1
|
Sekine C, Horiguchi J. Current status and prospects of breast cancer imaging-based diagnosis using artificial intelligence. Int J Clin Oncol 2024; 29:1641-1647. [PMID: 39297908 DOI: 10.1007/s10147-024-02594-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/16/2024] [Indexed: 09/21/2024]
Abstract
Breast imaging has several modalities, each unique in terms of its imaging position, evaluation index, and imaging method. Breast diagnosis is made by combining a large number of past imaging features with the clinical course and histological findings. Artificial intelligence (AI), which extracts the features from image data and evaluates them based on comprehensive analysis, has been making rapid progress in this regard. Many previous studies have demonstrated the usefulness and development potential of AI, such as machine learning and deep learning, in breast imaging. However, despite studies showing the good performance of AI models, their overall utilization remains low, since a large amount of diverse imaging data is required, and prospective verification is necessary to prove its high reproducibility and robustness. Sharing information and collaborating with multiple institutions to collect and verify images of different conditions and backgrounds are vital. If image diagnosis using AI can indeed ensure a more detailed diagnosis, such as breast cancer subtypes or prognosis, it can help develop personalized medicine, which is urgently required. The positive results of AI research, using such image information, can make each modality more valuable than ever. The current review summarized the results of previous studies using AI in each evaluation field and discussed the related future prospects.
Collapse
Affiliation(s)
- Chikako Sekine
- Department of Breast Surgery, International University of Health and Welfare, Narita Hospital, 852 Hatakeda Narita, Chiba, 286-0124, Japan.
| | - Jun Horiguchi
- Department of Breast Surgery, International University of Health and Welfare, Narita Hospital, 852 Hatakeda Narita, Chiba, 286-0124, Japan
| |
Collapse
|
2
|
Azeroual S, Ben-Bouazza FE, Naqi A, Sebihi R. Predicting disease recurrence in breast cancer patients using machine learning models with clinical and radiomic characteristics: a retrospective study. J Egypt Natl Canc Inst 2024; 36:20. [PMID: 38853190 DOI: 10.1186/s43046-024-00222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/06/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND The goal is to use three different machine learning models to predict the recurrence of breast cancer across a very heterogeneous sample of patients with varying disease kinds and stages. METHODS A heterogeneous group of patients with varying cancer kinds and stages, including both triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (non-TNBC), was examined. Three distinct models were created using the following five machine learning techniques: Adaptive Boosting (AdaBoost), Random Under-sampling Boosting (RUSBoost), Extreme Gradient Boosting (XGBoost), support vector machines (SVM), and Logistic Regression. The clinical model used both clinical and pathology data in conjunction with the machine learning algorithms. The machine learning algorithms were combined with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) imaging characteristics in the radiomic model, and the merged model combined the two types of data. Each technique was evaluated using several criteria, including the receiver operating characteristic (ROC) curve, precision, recall, and F1 score. RESULTS The results suggest that the integration of clinical and radiomic data improves the predictive accuracy in identifying instances of breast cancer recurrence. The XGBoost algorithm is widely recognized as the most effective algorithm in terms of performance. CONCLUSION The findings presented in this study offer significant contributions to the field of breast cancer research, particularly in relation to the prediction of cancer recurrence. These insights hold great potential for informing future investigations and clinical interventions that seek to enhance the accuracy and effectiveness of recurrence prediction in breast cancer patients.
Collapse
Affiliation(s)
- Saadia Azeroual
- LPHE-Modeling and Simulations, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco.
| | - Fatima-Ezzahraa Ben-Bouazza
- Faculty of Sciences and Technology, Hassan First University, Settat, Morocco
- LaMSN (La Maison Des Sciences Num´Eriques), Saint-Denis, France
| | - Amine Naqi
- Mohammed VI University of Sciences and Health, Casablanca, Morocco
| | - Rajaa Sebihi
- LPHE-Modeling and Simulations, Faculty of Science, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
3
|
Abu Abeelh E, AbuAbeileh Z. Comparative Effectiveness of Mammography, Ultrasound, and MRI in the Detection of Breast Carcinoma in Dense Breast Tissue: A Systematic Review. Cureus 2024; 16:e59054. [PMID: 38800325 PMCID: PMC11128098 DOI: 10.7759/cureus.59054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
This systematic review aimed to critically assess the effectiveness of mammography, ultrasound, and magnetic resonance imaging (MRI) in the detection of breast carcinoma within dense breast tissue. An exhaustive search of contemporary literature was undertaken, focusing on the diagnostic accuracy, false positive and negative rates, and clinical implications of the aforementioned imaging modalities. Each modality was assessed in isolation and side by side against the others to draw comparative inferences. While mammography remains a foundational imaging modality, its effectiveness waned within the context of dense breast tissue. Ultrasound demonstrated a strong differentiation prowess, especially among specific demographic cohorts. MRI, despite its exceptional precision and differentiation capabilities, exhibited a tendency for slightly elevated false positive rates. No single modality emerged as singularly superior for all cases. Instead, an integrated approach, combining the strengths of each modality based on individual patient profiles and clinical scenarios, is recommended. This tailored approach ensures optimized detection rates and minimizes diagnostic ambiguities, underscoring the significance of individualized patient care in the field of diagnostic radiology.
