1
|
Owusu SB, Zaher A, Ahenkorah S, Pandya DN, Wadas TJ, Petronek MS. Gallium Uncouples Iron Metabolism to Enhance Glioblastoma Radiosensitivity. Int J Mol Sci 2024; 25:10047. [PMID: 39337531 PMCID: PMC11432413 DOI: 10.3390/ijms251810047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Gallium-based therapy has been considered a potentially effective cancer therapy for decades and has recently re-emerged as a novel therapeutic strategy for the management of glioblastoma tumors. Gallium targets the iron-dependent phenotype associated with aggressive tumors by mimicking iron in circulation and gaining intracellular access through transferrin-receptor-mediated endocytosis. Mechanistically, it is believed that gallium inhibits critical iron-dependent enzymes like ribonucleotide reductase and NADH dehydrogenase (electron transport chain complex I) by replacing iron and removing the ability to transfer electrons through the protein secondary structure. However, information regarding the effects of gallium on cellular iron metabolism is limited. As mitochondrial iron metabolism serves as a central hub of the iron metabolic network, the goal of this study was to investigate the effects of gallium on mitochondrial iron metabolism in glioblastoma cells. Here, it has been discovered that gallium nitrate can induce mitochondrial iron depletion, which is associated with the induction of DNA damage. Moreover, the generation of gallium-resistant cell lines reveals a highly unstable phenotype characterized by impaired colony formation associated with a significant decrease in mitochondrial iron content and loss of the mitochondrial iron uptake transporter, mitoferrin-1. Moreover, gallium-resistant cell lines are significantly more sensitive to radiation and have an impaired ability to repair any sublethal damage and to survive potentially lethal radiation damage when left for 24 h following radiation. These results support the hypothesis that gallium can disrupt mitochondrial iron metabolism and serve as a potential radiosensitizer.
Collapse
Affiliation(s)
- Stephenson B. Owusu
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242, USA; (S.B.O.); (A.Z.)
| | - Amira Zaher
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242, USA; (S.B.O.); (A.Z.)
| | - Stephen Ahenkorah
- Department of Radiology, The University of Iowa, Iowa City, IA 52242, USA; (S.A.)
| | - Darpah N. Pandya
- Department of Radiology, The University of Iowa, Iowa City, IA 52242, USA; (S.A.)
| | - Thaddeus J. Wadas
- Department of Radiology, The University of Iowa, Iowa City, IA 52242, USA; (S.A.)
| | - Michael S. Petronek
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, The University of Iowa, Iowa City, IA 52242, USA; (S.B.O.); (A.Z.)
| |
Collapse
|
2
|
Al-Gizawiy MM, Wujek RT, Alhajala HS, Cobb JM, Prah MA, Doan NB, Connelly JM, Chitambar CR, Schmainda KM. Potent in vivo efficacy of oral gallium maltolate in treatment-resistant glioblastoma. Front Oncol 2024; 13:1278157. [PMID: 38288102 PMCID: PMC10822938 DOI: 10.3389/fonc.2023.1278157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Background Treatment-resistant glioblastoma (trGBM) is an aggressive brain tumor with a dismal prognosis, underscoring the need for better treatment options. Emerging data indicate that trGBM iron metabolism is an attractive therapeutic target. The novel iron mimetic, gallium maltolate (GaM), inhibits mitochondrial function via iron-dependent and -independent pathways. Methods In vitro irradiated adult GBM U-87 MG cells were tested for cell viability and allowed to reach confluence prior to stereotactic implantation into the right striatum of male and female athymic rats. Advanced MRI at 9.4T was carried out weekly starting two weeks after implantation. Daily oral GaM (50mg/kg) or vehicle were provided on tumor confirmation. Longitudinal MRI parameters were processed for enhancing tumor ROIs in OsiriX 8.5.1 (lite) with Imaging Biometrics Software (Imaging Biometrics LLC). Statistical analyses included Cox proportional hazards regression models, Kaplan-Meier survival plots, linear mixed model comparisons, and t-statistic for slopes comparison as indicator of tumor growth rate. Results In this study we demonstrate non-invasively, using longitudinal MRI surveillance, the potent antineoplastic effects of GaM in a novel rat xenograft model of trGBM, as evidenced by extended suppression of tumor growth (23.56 mm3/week untreated, 5.76 mm3/week treated, P < 0.001), a blunting of tumor perfusion, and a significant survival benefit (median overall survival: 30 days untreated, 56 days treated; P < 0.001). The therapeutic effect was confirmed histologically by the presence of abundant cytotoxic cellular swelling, a significant reduction in proliferation markers (P < 0.01), and vessel normalization characterized by prominent vessel pruning, loss of branching, and uniformity of vessel lumina. Xenograft tumors in the treatment group were further characterized by an absence of an invasive edge and a significant reduction in both, MIB-1% and mitotic index (P < 0.01 each). Transferrin receptor and ferroportin expression in GaM-treated tumors illustrated cellular iron deprivation. Additionally, treatment with GaM decreased the expression of pro-angiogenic markers (von Willebrand Factor and VEGF) and increased the expression of anti-angiogenic markers, such as Angiopoietin-2. Conclusion Monotherapy with the iron-mimetic GaM profoundly inhibits trGBM growth and significantly extends disease-specific survival in vivo.
