1
|
Szabó I, Biri-Kovács B, Vári B, Ranđelović I, Vári-Mező D, Juhász É, Halmos G, Bősze S, Tóvári J, Mező G. Targeting the Melanocortin 1 Receptor in Melanoma: Biological Activity of α-MSH-Peptide Conjugates. Int J Mol Sci 2024; 25:1095. [PMID: 38256168 PMCID: PMC10816934 DOI: 10.3390/ijms25021095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Malignant melanoma is one of the most aggressive and resistant tumor types, with high metastatic properties. Because of the lack of suitable chemotherapeutic agents for treatment, the 5-year survival rate of melanoma patients with regional and distant metastases is lower than 10%. Targeted tumor therapy that provides several promising results might be a good option for the treatment of malignant melanomas. Our goal was to develop novel melanoma-specific peptide-drug conjugates for targeted tumor therapy. Melanocortin-1-receptor (MC1R) is a cell surface receptor responsible for melanogenesis and it is overexpressed on the surface of melanoma cells, providing a good target. Its native ligand, α-MSH (α-melanocyte-stimulating hormone) peptide, or its derivatives, might be potential homing devices for this purpose. Therefore, we prepared three α-MSH derivative-daunomycin (Dau) conjugates and their in vitro and in vivo antitumor activities were compared. Dau has an autofluorescence property; therefore, it is suitable for preparing conjugates for in vitro (e.g., cellular uptake) and in vivo experiments. Dau was attached to the peptides via a non-cleavable oxime linkage that was applied efficiently in our previous experiments, resulting in conjugates with high tumor growth inhibition activity. The results indicated that the most promising conjugate was the compound in which Dau was connected to the side chain of Lys (Ac-SYSNleEHFRWGK(Dau=Aoa)PV-NH2). The highest cellular uptake by melanoma cells was demonstrated using the compound, with the highest tumor growth inhibition detected both on mouse (38.6% on B16) and human uveal melanoma (55% on OMC-1) cells. The effect of the compound was more pronounced than that of the free drug.
Collapse
Affiliation(s)
- Ildikó Szabó
- HUN-REN–ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); (B.B.-K.); (D.V.-M.); (S.B.)
- MTA-TTK “Momentum” Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Beáta Biri-Kovács
- HUN-REN–ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); (B.B.-K.); (D.V.-M.); (S.B.)
| | - Balázs Vári
- National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary; (B.V.); (I.R.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Ivan Ranđelović
- National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary; (B.V.); (I.R.); (J.T.)
| | - Diána Vári-Mező
- HUN-REN–ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); (B.B.-K.); (D.V.-M.); (S.B.)
- National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary; (B.V.); (I.R.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Éva Juhász
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Gábor Halmos
- Department of Biopharmacy, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Szilvia Bősze
- HUN-REN–ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); (B.B.-K.); (D.V.-M.); (S.B.)
| | - József Tóvári
- National Tumor Biology Laboratory, Department of Experimental Pharmacology, National Institute of Oncology, 1122 Budapest, Hungary; (B.V.); (I.R.); (J.T.)
- School of Ph.D. Studies, Doctoral School of Pathological Sciences, Semmelweis University, 1085 Budapest, Hungary
| | - Gábor Mező
- HUN-REN–ELTE Research Group of Peptide Chemistry, 1117 Budapest, Hungary; (I.S.); (B.B.-K.); (D.V.-M.); (S.B.)
- Institute of Chemistry, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
2
|
Likhvantseva VG, Ovanesyan VE. [The effect of sex hormones and pregnancy on development and progression of uveal melanoma]. Vestn Oftalmol 2022; 138:110-117. [PMID: 35801889 DOI: 10.17116/oftalma2022138031110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The analysis of literature revealed that men experience uveal melanoma (UM) more frequently and with worse prognosis. There are also descriptions of an aggressive course of UM in pregnant women. These facts prompted researchers to analyze the effect of sex hormones and pregnancy on the development and progression of UM. Many years of international experience have refuted the presence of a reliable difference between 5-year survival and 5-year survival without metastases between non-pregnant women with UM and pregnant women with UM. That data is regarded as level 3 evidence. The experts have concluded that UM is not a contraindication to current or future pregnancy, and exogenous hormones (oral contraceptives or hormone replacement therapy) do not affect the incidence and prognosis of UM. Publications provide evidence of expression of the receptors of certain sex hormones (ER, ERRα, LH and LHRH) in primary UM, as well as overexpression of the ESR1 and ESR2 genes in UM with poor predictive characteristics. Overall AR mRNA expression in UM was low, but it was higher in epithelial UMs. The fact of expression of estrogen receptors in UM gives grounds to experiment with them as a target for therapy.
