and to validate preclinical concepts for drug response and drug resistance. Oncogenic activation of KIT or PDGFRA receptor tyrosine kinases is the essential drivers of GIST progression throughout all stages of the disease. Interestingly, KIT/PDGFRA genotype predicts the response to first-line imatinib and to all tyrosine kinase inhibitors (TKIs) approved or in investigation after imatinib failure. Considering that TKIs are effective only against a subset of KIT or PDGFRA resistance mutations, close monitoring of tumor dynamics with non-invasive methods such as liquid biopsy emerges as a necessary step forward in the field. Liquid biopsy, in contrast to solid tumor biopsy, aims to characterize tumors irrespective of heterogeneity. Although there are several components in the peripheral blood, most recent studies have been focused on circulating tumor (ct)DNA, due to the technological feasibility, the stability of DNA itself and DNA alterations, and the therapeutic development in precision oncology largely based on the identification of genetic driver mutations. In the present review, we systematically dissect the current wealth of data of ctDNA in GIST. To do so, a critical understanding of the promises and limitations of the current technologies will be followed by an exposition of the knowledge gathered with such studies in GIST. Collectively, our goal is to establish clear premises that can be used as the foundations to build future studies towards the clinical implementation of ctDNA evaluation in GIST patients.
Collapse
Affiliation(s)
- David Gómez-Peregrina
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, C/ Natzaret 115-117, 08035, Barcelona, Spain
| | - Alfonso García-Valverde
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, C/ Natzaret 115-117, 08035, Barcelona, Spain
| | - Daniel Pilco-Janeta
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, C/ Natzaret 115-117, 08035, Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Hospital Campus, C/ Natzaret 115-117, 08035, Barcelona, Spain. .,Department of Medical Oncology, Vall d'Hebron University Hospital, P/Vall d'Hebron 119, 08035, Barcelona, Spain.
| |
Collapse
|
31
|
Koçana CÇ, Toprak SF, Sözer S. Extracellular genetic materials and their application in clinical practice. Cancer Genet 2020; 252-253:48-63. [PMID: 33387935 DOI: 10.1016/j.cancergen.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/12/2020] [Accepted: 12/20/2020] [Indexed: 11/20/2022]
Abstract
This study reviews the possible origins, functional roles, and diagnostic applications of 'extracellular genetic material' (EGM), a novel term introduced to cover DNA, RNA, and DNA/RNA-related molecules released from all types of cells into the extracellular region. The literature on EGMs shows them to play a dual role in diverse, fine-tuning mechanisms involved in both homeostasis and pathological events, including cancerogenesis and genometastasis. Recent developments in the next-generation technology have provided successful applications of low quantities of genomic materials into the diagnostic field, yielding high sensitivity and specificity in test results. Also, the successful application of EGMs into diagnostics has afforded promising outcomes for researchers and clinicians. This study of EGM provides a deeper understanding of the subject as an area of interest, especially cell-free DNA, aiming toward the eventual development of new therapeutic applications and diagnostic strategies.
Collapse
Affiliation(s)
- Cemal Çağıl Koçana
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selin Fulya Toprak
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Selçuk Sözer
- Department of Genetic, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
32
|
Yekedüz E, Köksoy EB, Akbulut H, Ürün Y, Utkan G. ctDNA as a prognostic factor in operable colon cancer patients: a systematic review and meta-analysis. Future Oncol 2020; 17:349-357. [PMID: 33356539 DOI: 10.2217/fon-2020-0671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Using circulating tumor DNA (ctDNA) instead of historical clinicopathological factors to select patients for adjuvant chemotherapy (ACT) may reduce inappropriate therapy. Material & methods: MEDLINE was searched on 31 March 2020. Studies, including data related to the prognostic value of ctDNA in the colon cancer patients after surgery and after ACT, were included. The generic inverse-variance method with a random-effects model was used for meta-analysis. Results: Four studies were included for this meta-analysis. ctDNA-positive colon cancer patients after surgery and ACT had a significantly increased risk of recurrence compared with ctDNA-negative patients. Conclusions: ctDNA is an independent prognostic factor, and this meta-analysis is a significant step for using ctDNA instead of historical prognostic factors in the adjuvant setting.
