1
|
Perez JM, Duda JM, Ryu J, Shetty M, Mehta S, Jagtap PD, Nelson AC, Winterhoff B, Griffin TJ, Starr TK, Thomas SN. Investigating proteogenomic divergence in patient-derived xenograft models of ovarian cancer. Sci Rep 2025; 15:813. [PMID: 39755759 DOI: 10.1038/s41598-024-84874-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025] Open
Abstract
Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer. We demonstrate that the utilization of patient-specific databases guided by transcriptional profiles increases the depth of human protein identification in PDX models. Our data show that human proteomes of serially passaged PDXs differ significantly from their patient-derived tumor of origin. Analysis of differentially abundant proteins revealed enrichment of distinct biological pathways with major downregulated processes including extracellular matrix organization and the immune system. Finally, we investigated the relative abundances of ovarian cancer-related proteins identified from the Cancer Gene Census across serially passaged PDXs, and found their protein levels to be unstable across PDX models. Our findings highlight features of distinct and dynamic proteomes of serially-passaged PDX models of ovarian cancer.
Collapse
Affiliation(s)
- Jesenia M Perez
- Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Jolene M Duda
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Joohyun Ryu
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA
| | - Mihir Shetty
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Subina Mehta
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Pratik D Jagtap
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA
| | - Boris Winterhoff
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Timothy J Griffin
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota School of Medicine, Minneapolis, MN, 55455, USA
| | - Timothy K Starr
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefani N Thomas
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Lliberos C, Richardson G, Papa A. Oncogenic Pathways and Targeted Therapies in Ovarian Cancer. Biomolecules 2024; 14:585. [PMID: 38785992 PMCID: PMC11118117 DOI: 10.3390/biom14050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most aggressive forms of gynaecological malignancies. Survival rates for women diagnosed with OC remain poor as most patients are diagnosed with advanced disease. Debulking surgery and platinum-based therapies are the current mainstay for OC treatment. However, and despite achieving initial remission, a significant portion of patients will relapse because of innate and acquired resistance, at which point the disease is considered incurable. In view of this, novel detection strategies and therapeutic approaches are needed to improve outcomes and survival of OC patients. In this review, we summarize our current knowledge of the genetic landscape and molecular pathways underpinning OC and its many subtypes. By examining therapeutic strategies explored in preclinical and clinical settings, we highlight the importance of decoding how single and convergent genetic alterations co-exist and drive OC progression and resistance to current treatments. We also propose that core signalling pathways such as the PI3K and MAPK pathways play critical roles in the origin of diverse OC subtypes and can become new targets in combination with known DNA damage repair pathways for the development of tailored and more effective anti-cancer treatments.
Collapse
Affiliation(s)
- Carolina Lliberos
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
- Neil Beauglehall Department of Medical Oncology Research, Cabrini Health, Malvern, VIC 3144, Australia
| | - Gary Richardson
- Neil Beauglehall Department of Medical Oncology Research, Cabrini Health, Malvern, VIC 3144, Australia
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
3
|
Fieuws C, Bek JW, Parton B, De Neef E, De Wever O, Hoorne M, Estrada MF, Van Dorpe J, Denys H, Van de Vijver K, Claes KBM. Zebrafish Avatars: Toward Functional Precision Medicine in Low-Grade Serous Ovarian Cancer. Cancers (Basel) 2024; 16:1812. [PMID: 38791891 PMCID: PMC11120355 DOI: 10.3390/cancers16101812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Ovarian cancer (OC) is an umbrella term for cancerous malignancies affecting the ovaries, yet treatment options for all subtypes are predominantly derived from high-grade serous ovarian cancer, the largest subgroup. The concept of "functional precision medicine" involves gaining personalized insights on therapy choice, based on direct exposure of patient tissues to drugs. This especially holds promise for rare subtypes like low-grade serous ovarian cancer (LGSOC). This study aims to establish an in vivo model for LGSOC using zebrafish embryos, comparing treatment responses previously observed in mouse PDX models, cell lines and 3D tumor models. To address this goal, a well-characterized patient-derived LGSOC cell line with the KRAS mutation c.35 G>T (p.(Gly12Val)) was used. Fluorescently labeled tumor cells were injected into the perivitelline space of 2 days' post-fertilization zebrafish embryos. At 1 day post-injection, xenografts were assessed for tumor size, followed by random allocation into treatment groups with trametinib, luminespib and trametinib + luminespib. Subsequently, xenografts were euthanized and analyzed for apoptosis and proliferation by confocal microscopy. Tumor cells formed compact tumor masses (n = 84) in vivo, with clear Ki67 staining, indicating proliferation. Zebrafish xenografts exhibited sensitivity to trametinib and luminespib, individually or combined, within a two-week period, establishing them as a rapid and complementary tool to existing in vitro and in vivo models for evaluating targeted therapies in LGSOC.