Collapse
Affiliation(s)
- V G Likhvantseva
- Federal Medical Biophysical Center named after A.I. Burnazyan of the Federal Medical-Biological Agency, Moscow, Russia
- Academy of Postgraduate Education of the Federal Scientific-Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical-Biological Agency, Moscow, Russia
| | - V E Ovanesyan
- Yegoryevsk Central District Hospital, Yegoryevsk, Russia
| |
Collapse
|
3
|
Gaurav I, Wang X, Thakur A, Iyaswamy A, Thakur S, Chen X, Kumar G, Li M, Yang Z. Peptide-Conjugated Nano Delivery Systems for Therapy and Diagnosis of Cancer. Pharmaceutics 2021; 13:1433. [PMID: 34575511 PMCID: PMC8471603 DOI: 10.3390/pharmaceutics13091433] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
Peptides are strings of approximately 2-50 amino acids, which have gained huge attention for theranostic applications in cancer research due to their various advantages including better biosafety, customizability, convenient process of synthesis, targeting ability via recognizing biological receptors on cancer cells, and better ability to penetrate cell membranes. The conjugation of peptides to the various nano delivery systems (NDS) has been found to provide an added benefit toward targeted delivery for cancer therapy. Moreover, the simultaneous delivery of peptide-conjugated NDS and nano probes has shown potential for the diagnosis of the malignant progression of cancer. In this review, various barriers hindering the targeting capacity of NDS are addressed, and various approaches for conjugating peptides and NDS have been discussed. Moreover, major peptide-based functionalized NDS targeting cancer-specific receptors have been considered, including the conjugation of peptides with extracellular vesicles, which are biological nanovesicles with promising ability for therapy and the diagnosis of cancer.
Collapse
Affiliation(s)
- Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Xuehan Wang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Abhimanyu Thakur
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation-CAS Limited, Hong Kong, China;
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sudha Thakur
- National Institute for Locomotor Disabilities (Divyangjan), Kolkata 700090, India;
| | - Xiaoyu Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
| | - Gaurav Kumar
- School of Basic and Applied Science, Galgotias University, Greater Noida 203201, India;
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; (I.G.); (X.W.); (A.I.); (X.C.); (M.L.)
- Changshu Research Institute, Hong Kong Baptist University, Changshu Economic and Technological Development (CETD) Zone, Changshu 215500, China
| |
Collapse
|
4
|
Miller M, Schoenfield L, Abdel-Rahman M, Cebulla CM. Is Uveal Melanoma a Hormonally Sensitive Cancer? A Review of the Impact of Sex Hormones and Pregnancy on Uveal Melanoma. Ocul Oncol Pathol 2021; 7:239-250. [PMID: 34604195 PMCID: PMC8443925 DOI: 10.1159/000514650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite a higher incidence and worse prognosis of uveal melanoma (UM) in men, there have been many case reports of pregnant patients with aggressive UM. This has led researchers to explore the influence of sex hormones and pregnancy on the development and progression of UM and hormones as potential therapeutic targets. SUMMARY A systematic literature review was conducted. More work is needed to elucidate the basis of sex differences in UM incidence and survival. The evaluation of germline BAP1 mutation would be beneficial in patients with UM presenting at a young age. Importantly, multiple studies reported no significant difference between the 5-year survival and 5-year metastasis-free survival rates between nonpregnant women with UM and pregnant women with UM. Multiple case-control studies disagree on how parity affects risk of UM. However, most studies agree that oral contraceptives and hormone replacement therapy have no effect on the incidence of UM. Current treatment strategies for pregnant patients with UM are discussed. Looking forward, this review reports recent research on targeted receptor-based chemotherapy, which is based on evidence of estrogen receptor (ER), estrogen-related receptor alpha (ERRα), and luteinizing hormone-releasing hormone (LHRH) receptor expression in UM. KEY MESSAGES Based on review of the literature, UM is not a contraindication to oral contraceptives, hormone replacement therapy, or pregnancy. Globe-sparing radiation can be used as a treatment option for pregnant patients. Due to the presence of ER on a subset of unselected UM, its potential for adjunctive targeted therapy with agents like tamoxifen should be explored. Lessons from cutaneous melanoma regarding tissue ratios of estrogen receptors (ERα:ERβ) should be applied to assess their therapeutic predictive value. In addition, ERRα-targeted therapeutics and LHRH analogs are worthy of further exploration in UM.