Collapse
Affiliation(s)
- Emre Yekedüz
- Department of Medical Oncology, Ankara University, 06590, Cebeci/Ankara, Turkey.,Ankara University Cancer Research Institute, 06590, Cebeci/Ankara, Turkey
| | - Elif Berna Köksoy
- Department of Medical Oncology, Ankara University, 06590, Cebeci/Ankara, Turkey.,Ankara University Cancer Research Institute, 06590, Cebeci/Ankara, Turkey
| | - Hakan Akbulut
- Department of Medical Oncology, Ankara University, 06590, Cebeci/Ankara, Turkey.,Ankara University Cancer Research Institute, 06590, Cebeci/Ankara, Turkey
| | - Yüksel Ürün
- Department of Medical Oncology, Ankara University, 06590, Cebeci/Ankara, Turkey.,Ankara University Cancer Research Institute, 06590, Cebeci/Ankara, Turkey
| | - Güngör Utkan
- Department of Medical Oncology, Ankara University, 06590, Cebeci/Ankara, Turkey.,Ankara University Cancer Research Institute, 06590, Cebeci/Ankara, Turkey
| |
Collapse
|
33
|
Cimmino F, Lasorsa VA, Vetrella S, Iolascon A, Capasso M. A Targeted Gene Panel for Circulating Tumor DNA Sequencing in Neuroblastoma. Front Oncol 2020; 10:596191. [PMID: 33381456 PMCID: PMC7769379 DOI: 10.3389/fonc.2020.596191] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background Liquid biopsies do not reflect the complete mutation profile of the tumor but have the potential to identify actionable mutations when tumor biopsies are not available as well as variants with low allele frequency. Most retrospective studies conducted in small cohorts of pediatric cancers have illustrated that the technology yield substantial potential in neuroblastoma. Aim The molecular landscape of neuroblastoma harbors potentially actionable genomic alterations. We aimed to study the utility of liquid biopsy to characterize the mutational landscape of primary neuroblastoma using a custom gene panel for ctDNA targeted sequencing. Methods Targeted next-generation sequencing (NGS) was performed on ctDNA of 11 patients with primary neuroblastoma stage 4. To avoid the detection of false variants, we used UMIs (unique molecular identifiers) for the library construction, increased the sequencing depth and developed ad hoc bioinformatic analyses including the hard filtering of the variant calls. Results We identified 9/11 (81.8%) patients who carry at least one pathogenic variation. The most frequently mutated genes were KMT2C (five cases), NOTCH1/2 (four cases), CREBBP (three cases), ARID1A/B (three cases), ALK (two cases), FGFR1 (two cases), FAT4 (two cases) and CARD11 (two cases). Conclusions We developed a targeted NGS approach to identify tumor-specific alterations in ctDNA of neuroblastoma patients. Our results show the reliability of our approach to generate genomic information which can be integrated with clinical and pathological data at diagnosis.
Collapse
Affiliation(s)
| | - Vito Alessandro Lasorsa
- CEINGE Biotecnologie Avanzate, Napoli, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Simona Vetrella
- Department of Pediatric Oncology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Achille Iolascon
- CEINGE Biotecnologie Avanzate, Napoli, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Mario Capasso
- CEINGE Biotecnologie Avanzate, Napoli, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
34
|
Nicolazzo C, Barault L, Caponnetto S, Macagno M, De Renzi G, Gradilone A, Belardinilli F, Cortesi E, Di Nicolantonio F, Gazzaniga P. Circulating Methylated DNA to Monitor the Dynamics of RAS Mutation Clearance in Plasma from Metastatic Colorectal Cancer Patients. Cancers (Basel) 2020; 12:E3633. [PMID: 33291569 PMCID: PMC7761880 DOI: 10.3390/cancers12123633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/02/2020] [Indexed: 01/20/2023] Open
Abstract
The clearance of RAS mutations in plasma circulating tumor DNA (ctDNA) from originally RAS-mutant metastatic colorectal cancer (mCRC) has been recently demonstrated. Clinical trials investigating whether RAS mutant mCRC who "convert" to wild-type in plasma might benefit from EGFR blockade are ongoing. Detection of tumor-specific DNA methylation alterations in ctDNA has been suggested as a specific tool to confirm the tumoral origin of cell-free DNA. We monitored RAS clearance in plasma from patients with RAS-mutant mCRC at baseline (pre-treatment) (T0); after 4 months of first-line therapy (T1); at the time of first (T2) and second (T3) progression. A five-gene methylation panel was used to confirm the presence of ctDNA in samples in which RAS mutation clearance was detected. At T1, ctDNA analysis revealed wild-type RAS status in 83% of samples, all not methylated, suggesting at this time point the lack of ctDNA shedding. At T2, ctDNA analysis revealed wild-type RAS status in 83% of samples, of which 62.5% were found methylated. At T3, 50% of wild-type RAS samples were found methylated. Non-methylated samples were found in patients with lung or brain metastases. This five-gene methylation test might be useful to confirm the presence of ctDNA in RAS wild-type plasma samples.