Collapse
Affiliation(s)
- Charlotte Fieuws
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| | - Jan Willem Bek
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| | - Bram Parton
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| | - Elyne De Neef
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| | - Olivier De Wever
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, 9000 Ghent, Belgium
| | - Milena Hoorne
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marta F. Estrada
- Champalimaud Centre of the Unknown, Champalimaud Foundation, 1400-038 Lisbon, Portugal;
| | - Jo Van Dorpe
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Hannelore Denys
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Koen Van de Vijver
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
- Department of Pathology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kathleen B. M. Claes
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium; (C.F.); (J.W.B.); (B.P.)
- Center for Medical Genetics Ghent, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium; (O.D.W.); (M.H.); (J.V.D.); (H.D.); (K.V.d.V.)
| |
Collapse
|
4
|
Nishie R, Tanaka T, Hirosuna K, Miyamoto S, Murakami H, Tsuchihashi H, Toji A, Ueda S, Morita N, Hashida S, Daimon A, Terada S, Maruoka H, Konishi H, Kogata Y, Taniguchi K, Komura K, Ohmichi M. Creation and Validation of Patient-Derived Cancer Model Using Peritoneal and Pleural Effusion in Patients with Advanced Ovarian Cancer: An Early Experience. J Clin Med 2024; 13:2718. [PMID: 38731247 PMCID: PMC11084603 DOI: 10.3390/jcm13092718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Background: The application of personalized cancer treatment based on genetic information and surgical samples has begun in the field of cancer medicine. However, a biopsy may be painful for patients with advanced diseases that do not qualify for surgical resection. Patient-derived xenografts (PDXs) are cancer models in which patient samples are transplanted into immunodeficient mice. PDXs are expected to be useful for personalized medicine. The aim of this study was to establish a PDX from body fluid (PDX-BF), such as peritoneal and pleural effusion samples, to provide personalized medicine without surgery. Methods: PDXs-BF were created from patients with ovarian cancer who had positive cytology findings based on peritoneal and pleural effusion samples. PDXs were also prepared from each primary tumor. The pathological findings based on immunohistochemistry were compared between the primary tumor, PDX, and PDX-BF. Further, genomic profiles and gene expression were evaluated using DNA and RNA sequencing to compare primary tumors, PDXs, and PDX-BF. Results: Among the 15 patients, PDX-BF was established for 8 patients (5 high-grade serous carcinoma, 1 carcinosarcoma, 1 low-grade serous carcinoma, and 1 clear cell carcinoma); the success rate was 53%. Histologically, PDXs-BF have features similar to those of primary tumors and PDXs. In particular, PDXs-BF had similar gene mutations and expression patterns to primary tumors and PDXs. Conclusions: PDX-BF reproduced primary tumors in terms of pathological features and genomic profiles, including gene mutation and expression. Thus, PDX-BF may be a potential alternative to surgical resection for patients with advanced disease.
Collapse
Affiliation(s)
- Ruri Nishie
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Tomohito Tanaka
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (K.T.); (K.K.)
| | - Kensuke Hirosuna
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kitaku, Okayama 700-8558, Okayama, Japan;
| | - Shunsuke Miyamoto
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (K.T.); (K.K.)
| | - Hikaru Murakami
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Hiromitsu Tsuchihashi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Akihiko Toji
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Shoko Ueda
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Natsuko Morita
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Sousuke Hashida
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Atsushi Daimon
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Shinichi Terada
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Hiroshi Maruoka
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Hiromi Konishi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Yuhei Kogata
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| | - Kohei Taniguchi
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (K.T.); (K.K.)