Collapse
|
4
|
Moslemi A, Ahmadian A. Dual regularized subspace learning using adaptive graph learning and rank constraint: Unsupervised feature selection on gene expression microarray datasets. Comput Biol Med 2023; 167:107659. [PMID: 37950946 DOI: 10.1016/j.compbiomed.2023.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/13/2023]
Abstract
High-dimensional problems have increasingly drawn attention in gene selection and analysis. To add insult to injury, usually the number of features is greater than number of samples in microarray gene dataset which leads to an ill-posed underdetermined equation system. Poor performance and high computational time for learning algorithms are consequences of redundant features in high-dimensional data. Feature selection is a noteworthy pre-processing method to ameliorate the curse of dimensionality with aim of maximum relevancy and minimum redundancy information preservation. Likewise, unsupervised feature selection has been important since collecting labels for data is expensive. In this paper, we develop a novel robust unsupervised feature selection to select discriminative subset of features for unlabeled data based on rank constrained and dual regularized nonnegative matrix factorization. The major focus of the proposed technique is to discard redundant features while keeping the informative features. Proposed feature selection technique consists of nonnegative matrix factorization to decompose the data into feature weight matrix and representation matrix, inner product norm as regularization for both feature weight matrix and representation matrix, adaptive structure learning to preserve local information and Schatten-p norm as rank constraint. To demonstrate the effectiveness of the proposed method, numerical studies are conducted on six benchmark microarray datasets. The results show that the proposed technique outperforms eight state-of-art unsupervised feature selection techniques in terms of clustering accuracy and normalized mutual information.
Collapse
Affiliation(s)
- Amir Moslemi
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Arash Ahmadian
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Lee J, Yoo SK, Kim K, Lee BM, Park VY, Kim JS, Kim YB. Machine learning‑based radiomics models for prediction of locoregional recurrence in patients with breast cancer. Oncol Lett 2023; 26:422. [PMID: 37664669 PMCID: PMC10472028 DOI: 10.3892/ol.2023.14008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023] Open
Abstract
Locoregional recurrence (LRR) is the predominant pattern of relapse after definitive breast cancer treatment. The present study aimed to develop machine learning (ML)-based radiomics models to predict LRR in patients with breast cancer by using preoperative magnetic resonance imaging (MRI) data. Data from patients with localized breast cancer that underwent preoperative MRI between January 2013 and December 2017 were collected. Propensity score matching (PSM) was performed to adjust for clinical factors between patients with and without LRR. Radiomics features were obtained from T2-weighted with and without fat-suppressed MRI and contrast-enhanced T1-weighted with fat-suppressed MRI. In the present study five ML models were designed, three base models (support vector machine, random forest, and logistic regression) and two ensemble models (voting model and stacking model) composed of the three base models, and the performance of each base model was compared with the stacking model. After PSM, 28 patients with LRR and 86 patients without LRR were included. Of these 114 patients, 80 patients were randomly selected to train the models, and the remaining 34 patients were used to evaluate the performance of the trained models. In total, 5,064 features were obtained from each patient, and 47-51 features were selected by applying variance threshold and least absolute shrinkage and selection operator. The stacking model demonstrated superior performance in area under the receiver operating characteristic curve (AUC), with an AUC of 0.78 compared to a range of 0.61 to 0.70 for the other models. An external validation study to investigate the efficacy of the stacking model of the present study was initiated and is still ongoing (Korean Radiation Oncology Group 2206).