Collapse
Affiliation(s)
- Chiara Nicolazzo
- Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.N.); (G.D.R.); (A.G.)
| | - Ludovic Barault
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; (L.B.); (F.D.N.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy;
| | - Salvatore Caponnetto
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, 00161 Rome, Italy; (S.C.); (E.C.)
| | - Marco Macagno
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy;
| | - Gianluigi De Renzi
- Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.N.); (G.D.R.); (A.G.)
| | - Angela Gradilone
- Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.N.); (G.D.R.); (A.G.)
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | | | - Enrico Cortesi
- Department of Radiology, Oncology and Pathology, Sapienza University of Rome, 00161 Rome, Italy; (S.C.); (E.C.)
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, 10060 Candiolo, TO, Italy; (L.B.); (F.D.N.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, TO, Italy;
| | - Paola Gazzaniga
- Liquid Biopsy Unit, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (C.N.); (G.D.R.); (A.G.)
| |
Collapse
|
35
|
Sajjadi E, Venetis K, Scatena C, Fusco N. Biomarkers for precision immunotherapy in the metastatic setting: hope or reality? Ecancermedicalscience 2020; 14:1150. [PMID: 33574895 PMCID: PMC7864694 DOI: 10.3332/ecancer.2020.1150] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Precision immunotherapy is a crucial approach to improve the efficacy of anti-cancer treatments, particularly in the metastatic setting. In this respect, accurate patient selection takes advantage of the multidimensional integration of patients' clinical information and tumour-specific biomarkers status. Among these biomarkers, programmed death-ligand 1, tumour-infiltrating lymphocytes, microsatellite instability, mismatch repair and tumour mutational burden have been widely investigated. However, novel tumour-specific biomarkers and testing methods will further improve patients' outcomes. Here, we discuss the currently available strategies for the implementation of a precision immunotherapy approach in the clinical management of metastatic solid tumours and highlight future perspectives.
Collapse
Affiliation(s)
- Elham Sajjadi
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Konstantinos Venetis
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 57, 56126 Pisa, Italy
| | - Nicola Fusco
- Divison of Pathology, European Institute of Oncology (IEO) IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| |
Collapse
|
36
|
Grossman D, Okwundu N, Bartlett EK, Marchetti MA, Othus M, Coit DG, Hartman RI, Leachman SA, Berry EG, Korde L, Lee SJ, Bar-Eli M, Berwick M, Bowles T, Buchbinder EI, Burton EM, Chu EY, Curiel-Lewandrowski C, Curtis JA, Daud A, Deacon DC, Ferris LK, Gershenwald JE, Grossmann KF, Hu-Lieskovan S, Hyngstrom J, Jeter JM, Judson-Torres RL, Kendra KL, Kim CC, Kirkwood JM, Lawson DH, Leming PD, Long GV, Marghoob AA, Mehnert JM, Ming ME, Nelson KC, Polsky D, Scolyer RA, Smith EA, Sondak VK, Stark MS, Stein JA, Thompson JA, Thompson JF, Venna SS, Wei ML, Swetter SM. Prognostic Gene Expression Profiling in Cutaneous Melanoma: Identifying the Knowledge Gaps and Assessing the Clinical Benefit. JAMA Dermatol 2020; 156:1004-1011. [PMID: 32725204 PMCID: PMC8275355 DOI: 10.1001/jamadermatol.2020.1729] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Importance Use of prognostic gene expression profile (GEP) testing in cutaneous melanoma (CM) is rising despite a lack of endorsement as standard of care. Objective To develop guidelines within the national Melanoma Prevention Working Group (MPWG) on integration of GEP testing into the management of patients with CM, including (1) review of published data using GEP tests, (2) definition of acceptable performance criteria, (3) current recommendations for use of GEP testing in clinical practice, and (4) considerations for future studies. Evidence Review The MPWG members and other international melanoma specialists participated in 2 online surveys and then convened a summit meeting. Published data and meeting abstracts from 2015 to 2019 were reviewed. Findings The MPWG members are optimistic about the future use of prognostic GEP testing to improve risk stratification and enhance clinical decision-making but acknowledge that current utility is limited by test performance in patients with stage I disease. Published studies of GEP testing have not evaluated results in the context of all relevant clinicopathologic factors or as predictors of regional nodal metastasis to replace sentinel lymph node biopsy (SLNB). The performance of GEP tests has generally been reported for small groups