| | - Kazumasa Komura
- Center for Medical Research & Development, Division of Translational Research, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (K.T.); (K.K.)
| | - Masahide Ohmichi
- Department of Obstetrics and Gynecology, Educational Foundation of Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan; (R.N.); (S.M.); (H.M.); (H.T.); (A.T.); (S.U.); (N.M.); (S.H.); (A.D.); (S.T.); (H.M.); (H.K.); (Y.K.); (M.O.)
| |
Collapse
|
5
|
Zhou XY, Li JY, Tan JT, HuangLi YL, Nie XC, Xia P. Clinical significance of the CD98hc-CD147 complex in ovarian cancer: a bioinformatics analysis. J OBSTET GYNAECOL 2023; 43:2188085. [PMID: 36930892 DOI: 10.1080/01443615.2023.2188085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Ovarian cancer is one of the most common malignant tumours affecting the female reproductive organs. CD147 (BSG) and CD98hc (SLC3A2) are oncogenes that form the CD98hc-CD147 complex, which regulates the proliferation, metastasis, metabolism, and cell cycle of cancer cells. The roles of the CD98hc-CD147 complex in ovarian cancer remain unclear. We analysed the expression and prognostic value of CD147 and CD98hc in ovarian cancer using the TCGA and ICGC databases. The effect of CD147 and CD98hc on the tumour immune response was analysed using the TIMER database. CD98hc was more highly expressed in normal tissues than primary tumour tissues, while CD147 was more highly expressed in primary tumour tissues than normal tissues. CD98hc expression was significantly associated with neutrophil and dendritic cell levels. CD147 and CD98hc were correlated with DNA repair, the cell cycle, and DNA replication. The CD98hc-CD147 complex could serve as a target for ovarian cancer treatment.
Collapse
Affiliation(s)
- Xin-Yue Zhou
- School of Stomatology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Jin-Yao Li
- School of Stomatology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Jing-Tong Tan
- School of Stomatology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Yi-Li HuangLi
- School of Stomatology, Jinzhou Medical University, Jinzhou, P.R. China
| | - Xiao-Cui Nie
- Department of Gynaecology, Shenyang Women's and Children's Hospital, Shenyang, P.R. China
| | - Pu Xia
- Biological Anthropology Institute, College of Basic Medical Science, Jinzhou Medical University, Jinzhou, P.R. China
| |
Collapse
|
6
|
Martinez-Ruiz L, López-Rodríguez A, Florido J, Rodríguez-Santana C, Rodríguez Ferrer JM, Acuña-Castroviejo D, Escames G. Patient-derived tumor models in cancer research: Evaluation of the oncostatic effects of melatonin. Biomed Pharmacother 2023; 167:115581. [PMID: 37748411 DOI: 10.1016/j.biopha.2023.115581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023] Open
Abstract
The development of new anticancer therapies tends to be very slow. Although their impact on potential candidates is confirmed in preclinical studies, ∼95 % of these new therapies are not approved when tested in clinical trials. One of the main reasons for this is the lack of accurate preclinical models. In this context, there are different patient-derived models, which have emerged as a powerful oncological tool: patient-derived xenografts (PDXs), patient-derived organoids (PDOs), and patient-derived cells (PDCs). Although all these models are widely applied, PDXs, which are created by engraftment of patient tumor tissues into mice, is considered more reliable. In fundamental research, the PDX model is used to evaluate drug-sensitive markers and, in clinical practice, to select a personalized therapeutic strategy. Melatonin is of particular importance in the development of innovative cancer treatments due to its oncostatic impact and lack of adverse effects. However, the literature regarding the oncostatic effect of melatonin in patient-derived tumor models is scant. This review aims to describe the important role of patient-derived models in the development of anticancer treatments, focusing, in particular, on PDX models, as well as their use in cancer research. This review also summarizes the existing literature on the anti-tumoral effect of melatonin in patient-derived models in order to propose future anti-neoplastic clinical applications.