Collapse
Affiliation(s)
- Mona M. Al-Gizawiy
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert T. Wujek
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Hisham S. Alhajala
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jonathan M. Cobb
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melissa A. Prah
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ninh B. Doan
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M. Connelly
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher R. Chitambar
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathleen M. Schmainda
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
3
|
Yu K, Liu S, Lin Z, Song J, Zeng Q, Zhou J, Zhang J, Zhang S, Lin J, Xiang Z, Hu Z. Effect of trace element mixtures on the outcome of patients with esophageal squamous cell carcinoma: a prospective cohort study in Fujian, China. BMC Cancer 2024; 24:24. [PMID: 38166697 PMCID: PMC10762846 DOI: 10.1186/s12885-023-11763-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The evidence about the effects of trace elements on overall survival(OS) of patients with esophageal squamous cell carcinoma(ESCC) is limited. This study aims to evaluate mixed effects of plasma trace elements on OS of ESCC. METHODS This prospective cohort analysis included 497 ESCC patients with a median follow-up of 52.3 months. The concentrations of 17 trace elements were measured. We fitted Cox's proportional hazards regression, factor analysis and Bayesian kernel machine regression (BKMR) models to estimate the association between trace elements and OS. RESULTS Our analysis found that in the single-element model, Co, Ni, and Cd were associated with an increased risk of death, while Ga, Rb, and Ba were associated with a decreased risk. Cd had the strongest risk effect among all elements. As many elements were found to be mutually correlated, we conducted a factor analysis to identify common factors and investigate their associations with survival time. The factor analysis indicated that the factor with high factor loadings in Ga, Ba and B was linked to a decreased risk of death, while the factor with high factor loadings in Co, Ti, Cd and Pb was associated with a borderline significantly increased risk. Using BKMR analysis to disentangle the interaction between elements in significant factors, we discovered that Ga interacted with Ba and both elements had U-shaped effects with OS. Cd, on the other hand, had no interaction with other elements and independently increased the risk of death. CONCLUSIONS Our analysis revealed that Ga, Ba and Cd were associated with ESCC outcome, with Ga and Ba demonstrating an interaction. These findings provide new insights into the impact of trace elements on the survival of patients with ESCC.
Collapse
Affiliation(s)
- Kaili Yu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Shuang Liu
- Sun Yat-Sen University Cancer Center/Cancer Hospital, Guangzhou, 510060, China
| | - Zheng Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Jianyu Song
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Qiaoyan Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Jinsong Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Juwei Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Suhong Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Jianbo Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | | | - Zhijian Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, FuZhou, 350122, Fujian, China.