Collapse
Affiliation(s)
- Manisha Miller
- Havener Eye Institute, Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Lynn Schoenfield
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Mohamed Abdel-Rahman
- Havener Eye Institute, Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
- Division of Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Colleen M. Cebulla
- Havener Eye Institute, Department of Ophthalmology and Visual Sciences, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
5
|
D'Aguanno S, Mallone F, Marenco M, Del Bufalo D, Moramarco A. Hypoxia-dependent drivers of melanoma progression. J Exp Clin Cancer Res 2021; 40:159. [PMID: 33964953 PMCID: PMC8106186 DOI: 10.1186/s13046-021-01926-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Hypoxia, a condition of low oxygen availability, is a hallmark of tumour microenvironment and promotes cancer progression and resistance to therapy. Many studies reported the essential role of hypoxia in regulating invasiveness, angiogenesis, vasculogenic mimicry and response to therapy in melanoma. Melanoma is an aggressive cancer originating from melanocytes located in the skin (cutaneous melanoma), in the uveal tract of the eye (uveal melanoma) or in mucosal membranes (mucosal melanoma). These three subtypes of melanoma represent distinct neoplasms in terms of biology, epidemiology, aetiology, molecular profile and clinical features.In this review, the latest progress in hypoxia-regulated pathways involved in the development and progression of all melanoma subtypes were discussed. We also summarized current knowledge on preclinical studies with drugs targeting Hypoxia-Inducible Factor-1, angiogenesis or vasculogenic mimicry. Finally, we described available evidence on clinical studies investigating the use of Hypoxia-Inducible Factor-1 inhibitors or antiangiogenic drugs, alone or in combination with other strategies, in metastatic and adjuvant settings of cutaneous, uveal and mucosal melanoma.Hypoxia-Inducible Factor-independent pathways have been also reported to regulate melanoma progression, but this issue is beyond the scope of this review.As evident from the numerous studies discussed in this review, the increasing knowledge of hypoxia-regulated pathways in melanoma progression and the promising results obtained from novel antiangiogenic therapies, could offer new perspectives in clinical practice in order to improve survival outcomes of melanoma patients.
Collapse
Affiliation(s)
- Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Mallone
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Marco Marenco
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | | |
Collapse
|
6
|
Fontana F, Limonta P. Dissecting the Hormonal Signaling Landscape in Castration-Resistant Prostate Cancer. Cells 2021; 10:1133. [PMID: 34067217 PMCID: PMC8151003 DOI: 10.3390/cells10051133] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 02/07/2023] Open
Abstract
Understanding the molecular mechanisms underlying prostate cancer (PCa) progression towards its most aggressive, castration-resistant (CRPC) stage is urgently needed to improve the therapeutic options for this almost incurable pathology. Interestingly, CRPC is known to be characterized by a peculiar hormonal landscape. It is now well established that the androgen/androgen receptor (AR) axis is still active in CRPC cells. The persistent activity of this axis in PCa progression has been shown to be related to different mechanisms, such as intratumoral androgen synthesis, AR amplification and mutations, AR mRNA alternative splicing, increased expression/activity of AR-related transcription factors and coregulators. The hypothalamic gonadotropin-releasing hormone (GnRH), by binding to its specific receptors (GnRH-Rs) at the pituitary level, plays a pivotal role in the regulation of the reproductive functions. GnRH and GnRH-R are also expressed in different types of tumors, including PCa. Specifically, it has been demonstrated that, in CRPC cells, the activation of GnRH-Rs is associated with a significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic activity. This antitumor activity is mainly mediated by the GnRH-R-associated Gαi/cAMP signaling pathway. In this review, we dissect the molecular mechanisms underlying the role of the androgen/AR and GnRH/GnRH-R axes in CRPC progression and the possible therapeutic implications.
Collapse
Affiliation(s)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| |
Collapse
|
7
|
Gonadotropin-Releasing Hormone Receptors in Prostate Cancer: Molecular Aspects and Biological Functions. Int J Mol Sci 2020; 21:ijms21249511. [PMID: 33327545 PMCID: PMC7765031 DOI: 10.3390/ijms21249511] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
Pituitary Gonadotropin-Releasing Hormone receptors (GnRH-R) mediate the activity of the hypothalamic decapeptide GnRH, thus playing a key role in the regulation of the reproductive axis. Early-stage prostate cancer (PCa) is dependent on serum androgen levels, and androgen-deprivation therapy (ADT), based on GnRH agonists and antagonists, represents the standard therapeutic approach for PCa patients. Unfortunately, the tumor often progresses towards the more aggressive castration-resistant prostate cancer (CRPC) stage. GnRH receptors are also expressed in CRPC tissues, where their binding to both GnRH agonists and antagonists is associated with significant antiproliferative/proapoptotic, antimetastatic and antiangiogenic effects, mediated by the Gαi/cAMP signaling cascade. GnRH agonists and antagonists are now considered as an effective therapeutic strategy for CRPC patients with many clinical trials demonstrating that the combined use of these drugs with standard therapies (i.e., docetaxel, enzalutamide, abiraterone) significantly improves disease-free survival. In this context, GnRH-based bioconjugates (cytotoxic drugs covalently linked to a GnRH-based decapeptide) have been recently developed. The rationale of this treatment is that the GnRH peptide selectively binds to its receptors, delivering the cytotoxic drug to CRPC cells while sparing nontumor cells. Some of these compounds have already entered clinical trials.