Collapse
Affiliation(s)
- Joongyo Lee
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
- Department of Radiation Oncology, Gangnam Severance Hospital, Yonsei University College of Medicine, Yonsei University Health System, Seoul 06273, Republic of Korea
| | - Sang Kyun Yoo
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Kangpyo Kim
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Yonsei University Health System, Seoul 06351, Republic of Korea
| | - Byung Min Lee
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
- Department of Radiation Oncology, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Yonsei University Health System, Uijeongbu, Gyeonggi 11765, Republic of Korea
| | - Vivian Youngjean Park
- Department of Radiology, Research Institute of Radiological Science and Center for Clinical Imaging Data Science, Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Heavy Ion Therapy Research Institute, Yonsei Cancer Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| |
Collapse
|
6
|
Hashiba J, Yokota H, Abe K, Sekiguchi Y, Ikeda S, Sugiyama A, Kuwabara S, Uno T. Ultrasound-based radiomic analysis of the peripheral nerves for differentiation between CIDP and POEMS syndrome. Acta Radiol 2023; 64:2627-2635. [PMID: 37376758 DOI: 10.1177/02841851231181680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BACKGROUND Demyelinating peripheral neuropathy is characteristic of both polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes (POEMS) syndrome and chronic inflammatory demyelinating polyneuropathy (CIDP). We hypothesized that the different pathogeneses underlying these entities would affect the sonographic imaging features. PURPOSE To investigate whether ultrasound (US)-based radiomic analysis could extract features to describe the differences between CIDP and POEMS syndrome. MATERIAL AND METHODS In this retrospective study, we evaluated nerve US images from 26 with typical CIDP and 34 patients with POEMS syndrome. Cross-sectional area (CSA) and echogenicity of the median and ulnar nerves were evaluated in each US image of the wrist, forearm, elbow, and mid-arm. Radiomic analysis was performed on these US images. All radiomic features were examined using receiver operating characteristic analysis. Optimal features were selected using a three-step feature selection method and were inputted into XGBoost to build predictive machine-learning models. RESULTS The CSAs were more enlarged in patients with CIDP than in those with POEMS syndrome without significant differences, except for that of the ulnar nerve at the wrist. Nerve echogenicity was significantly more heterogeneous in patients with CIDP than in those with POEMS syndrome. The radiomic analysis yielded four features with the highest area under the curve (AUC) value of 0.83. The machine-learning model showed an AUC of 0.90. CONCLUSION US-based radiomic analysis has high AUC values in differentiating POEM syndrome from CIDP. Machine-learning algorithms further improved the discriminative ability.
Collapse
Affiliation(s)
- Jun Hashiba
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kota Abe
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yukari Sekiguchi
- Department of Neurology, JR Tokyo General Hospital, Tokyo, Japan
| | - Shinobu Ikeda
- Devision of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Uno
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
7
|
Zhang YP, Zhang XY, Cheng YT, Li B, Teng XZ, Zhang J, Lam S, Zhou T, Ma ZR, Sheng JB, Tam VCW, Lee SWY, Ge H, Cai J. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res 2023; 10:22. [PMID: 37189155 DOI: 10.1186/s40779-023-00458-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients' anatomy. However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. Moreover, some potentially useful quantitative information in medical images, especially that which is not visible to the naked eye, is often ignored during clinical practice. In contrast, radiomics performs high-throughput feature extraction from medical images, which enables quantitative analysis of medical images and prediction of various clinical endpoints. Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis, demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine. However, radiomics remains in a developmental phase as numerous technical challenges have yet to be solved, especially in feature engineering and statistical modeling. In this review, we introduce the current utility of radiomics by summarizing research on its application in the diagnosis, prognosis, and prediction of treatment responses in patients with cancer. We focus on machine learning approaches, for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling. Furthermore, we introduce the stability, reproducibility, and interpretability of features, and the generalizability and interpretability of models. Finally, we offer possible solutions to current challenges in radiomics research.
