1
|
Frasson I, Soldà P, Nadai M, Tassinari M, Scalabrin M, Gokhale V, Hurley LH, Richter SN. Quindoline-derivatives display potent G-quadruplex-mediated antiviral activity against herpes simplex virus 1. Antiviral Res 2022; 208:105432. [PMID: 36228762 PMCID: PMC9720158 DOI: 10.1016/j.antiviral.2022.105432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid structures that regulate key biological processes, from transcription to genome replication both in humans and viruses. The herpes simplex virus-1 (HSV-1) genome is prone to form G4s that, along with proteins, regulate its viral cycle. General G4 ligands have been shown to hamper the viral cycle, pointing to viral G4s as original antiviral targets. Because cellular G4s are also normally present in infected cells, the quest for improved anti-HSV-1 G4 ligands is still open. Here, we evaluated a series of new quindoline-derivatives which showed high binding to and stabilization of the viral G4s. They displayed nanomolar-range anti-HSV-1 activity paralleled by negligible cytotoxicity in human cells, thus proving remarkable selectivity. The best-in-class compound inhibited the viral life cycle at the early times post infection up to the step of viral genome replication. In infected human cells, it reduced expression of ICP4, the main viral transcription factor, by stabilizing the G4s embedded in ICP4 promoter. Quindoline-derivatives thus emerge as a new class of G4 ligands with potent dual anti HSV-1 activity.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Paola Soldà
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | | | - Matteo Scalabrin
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Vijay Gokhale
- BIO5 Institute, University of Arizona, Tucson, AZ, 85721, United States
| | - Laurence H Hurley
- College of Pharmacy, University of Arizona, Tucson, AZ, 85721, United States
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
2
|
Zhai LY, Su AM, Liu JF, Zhao JJ, Xi XG, Hou XM. Recent advances in applying G-quadruplex for SARS-CoV-2 targeting and diagnosis: A review. Int J Biol Macromol 2022; 221:1476-1490. [PMID: 36130641 PMCID: PMC9482720 DOI: 10.1016/j.ijbiomac.2022.09.152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 12/05/2022]
Abstract
The coronavirus SARS-CoV-2 has caused a health care crisis all over the world since the end of 2019. Although vaccines and neutralizing antibodies have been developed, rapidly emerging variants usually display stronger immune escape ability and can better surpass vaccine protection. Therefore, it is still vital to find proper treatment strategies. To date, antiviral drugs against SARS-CoV-2 have mainly focused on proteases or polymerases. Notably, noncanonical nucleic acid structures called G-quadruplexes (G4s) have been identified in many viruses in recent years, and numerous G4 ligands have been developed. During this pandemic, literature on SARS-CoV-2 G4s is rapidly accumulating. Here, we first summarize the recent progress in the identification of SARS-CoV-2 G4s and their intervention by ligands. We then introduce the potential interacting proteins of SARS-CoV-2 G4s from both the virus and the host that may regulate G4 functions. The innovative strategy to use G4s as a diagnostic tool in SARS-CoV-2 detection is also reviewed. Finally, we discuss some key questions to be addressed in the future.
Collapse
Affiliation(s)
- Li-Yan Zhai
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ai-Min Su
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jing-Fan Liu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jian-Jin Zhao
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Yangling 712100, China; ENS Paris-Saclay, Université Paris-Saclay, CNRS UMR8113, IDA FR3242, Laboratory of Biology and Applied Pharmacology (LBPA), 91190 Gif-sur-Yvette, France
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
3
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. Nucleolin: a binding partner of G-quadruplex structures. Trends Cell Biol 2022; 32:561-564. [PMID: 35410819 DOI: 10.1016/j.tcb.2022.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
Nucleolin protein is involved in a plethora of cellular pathways across the nucleolus, nucleus, and cytoplasm. The association of its RNA-binding domain (RBD) and its RGG (arginine-glycine-glycine-rich) domain allows it to interact with G-quadruplex structures in nucleic acids. We highlight evidence that the nucleolin/G-quadruplex partnership is of extensive relevance to neurodegenerative disease, cancer, and viral infections.