Collapse
Affiliation(s)
- Laura Martinez-Ruiz
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Alba López-Rodríguez
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Javier Florido
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Cesar Rodríguez-Santana
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - José M Rodríguez Ferrer
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Darío Acuña-Castroviejo
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Germaine Escames
- Institute of Biotechnology, Biomedical Research Center, Health Sciences Technology Park, University of Granada, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Investigación Biosanitaria (Ibs), Granada, San Cecilio University Hospital, Granada, Spain; Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain.
| |
Collapse
|
7
|
Thorel L, Morice PM, Paysant H, Florent R, Babin G, Thomine C, Perréard M, Abeilard E, Giffard F, Brotin E, Denoyelle C, Villenet C, Sebda S, Briand M, Joly F, Dolivet E, Goux D, Blanc-Fournier C, Jeanne C, Villedieu M, Meryet-Figuiere M, Figeac M, Poulain L, Weiswald LB. Comparative analysis of response to treatments and molecular features of tumor-derived organoids versus cell lines and PDX derived from the same ovarian clear cell carcinoma. J Exp Clin Cancer Res 2023; 42:260. [PMID: 37803448 PMCID: PMC10559504 DOI: 10.1186/s13046-023-02809-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND In the era of personalized medicine, the establishment of preclinical models of cancer that faithfully recapitulate original tumors is essential to potentially guide clinical decisions. METHODS We established 7 models [4 cell lines, 2 Patient-Derived Tumor Organoids (PDTO) and 1 Patient-Derived Xenograft (PDX)], all derived from the same Ovarian Clear Cell Carcinoma (OCCC). To determine the relevance of each of these models, comprehensive characterization was performed based on morphological, histological, and transcriptomic analyses as well as on the evaluation of their response to the treatments received by the patient. These results were compared to the clinical data. RESULTS Only the PDX and PDTO models derived from the patient tumor were able to recapitulate the patient tumor heterogeneity. The patient was refractory to carboplatin, doxorubicin and gemcitabine, while tumor cell lines were sensitive to these treatments. In contrast, PDX and PDTO models displayed resistance to the 3 drugs. The transcriptomic analysis was consistent with these results since the models recapitulating faithfully the clinical response grouped together away from the other classical 2D cell culture models. We next investigated the potential of drugs that have not been used in the patient clinical management and we identified the HDAC inhibitor belinostat as a potential effective treatment based on PDTO response. CONCLUSIONS PDX and PDTO appear to be the most relevant models, but only PDTO seem to present all the necessary prerequisites for predictive purposes and could constitute relevant tools for therapeutic decision support in the context of these particularly aggressive cancers refractory to conventional treatments.
Collapse
Affiliation(s)
- Lucie Thorel
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
| | - Pierre-Marie Morice
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
| | - Hippolyte Paysant
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
| | - Romane Florent
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- Université de Caen Normandie, Services Unit PLATON, ORGAPRED Core Facility, Caen, France
- UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France
| | - Guillaume Babin
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Department of Surgery, Caen, France
| | - Cécilia Thomine
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
| | - Marion Perréard
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
| | - Edwige Abeilard
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France
| | - Florence Giffard
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France
| | - Emilie Brotin
- Université de Caen Normandie, Services Unit PLATON, ImpedanCell Core Facility, Caen, France
| | - Christophe Denoyelle
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France
- Université de Caen Normandie, Services Unit PLATON, ImpedanCell Core Facility, Caen, France
| | - Céline Villenet
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Shéhérazade Sebda
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Mélanie Briand
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Biological Resources Center 'OvaRessources', Caen, France
| | - Florence Joly
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Clinical Research Department, Caen, France
| | - Enora Dolivet
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Department of Surgery, Caen, France
| | - Didier Goux
- Université de Caen Normandie, Services Unit EMERODE, « Centre de Microscopie Appliquée À La Biologie » CMAbio3, Caen, France
| | - Cécile Blanc-Fournier
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Biological Resources Center 'OvaRessources', Caen, France
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Department of Biopathology, Caen, France
| | - Corinne Jeanne
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Department of Biopathology, Caen, France
| | - Marie Villedieu
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
| | - Matthieu Meryet-Figuiere
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France
- UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France
| | - Martin Figeac
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Laurent Poulain
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France.
- Université de Caen Normandie, Services Unit PLATON, ORGAPRED Core Facility, Caen, France.
- UNICANCER, Comprehensive Cancer Center Francois Baclesse, Biological Resources Center 'OvaRessources', Caen, France.
| | - Louis-Bastien Weiswald
- Université de Caen Normandie, INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), 3 Avenue du Général Harris, BP 45026, 14 076, Caen, Cedex 05, France.