Collapse
Affiliation(s)
- Yuan-Peng Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China
| | - Xin-Yun Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu-Ting Cheng
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Li
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Xin-Zhi Teng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Saikit Lam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Ta Zhou
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zong-Rui Ma
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jia-Bao Sheng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Victor C W Tam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shara W Y Lee
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hong Ge
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Jing Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
8
|
Pesapane F, De Marco P, Rapino A, Lombardo E, Nicosia L, Tantrige P, Rotili A, Bozzini AC, Penco S, Dominelli V, Trentin C, Ferrari F, Farina M, Meneghetti L, Latronico A, Abbate F, Origgi D, Carrafiello G, Cassano E. How Radiomics Can Improve Breast Cancer Diagnosis and Treatment. J Clin Med 2023; 12:jcm12041372. [PMID: 36835908 PMCID: PMC9963325 DOI: 10.3390/jcm12041372] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Recent technological advances in the field of artificial intelligence hold promise in addressing medical challenges in breast cancer care, such as early diagnosis, cancer subtype determination and molecular profiling, prediction of lymph node metastases, and prognostication of treatment response and probability of recurrence. Radiomics is a quantitative approach to medical imaging, which aims to enhance the existing data available to clinicians by means of advanced mathematical analysis using artificial intelligence. Various published studies from different fields in imaging have highlighted the potential of radiomics to enhance clinical decision making. In this review, we describe the evolution of AI in breast imaging and its frontiers, focusing on handcrafted and deep learning radiomics. We present a typical workflow of a radiomics analysis and a practical "how-to" guide. Finally, we summarize the methodology and implementation of radiomics in breast cancer, based on the most recent scientific literature to help researchers and clinicians gain fundamental knowledge of this emerging technology. Alongside this, we discuss the current limitations of radiomics and challenges of integration into clinical practice with conceptual consistency, data curation, technical reproducibility, adequate accuracy, and clinical translation. The incorporation of radiomics with clinical, histopathological, and genomic information will enable physicians to move forward to a higher level of personalized management of patients with breast cancer.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
- Correspondence: ; Tel.: +39-02-574891
| | - Paolo De Marco
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Rapino
- Postgraduation School in Radiodiagnostics, University of Milan, 20122 Milan, Italy
| | - Eleonora Lombardo
- UOC of Diagnostic Imaging, Policlinico Tor Vergata University, 00133 Rome, Italy
| | - Luca Nicosia
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Priyan Tantrige
- Department of Radiology, King’s College Hospital NHS Foundation Trust, London SE5 9RS, UK
| | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Anna Carla Bozzini
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Valeria Dominelli
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Chiara Trentin
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Federica Ferrari
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Mariagiorgia Farina
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Lorenza Meneghetti
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Antuono Latronico
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesca Abbate
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Daniela Origgi
- Medical Physics Unit, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Radiology, IRCCS Foundation Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Health Sciences, University of Milan, 20122 Milan, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
9
|
Sharma D, Carter H, Sannachi L, Cui W, Giles A, Saifuddin M, Czarnota GJ. Quantitative Ultrasound for Evaluation of Tumour Response to Ultrasound-Microbubbles and Hyperthermia. Technol Cancer Res Treat 2023; 22:15330338231200993. [PMID: 37750232 PMCID: PMC10521270 DOI: 10.1177/15330338231200993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
Objectives: Prior study has demonstrated the implementation of quantitative ultrasound (QUS) for determining the therapy response in breast tumour patients. Several QUS parameters quantified from the tumour region showed a significant correlation with the patient's clinical and pathological response. In this study, we aim to identify if there exists such a link between QUS parameters and changes in tumour morphology due to combined ultrasound-stimulated microbubbles (USMB) and hyperthermia (HT) using the breast xenograft model (MDA-MB-231). Method: Tumours grown in the hind leg of severe combined immuno-deficient mice were treated with permutations of USMB and HT. Ultrasound radiofrequency data were collected using a 25 MHz array transducer, from breast tumour-bearing mice prior and post-24-hour treatment. Result: Our result demonstrated an increase in the QUS parameters the mid-band fit and spectral 0-MHz intercept with an increase in HT duration combined with USMB which was found to be reflective of tissue structural changes and cell death detected using haematoxylin and eosin and terminal deoxynucleotidyl transferase dUTP nick end labelling stain. A significant decrease in QUS spectral parameters was observed at an HT duration of 60 minutes, which is possibly due to loss of nuclei by the majority of cells as confirmed using histology analysis. Morphological alterations within the tumour might have contributed to the decrease in backscatter parameters. Conclusion: The work here uses the QUS technique to assess the efficacy of cancer therapy and demonstrates that the changes in ultrasound backscatters mirrored changes in tissue morphology.