Collapse
Affiliation(s)
- Tiago Santos
- Centro de Investigação em Ciências da Saúde (CICS), Universidade da Beira Interior (UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Gilmar F Salgado
- Université Bordeaux, Acides Nucléiques: Régulations Naturelles et Artificielles (ARNA) Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1212, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche 5320, Institut Européen de Chimie et Biologie (IECB), 33600 Pessac, France
| | - Eurico J Cabrita
- Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Rede de Química e Tecnologia (REQUIMTE), Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory, Institute for Health and Bioeconomy (i4HB), NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Carla Cruz
- Centro de Investigação em Ciências da Saúde (CICS), Universidade da Beira Interior (UBI), Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
4
|
Rigo R, Groaz E, Sissi C. Polymorphic and Higher-Order G-Quadruplexes as Possible Transcription Regulators: Novel Perspectives for Future Anticancer Therapeutic Applications. Pharmaceuticals (Basel) 2022; 15:ph15030373. [PMID: 35337170 PMCID: PMC8950063 DOI: 10.3390/ph15030373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
In the past two decades, significant efforts have been put into designing small molecules to target selected genomic sites where DNA conformational rearrangements control gene expression. G-rich sequences at oncogene promoters are considered good points of intervention since, under specific environmental conditions, they can fold into non-canonical tetrahelical structures known as G-quadruplexes. However, emerging evidence points to a frequent lack of correlation between small molecule targeting of G-quadruplexes at gene promoters and the expression of the associated protein, which hampers pharmaceutical applications. The wide genomic localization of G-quadruplexes along with their highly polymorphic behavior may account for this scenario, suggesting the need for more focused drug design strategies. Here, we will summarize the G4 structural features that can be considered to fulfill this goal. In particular, by comparing a telomeric sequence with the well-characterized G-rich domain of the KIT promoter, we will address how multiple secondary structures might cooperate to control genome architecture at a higher level. If this holds true, the link between drug–DNA complex formation and the associated cellular effects will need to be revisited.
Collapse
Affiliation(s)
- Riccardo Rigo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Marzolo 5, 35131 Padova, Italy; (R.R.); (E.G.)
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Elisabetta Groaz
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Marzolo 5, 35131 Padova, Italy; (R.R.); (E.G.)
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49-Box 1041, 3000 Leuven, Belgium
| | - Claudia Sissi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Marzolo 5, 35131 Padova, Italy; (R.R.); (E.G.)
- Correspondence:
| |
Collapse
|
5
|
Marilovtseva EV, Studitsky VM. Guanine Quadruplexes in Cell Nucleus Metabolism. Mol Biol 2021. [DOI: 10.1134/s0026893321040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Svetlova J, Sardushkin M, Kolganova N, Timofeev E. Recognition Interface of the Thrombin Binding Aptamer Requires Antiparallel Topology of the Quadruplex Core. Biomolecules 2021; 11:biom11091332. [PMID: 34572544 PMCID: PMC8471065 DOI: 10.3390/biom11091332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/19/2022] Open
Abstract
Recent advances in G-quadruplex (GQ) studies have provided evidence for their important role in key biological processes (replication, transcription, genome stability, and epigenetics). These findings imply highly specific interactions between GQ structures and cellular proteins. The details of the interaction between GQs and cellular proteins remain unknown. It is now accepted that GQ loop elements play a major role in protein recognition. It remains unclear whether and to what extent the GQ core contributes to maintaining the recognition interface. In the current paper, we used the thrombin binding aptamer as a model to study the effect of modification in the quadruplex core on the ability of aptamer to interact with thrombin. We used alpha-2′-deoxyguanosine and 8-bromo-2′-deoxyguanosine to reconfigure the core or to affect syn–anti preferences of selected dG-residues. Our data suggest that core guanines not only support a particular type of GQ architecture, but also set structural parameters that make GQ protein recognition sensitive to quadruplex topology.
Collapse
Affiliation(s)
- Julia Svetlova
- Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia;
- Universal Scientific Education and Research Network (USERN), G-Quadruplexes as INnovative ThERApeutiC Targets (G4-INTERACT), University of Pavia, 27100 Pavia, Italy
| | - Makar Sardushkin
- Department of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Natalia Kolganova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Edward Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
- Correspondence:
| |
Collapse
|
7
|
King JJ, Irving KL, Evans CW, Chikhale RV, Becker R, Morris CJ, Peña Martinez CD, Schofield P, Christ D, Hurley LH, Waller ZAE, Iyer KS, Smith NM. DNA G-Quadruplex and i-Motif Structure Formation Is Interdependent in Human Cells. J Am Chem Soc 2020; 142:20600-20604. [PMID: 33253551 DOI: 10.1021/jacs.0c11708] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Guanine- and cytosine-rich nucleic acid sequences have the potential to form secondary structures such as G-quadruplexes and i-motifs, respectively. We show that stabilization of G-quadruplexes using small molecules destabilizes the i-motifs, and vice versa, indicating these gene regulatory controllers are interdependent in human cells. This has important implications as these structures are predominately considered as isolated structural targets for therapy, but their interdependency highlights the interplay of both structures as an important gene regulatory switch.
Collapse
Affiliation(s)
- Jessica J King
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Kelly L Irving
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Cameron W Evans
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Rupesh V Chikhale
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.,UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - Rouven Becker
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Christopher J Morris
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Cristian D Peña Martinez
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney New South Wales 2010, Australia
| | - Peter Schofield
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Daniel Christ
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney New South Wales 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Laurence H Hurley
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, Arizona 85721, United States
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K.,UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, U.K
| | - K Swaminathan Iyer
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Nicole M Smith
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|