- Université de Caen Normandie, Services Unit PLATON, ORGAPRED Core Facility, Caen, France.
- UNICANCER, Comprehensive Cancer Center François Baclesse, Caen, France.
| |
Collapse
|
8
|
Keles H, Schofield CA, Rannikmae H, Edwards EE, Mohamet L. A Scalable 3D High-Content Imaging Protocol for Measuring a Drug Induced DNA Damage Response Using Immunofluorescent Subnuclear γH2AX Spots in Patient Derived Ovarian Cancer Organoids. ACS Pharmacol Transl Sci 2022; 6:12-21. [PMID: 36654745 PMCID: PMC9841773 DOI: 10.1021/acsptsci.2c00200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 12/14/2022]
Abstract
The high morbidity rate of ovarian cancer has remained unchanged during the past four decades, partly due to a lack of understanding of disease mechanisms and difficulties in developing new targeted therapies. Defective DNA damage detection and repair is one of the hallmarks of cancer cells and is a defining characteristic of ovarian cancer. Most in vitro studies to date involve viability measurements at scale using relevant cancer cell lines; however, the translation to the clinic is often lacking. The use of patient derived organoids is closing that translational gap, yet the 3D nature of organoid cultures presents challenges for assay measurements beyond viability measurements. In particular, high-content imaging has the potential for screening at scale, providing a better understanding of the mechanism of action of drugs or genetic perturbagens. In this study we report a semiautomated and scalable immunofluorescence imaging assay utilizing the development of a 384-well plate based subnuclear staining and clearing protocol and optimization of 3D confocal image analysis for studying DNA damage dose response in human ovarian cancer organoids. The assay was validated in four organoid models and demonstrated a predictable response to etoposide drug treatment with the lowest efficacy observed in the clinically most resistant model. This imaging and analysis method can be applied to other 3D organoid and spheroid models for use in high content screening.
Collapse
Affiliation(s)
- Hakan Keles
- Genome
Biology, Genomic Sciences, R&D, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom,E-mail: ,
| | - Christopher A. Schofield
- Genome
Biology, Genomic Sciences, R&D, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Helena Rannikmae
- Complex
In Vitro Models, In Vitro In Vivo Translation, R&D, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| | - Erin Elizabeth Edwards
- Genome
Biology, Genomic Sciences, R&D, GSK, 1250 S. Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Lisa Mohamet
- Genome
Biology, Genomic Sciences, R&D, GSK, Gunnels Wood Road, Stevenage, SG1 2NY, United Kingdom
| |
Collapse
|
9
|
O’Connell C, VandenHeuvel S, Kamat A, Raghavan S, Godin B. The Proteolytic Landscape of Ovarian Cancer: Applications in Nanomedicine. Int J Mol Sci 2022; 23:9981. [PMID: 36077371 PMCID: PMC9456334 DOI: 10.3390/ijms23179981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OvCa) is one of the leading causes of mortality globally with an overall 5-year survival of 47%. The predominant subtype of OvCa is epithelial carcinoma, which can be highly aggressive. This review launches with a summary of the clinical features of OvCa, including staging and current techniques for diagnosis and therapy. Further, the important role of proteases in OvCa progression and dissemination is described. Proteases contribute to tumor angiogenesis, remodeling of extracellular matrix, migration and invasion, major processes in OvCa pathology. Multiple proteases, such as metalloproteinases, trypsin, cathepsin and others, are overexpressed in the tumor tissue. Presence of these catabolic enzymes in OvCa tissue can be exploited for improving early diagnosis and therapeutic options in advanced cases. Nanomedicine, being on the interface of molecular and cellular scales, can be designed to be activated by proteases in the OvCa microenvironment. Various types of protease-enabled nanomedicines are described and the studies that focus on their diagnostic, therapeutic and theranostic potential are reviewed.
Collapse
Affiliation(s)
- Cailin O’Connell
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| | - Sabrina VandenHeuvel
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Aparna Kamat
- Division of Gynecologic Oncology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Obstetrics and Gynecology, Houston Methodist Hospital, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences at McGovern Medical School-UTHealth, Houston, TX 77030, USA
| |
Collapse
|