| |
Collapse
|
4
|
Padinharayil H, Rai V, George A. Mitochondrial Metabolism in Pancreatic Ductal Adenocarcinoma: From Mechanism-Based Perspectives to Therapy. Cancers (Basel) 2023; 15:1070. [PMID: 36831413 PMCID: PMC9954550 DOI: 10.3390/cancers15041070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the fourteenth most common malignancy, is a major contributor to cancer-related death with the utmost case fatality rate among all malignancies. Functional mitochondria, regardless of their complex ecosystem relative to normal cells, are essential in PDAC progression. Tumor cells' potential to produce ATP as energy, despite retaining the redox potential optimum, and allocating materials for biosynthetic activities that are crucial for cell growth, survival, and proliferation, are assisted by mitochondria. The polyclonal tumor cells with different metabolic profiles may add to carcinogenesis through inter-metabolic coupling. Cancer cells frequently possess alterations in the mitochondrial genome, although they do not hinder metabolism; alternatively, they change bioenergetics. This can further impart retrograde signaling, educate cell signaling, epigenetic modifications, chromatin structures, and transcription machinery, and ultimately satisfy cancer cellular and nuclear demands. To maximize the tumor microenvironment (TME), tumor cells remodel nearby stromal cells and extracellular matrix. These changes initiate polyclonality, which is crucial for growth, stress response, and metastasis. Here, we evaluate all the intrinsic and extrinsic pathways drawn by mitochondria in carcinogenesis, emphasizing the perspectives of mitochondrial metabolism in PDAC progression and treatment.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766-1854, USA
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| |
Collapse
|
5
|
Host bioenergetic parameters reveal cytotoxicity of anti-tuberculosis drugs undetected using conventional viability assays. Antimicrob Agents Chemother 2021; 65:e0093221. [PMID: 34339269 PMCID: PMC8448146 DOI: 10.1128/aac.00932-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
High attrition rates in tuberculosis (TB) drug development have been largely attributed to safety, which is likely due to the use of endpoint assays measuring cell viability to detect drug cytotoxicity. In drug development for cancer, metabolic, and neurological disorders and for antibiotics, cytotoxicity is increasingly being assessed using extracellular flux (XF) analysis, which measures cellular bioenergetic metabolism in real time. Here, we adopt the XF platform to investigate the cytotoxicity of drugs currently used in TB treatment on the bioenergetic metabolism of HepG2 cells, THP-1 macrophages, and human monocyte-derived macrophages (hMDMs). We found that the XF analysis reveals earlier drug-induced effects on the cells’ bioenergetic metabolism prior to cell death, measured by conventional viability assays. Furthermore, each cell type has a distinct response to drug treatment, suggesting that more than one cell type should be considered to examine cytotoxicity in TB drug development. Interestingly, chemically unrelated drugs with different modes of action on Mycobacterium tuberculosis have similar effects on the bioenergetic parameters of the cells, thus discouraging the prediction of potential cytotoxicity based on chemical structure and mode of action of new chemical entities. The clustering of the drug-induced effects on the hMDM bioenergetic parameters are reflected in the clustering of the effects of the drugs on cytokine production in hMDMs, demonstrating concurrence between the effects of the drugs on the metabolism and functioning of the macrophages. These findings can be used as a benchmark to establish XF analysis as a new tool to assay cytotoxicity in TB drug development.
Collapse
|
6
|
Reyes-Castellanos G, Masoud R, Carrier A. Mitochondrial Metabolism in PDAC: From Better Knowledge to New Targeting Strategies. Biomedicines 2020; 8:biomedicines8080270. [PMID: 32756381 PMCID: PMC7460249 DOI: 10.3390/biomedicines8080270] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet bioenergetics and biosynthetic demands. The first observation of metabolic reprogramming in cancer cells was made a century ago (“Warburg effect” or aerobic glycolysis), leading to the classical view that cancer metabolism relies on a glycolytic phenotype. There is now accumulating evidence that most cancers also rely on mitochondria to satisfy their metabolic needs. Indeed, the current view of cancer metabolism places mitochondria as key actors in all facets of cancer progression. Importantly, mitochondrial metabolism has become a very promising target in cancer therapy, including for refractory cancers such as Pancreatic Ductal AdenoCarcinoma (PDAC). In particular, mitochondrial oxidative phosphorylation (OXPHOS) is an important target in cancer therapy. Other therapeutic strategies include the targeting of glutamine and fatty acids metabolism, as well as the inhibition of the TriCarboxylic Acid (TCA) cycle intermediates. A better knowledge of how pancreatic cancer cells regulate mitochondrial metabolism will allow the identification of metabolic vulnerabilities and thus novel and more efficient therapeutic options for the benefit of each patient.
Collapse
Affiliation(s)
| | | | - Alice Carrier
- Correspondence: ; Tel.: +33-491828829; Fax: +33-491826083
| |
Collapse
|