Collapse
|
8
|
Vrettos EI, Karampelas T, Sayyad N, Kougioumtzi A, Syed N, Crook T, Murphy C, Tamvakopoulos C, Tzakos AG. Development of programmable gemcitabine-GnRH pro-drugs bearing linker controllable "click" oxime bond tethers and preclinical evaluation against prostate cancer. Eur J Med Chem 2020; 211:113018. [PMID: 33223264 DOI: 10.1016/j.ejmech.2020.113018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 02/08/2023]
Abstract
Peptide-drug conjugates (PDCs) are gaining considerable attention as anti-neoplastic agents. However, their development is often laborious and time-consuming. Herein, we have developed and preclinically evaluated three PDCs with gemcitabine as the anticancer cytotoxic unit and D-Lys6-GnRH (gonadotropin-releasing hormone; GnRH) as the cancer-targeting unit. These units were tethered via acid-labile programmable linkers to guide a differential drug release rate from the PDC through a combination of ester or amide and "click" type oxime ligations. The pro-drugs were designed to enable the selective targeting of malignant tumor cells with linker guided differential drug release rates. We exploited the oxime bond responsiveness against the acidic pH of the tumor microenvironment and the GnRH endocytosis via the GnRH-R GPCR which is overexpressed on cancer cells. The challenging metabolic properties of gemcitabine were addressed during design of the PDCs. We developed a rapid (1 hour) and cost-effective "click" oxime bond ligation platform to assemble in one-pot the 3 desired PDCs that does not require purification, surpassing traditional time-ineffective and low yield methods. The internalization of the tumor-homing peptide unit in cancer cells, overexpressing the GnRH-R, was first validated through confocal laser microscopy and flow cytometry analysis. Subsequently, the three PDCs were evaluated for their in vitro antiproliferative effect in prostate cancer cells. Their stability and the release of gemcitabine over time were monitored in vitro in cell culture and in human plasma using LC-MS/MS. We then assessed the ability of the developed PDCs to internalize in prostate cancer cells and to release gemcitabine. The most potent analog, designated GOXG1, was used for pharmacokinetic studies in mice. The metabolism of GOXG1 was examined in liver microsomes, as well as in buffers mimicking the pH of intracellular organelles, resulting in the identification of two metabolites. The major metabolite at low pH emanated from the cleavage of the pH-labile oxime bond, validating our design approach. NMR spectroscopy and in vitro radioligand binding assays were exploited for GOXG1 to validate that upon conjugating the drug to the peptide, the peptide microenvironment responsible for its GnRH-R binding is not perturbed and to confirm its high binding potency to the GnRH-R. Finally, the binding of GOXG1 to the GnRH-R and the associated elicitation of testosterone release in mice were also determined. The facile platform established herein for the rapid assembly of PDCs with linker controllable characteristics from aldehyde and aminooxy units through rapid "click" oxime ligation, that does not require purification steps, could pave the way for a new generation of potent cancer therapeutics, diagnostics and theranostics.
Collapse
Affiliation(s)
| | - Theodoros Karampelas
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation ofthe Academy of Athens, Athens, Greece
| | - Nisar Sayyad
- Department of Chemistry, University of Ioannina, Ioannina, GR-45110, Greece
| | - Anastasia Kougioumtzi
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology - Forth, Ioannina, Greece
| | - Nelofer Syed
- John Fulcher Neuro-oncology Laboratory, Dept of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Timothy Crook
- John Fulcher Neuro-oncology Laboratory, Dept of Brain Sciences, Division of Neuroscience, Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Carol Murphy
- Department of Biomedical Research, Institute of Molecular Biology and Biotechnology - Forth, Ioannina, Greece
| | - Constantin Tamvakopoulos
- Division of Pharmacology-Pharmacotechnology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation ofthe Academy of Athens, Athens, Greece
| | - Andreas G Tzakos
- Department of Chemistry, University of Ioannina, Ioannina, GR-45110, Greece; University Research Center of Ioannina (URCI), Institute of Materials Science and Computing, Ioannina, Greece.
| |
Collapse
|