of patients representing particular tumor stages or in aggregate form, such that stage-specific performance cannot be ascertained, and without survival outcomes compared with data from the American Joint Committee on Cancer 8th edition melanoma staging system international database. There are significant challenges to performing clinical trials incorporating GEP testing with SLNB and adjuvant therapy. The MPWG members favor conducting retrospective studies that evaluate multiple GEP testing platforms on fully annotated archived samples before embarking on costly prospective studies and recommend avoiding routine use of GEP testing to direct patient management until prospective studies support their clinical utility. Conclusions and Relevance More evidence is needed to support using GEP testing to inform recommendations regarding SLNB, intensity of follow-up or imaging surveillance, and postoperative adjuvant therapy. The MPWG recommends further research to assess the validity and clinical applicability of existing and emerging GEP tests. Decisions on performing GEP testing and patient management based on these results should only be made in the context of discussion of testing limitations with the patient or within a multidisciplinary group.
Collapse
Affiliation(s)
- Douglas Grossman
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Dermatology, University of Utah, Salt Lake City
- Department of Oncological Sciences, University of Utah, Salt Lake City
| | | | - Edmund K Bartlett
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael A Marchetti
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Megan Othus
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Daniel G Coit
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rebecca I Hartman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts
| | - Sancy A Leachman
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland
| | - Elizabeth G Berry
- Department of Dermatology and Knight Cancer Institute, Oregon Health & Science University, Portland
| | - Larissa Korde
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Sandra J Lee
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Data Sciences, Harvard Medical School, Boston, Massachusetts
| | - Menashe Bar-Eli
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston
| | - Marianne Berwick
- Departments of Dermatology and Internal Medicine, University of New Mexico Cancer Center, University of New Mexico, Albuquerque
| | - Tawnya Bowles
- Department of Surgery, Division of Surgical Oncology, University of Utah, Salt Lake City
| | - Elizabeth I Buchbinder
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Internal Medicine, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth M Burton
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Emily Y Chu
- Department of Dermatology, Perelman School of Medicine University of Pennsylvania, Philadelphia
| | | | - Julia A Curtis
- Department of Dermatology, University of Utah, Salt Lake City
| | - Adil Daud
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco
- Department of Hematology/Oncology, University of California, San Francisco
| | - Dekker C Deacon
- Department of Dermatology, University of Utah, Salt Lake City
| | - Laura K Ferris
- Department of Dermatology and University of Pittsburgh Clinical and Translational Science Institute, Pittsburgh, Pennsylvania
| | - Jeffrey E Gershenwald
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Kenneth F Grossmann
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Medicine, Division of Oncology, University of Utah, Salt Lake City
| | - Siwen Hu-Lieskovan
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Medicine, Division of Oncology, University of Utah, Salt Lake City
| | - John Hyngstrom
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Surgery, Division of Surgical Oncology, University of Utah, Salt Lake City
| | - Joanne M Jeter
- Department of Internal Medicine and The Ohio State University Comprehensive Cancer Center, Columbus
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, Salt Lake City, Utah
- Department of Dermatology, University of Utah, Salt Lake City
| | - Kari L Kendra
- Department of Internal Medicine and The Ohio State University Comprehensive Cancer Center, Columbus
| | - Caroline C Kim
- Department of Dermatology, Tufts Medical Center, Boston, Massachusetts
- Partners Healthcare, Newton Wellesley Dermatology Associates, Wellesley, Massachusetts
| | - John M Kirkwood
- Department of Internal Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David H Lawson
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Winship Cancer Institute of Emory University, Atlanta, Georgia
| | | | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Oncology, Royal North Shore Hospital, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Ashfaq A Marghoob
- Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Janice M Mehnert
- Department of Medical Oncology, Robert Wood Johnson University Hospital, New Brunswick, New Jersey
- Rutgers Cancer Institute of New Jersey, New Brunswick
| | - Michael E Ming
- Department of Dermatology, Perelman School of Medicine University of Pennsylvania, Philadelphia
| | - Kelly C Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston
| | - David Polsky
- Department of Dermatology, Ronald O. Perelman Department of Dermatology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York University School of Medicine, New York, New York
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
| | - Eric A Smith
- Department of Pathology, University of Utah, Salt Lake City
| | - Vernon K Sondak
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Oncologic Sciences, University of South Florida Morsani College of Medicine, Tampa
| | - Mitchell S Stark
- The University of Queensland Diamantina Institute, The University of Queensland, Dermatology Research Centre, Brisbane, Australia
| | - Jennifer A Stein
- Department of Dermatology, Ronald O. Perelman Department of Dermatology, Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York University School of Medicine, New York, New York
| | - John A Thompson
- Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Oncology, University of Washington, Seattle
- Seattle Cancer Care Alliance, Seattle, Washington
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Suraj S Venna
- Inova Schar Cancer Institute, Department of Medicine, Virginia Commonwealth University, Fairfax
| | - Maria L Wei
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco
- Department of Dermatology, University of California, San Francisco
- Dermatology Service, Veterans Affairs Medical Center, San Francisco, California
| | - Susan M Swetter
- Stanford University Medical Center and Cancer Institute, Stanford, California
- Dermatology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
37
|
Tsimberidou AM, Fountzilas E, Nikanjam M, Kurzrock R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat Rev 2020; 86:102019. [PMID: 32251926 PMCID: PMC7272286 DOI: 10.1016/j.ctrv.2020.102019] [Citation(s) in RCA: 318] [Impact Index Per Article: 79.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022]
Abstract
In recent years, biotechnological breakthroughs have led to identification of complex and unique biologic features associated with carcinogenesis. Tumor and cell-free DNA profiling, immune markers, and proteomic and RNA analyses are used to identify these characteristics for optimization of anticancer therapy in individual patients. Consequently, clinical trials have evolved, shifting from tumor type-centered to gene-directed, histology-agnostic, with innovative adaptive design tailored to biomarker profiling with the goal to improve treatment outcomes. A plethora of precision medicine trials have been conducted. The majority of these trials demonstrated that matched therapy is associated with superior outcomes compared to non-matched therapy across tumor types and in specific cancers. To improve the implementation of precision medicine, this approach should be used early in the course of the disease, and patients should have complete tumor profiling and access to effective matched therapy. To overcome the complexity of tumor biology, clinical trials with combinations of gene-targeted therapy with immune-targeted approaches (e.g., checkpoint blockade, personalized vaccines and/or chimeric antigen receptor T-cells), hormonal therapy, chemotherapy and/or novel agents should be considered. These studies should target dynamic changes in tumor biologic abnormalities, eliminating minimal residual disease, and eradicating significant subclones that confer resistance to treatment. Mining and expansion of real-world data, facilitated by the use of advanced computer data processing capabilities, may contribute to validation of information to predict new applications for medicines. In this review, we summarize the clinical trials and discuss challenges and opportunities to accelerate the implementation of precision oncology.
Collapse
Affiliation(s)
- Apostolia M Tsimberidou
- The University of Texas MD Anderson Cancer Center, Department of Investigational Cancer Therapeutics, Houston, TX.
| | - Elena Fountzilas
- Department of Medical Oncology, Euromedica General Clinic, Thessaloniki, Greece
| | - Mina Nikanjam
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, UC San Diego Moores Cancer Center, San Diego, CA, USA
| |
Collapse
|