Collapse
Affiliation(s)
- Deepa Sharma
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Departments of Medical Biophysics and Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Holliday Carter
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Lakshmanan Sannachi
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Departments of Medical Biophysics and Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wentao Cui
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Anoja Giles
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Murtuza Saifuddin
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Gregory J. Czarnota
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Departments of Medical Biophysics and Radiation Oncology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Implementation of Non-Invasive Quantitative Ultrasound in Clinical Cancer Imaging. Cancers (Basel) 2022; 14:cancers14246217. [PMID: 36551702 PMCID: PMC9776858 DOI: 10.3390/cancers14246217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Quantitative ultrasound (QUS) is a non-invasive novel technique that allows treatment response monitoring. Studies have shown that QUS backscatter variables strongly correlate with changes observed microscopically. Increases in cell death result in significant alterations in ultrasound backscatter parameters. In particular, the parameters related to scatterer size and scatterer concentration tend to increase in relation to cell death. The use of QUS in monitoring tumor response has been discussed in several preclinical and clinical studies. Most of the preclinical studies have utilized QUS for evaluating cell death response by differentiating between viable cells and dead cells. In addition, clinical studies have incorporated QUS mostly for tissue characterization, including classifying benign versus malignant breast lesions, as well as responder versus non-responder patients. In this review, we highlight some of the important findings of previous preclinical and clinical studies and expand the applicability and therapeutic benefits of QUS in clinical settings. We summarized some recent clinical research advances in ultrasound-based radiomics analysis for monitoring and predicting treatment response and characterizing benign and malignant breast lesions. We also discuss current challenges, limitations, and future prospects of QUS-radiomics.
Collapse
|
11
|
Bhardwaj D, Dasgupta A, DiCenzo D, Brade S, Fatima K, Quiaoit K, Trudeau M, Gandhi S, Eisen A, Wright F, Look-Hong N, Curpen B, Sannachi L, Czarnota GJ. Early Changes in Quantitative Ultrasound Imaging Parameters during Neoadjuvant Chemotherapy to Predict Recurrence in Patients with Locally Advanced Breast Cancer. Cancers (Basel) 2022; 14:cancers14051247. [PMID: 35267555 PMCID: PMC8909335 DOI: 10.3390/cancers14051247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND This study was conducted to explore the use of quantitative ultrasound (QUS) in predicting recurrence for patients with locally advanced breast cancer (LABC) early during neoadjuvant chemotherapy (NAC). METHODS Eighty-three patients with LABC were scanned with 7 MHz ultrasound before starting NAC (week 0) and during treatment (week 4). Spectral parametric maps were generated corresponding to tumor volume. Twenty-four textural features (QUS-Tex1) were determined from parametric maps acquired using grey-level co-occurrence matrices (GLCM) for each patient, which were further processed to generate 64 texture derivatives (QUS-Tex1-Tex2), leading to a total of 95 features from each time point. Analysis was carried out on week 4 data and compared to baseline (week 0) data. ∆Week 4 data was obtained from the difference in QUS parameters, texture features (QUS-Tex1), and texture derivatives (QUS-Tex1-Tex2) of week 4 data and week 0 data. Patients were divided into two groups: recurrence and non-recurrence. Machine learning algorithms using k-nearest neighbor (k-NN) and support vector machines (SVMs) were used to generate radiomic models. Internal validation was undertaken using leave-one patient out cross-validation method. RESULTS With a median follow up of 69 months (range 7-118 months), 28 patients had disease recurrence. The k-NN classifier was the best performing algorithm at week 4 with sensitivity, specificity, accuracy, and area under curve (AUC) of 87%, 75%, 81%, and 0.83, respectively. The inclusion of texture derivatives (QUS-Tex1-Tex2) in week 4 QUS data analysis led to the improvement of the classifier performances. The AUC increased from 0.70 (0.59 to 0.79, 95% confidence interval) without texture derivatives to 0.83 (0.73 to 0.92) with texture derivatives. The most relevant features separating the two groups were higher-order texture derivatives obtained from scatterer diameter and acoustic concentration-related parametric images. CONCLUSIONS This is the first study highlighting the utility of QUS radiomics in the prediction of recurrence during the treatment of LABC. It reflects that the ongoing treatment-related changes can predict clinical outcomes with higher accuracy as compared to pretreatment features alone.
Collapse
Affiliation(s)
- Divya Bhardwaj
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Archya Dasgupta
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Daniel DiCenzo
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Stephen Brade
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Kashuf Fatima
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Karina Quiaoit
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Maureen Trudeau
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (M.T.); (S.G.); (A.E.)
- Department of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sonal Gandhi
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (M.T.); (S.G.); (A.E.)
- Department of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Andrea Eisen
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (M.T.); (S.G.); (A.E.)
- Department of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Frances Wright
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (F.W.); (N.L.-H.)
- Department of Surgery, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Nicole Look-Hong
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (F.W.); (N.L.-H.)
- Department of Surgery, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Belinda Curpen
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Medical Imaging, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Lakshmanan Sannachi
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5, Canada
- Correspondence: ; Tel.: +416-480-6128
| |
Collapse
|