1
|
Contrera KJ, Patel MR, Burtness B, Mehra R, Ferris RL. The role of surgery and deescalation for HPV-related oropharyngeal cancer. Cancer 2025; 131:e35287. [PMID: 38497569 PMCID: PMC11736833 DOI: 10.1002/cncr.35287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Recently published and ongoing trials are helping to define the role of transoral robotic surgery for oropharyngeal cancer. Evidence to date supports the use of surgery as a valuable tool in the multidisciplinary deescalation of low-risk human papillomavirus-related oropharyngeal squamous cell carcinoma.
Collapse
Affiliation(s)
| | - Mihir R. Patel
- Winship Cancer Institute of Emory UniversityAtlantaGeorgiaUSA
| | - Barbara Burtness
- Yale School of Medicine and Yale Cancer CenterNew HavenConnecticutUSA
| | - Ranee Mehra
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer CenterBaltimoreMarylandUSA
| | | |
Collapse
|
2
|
Wu C, Kuzmin P, Julian R. De-Escalation Strategies in HPV-Associated Oropharynx Cancer: A Historical Perspective with Future Direction. Cancers (Basel) 2024; 16:2733. [PMID: 39123461 PMCID: PMC11311653 DOI: 10.3390/cancers16152733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The incidence of HPV-related oropharyngeal cancers has increased in recent decades. While cure rates exceed those of HPV-negative head and neck cancers, both acute and long-term sequelae of chemotherapy, radiation and surgery have led to clinical investigation into de-escalation of treatment. De-escalation trials have sought to reduce long-term treatment-related morbidity by altering or omitting chemotherapy, reducing radiation, or incorporating less invasive surgical resection through transoral surgery. More recent approaches include the use of novel agents such as immunotherapy in place of cisplatin. With the advent of tumor-tissue-modified HPV DNA detection and monitoring in blood, new strategies incorporating this biomarker are being developed.
Collapse
Affiliation(s)
- Clinton Wu
- Department of Internal Medicine, University of Arizona, Tucson, AZ 85719, USA
| | - Paulina Kuzmin
- Department of Internal Medicine, University of Arizona, Tucson, AZ 85719, USA
| | - Ricklie Julian
- Department of Internal Medicine, University of Arizona, Tucson, AZ 85719, USA
- Department of Hematology and Oncology, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
3
|
Chen AM. Translational risk-adapted approaches to de-escalated radiation for human papillomavirus-positive oropharyngeal cancer: Past, present, and future. Oral Oncol 2024; 154:106850. [PMID: 38749113 DOI: 10.1016/j.oraloncology.2024.106850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/11/2024]
Abstract
Interest in the use of de-escalated radiation to treat patients with newly diagnosed human papillomavirus (HPV)-positive oropharyngeal cancer has grown dramatically with the publication of prospective trials demonstrating the efficacy of such an approach. While the rationale for de-escalation--- namely to decrease treatment-related toxicity while maintaining the excellent rates of disease control historically observed in patients with this disease-is inherently obvious, uncertainty exists regarding how to best select patients for de-escalation. Consequently, risk-adapted strategies using a variety of translational and clinical platforms have been increasingly popularized to better refine treatment. These have integrated contemporary methods of mid-treatment response assessment using advanced technologies and molecular assays to customize the radiation dose. By monitoring the response as patients actively proceed through treatment, risk-adapted protocols have the potential to provide insight into the biological behavior of tumors and make individualized therapy possible. The purpose of this review is to summarize the evidence to date on risk-adapted approaches to de-escalated radiation-- highlighting the clinical, radiological, and biological data which may ultimately help usher the principles of precision medicine into practice for patients with HPV-positive oropharyngeal cancer.
Collapse
Affiliation(s)
- Allen M Chen
- Department of Radiation Oncology, Chao Family Comprehensive Cancer Center, University of California- Irvine, School of Medicine, Irvine, CA 92617, United states.
| |
Collapse
|
4
|
Yarbrough WG, Schrank TP, Burtness BA, Issaeva N. De-Escalated Therapy and Early Treatment of Recurrences in HPV-Associated Head and Neck Cancer: The Potential for Biomarkers to Revolutionize Personalized Therapy. Viruses 2024; 16:536. [PMID: 38675879 PMCID: PMC11053602 DOI: 10.3390/v16040536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Human papillomavirus-associated (HPV+) head and neck squamous cell carcinoma (HNSCC) is the most common HPV-associated cancer in the United States, with a rapid increase in incidence over the last two decades. The burden of HPV+ HNSCC is likely to continue to rise, and given the long latency between infection and the development of HPV+ HNSCC, it is estimated that the effect of the HPV vaccine will not be reflected in HNSCC prevalence until 2060. Efforts have begun to decrease morbidity of standard therapies for this disease, and its improved characterization is being leveraged to identify and target molecular vulnerabilities. Companion biomarkers for new therapies will identify responsive tumors. A more basic understanding of two mechanisms of HPV carcinogenesis in the head and neck has identified subtypes of HPV+ HNSCC that correlate with different carcinogenic programs and that identify tumors with good or poor prognosis. Current development of biomarkers that reliably identify these two subtypes, as well as biomarkers that can detect recurrent disease at an earlier time, will have immediate clinical application.
Collapse
Affiliation(s)
- Wendell G. Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA; (T.P.S.); (N.I.)
- Department of Pathology and Lab Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Travis P. Schrank
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA; (T.P.S.); (N.I.)
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC 27599, USA
| | - Barbara A. Burtness
- Department of Medicine, Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA;
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Natalia Issaeva
- Department of Otolaryngology/Head and Neck Surgery, UNC School of Medicine, Chapel Hill, NC 27599, USA; (T.P.S.); (N.I.)
- Department of Pathology and Lab Medicine, UNC School of Medicine, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Schrank TP, Kothari A, Weir WH, Stepp WH, Rehmani H, Liu X, Wang X, Sewell A, Li X, Tasoulas J, Kim S, Yarbrough G, Xie Y, Flamand Y, Marur S, Hayward MC, Wu D, Burtness B, Anderson KS, Baldwin AS, Yarbrough WG, Issaeva N. Noncanonical HPV carcinogenesis drives radiosensitization of head and neck tumors. Proc Natl Acad Sci U S A 2023; 120:e2216532120. [PMID: 37523561 PMCID: PMC10410762 DOI: 10.1073/pnas.2216532120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/07/2023] [Indexed: 08/02/2023] Open
Abstract
We analyzed transcriptional data from 104 HPV+ (Human papillomavirus) HNSCC (head and neck squamous cell carcinoma) tumors together with two publicly available sources to identify highly robust transcriptional programs (modules) which could be detected consistently despite heterogeneous sequencing and quantification methodologies. Among 22 modules identified, we found a single module that naturally subclassifies HPV+ HNSCC tumors based on a bimodal pattern of gene expression, clusters all atypical features of HPV+ HNSCC biology into a single subclass, and predicts patient outcome in four independent cohorts. The subclass-defining gene set was strongly correlated with Nuclear factor kappa B (NF-κB) target expression. Tumors with high expression of this NF-κB module were rarely associated with activating PIK3CA alterations or viral integration, and also expressed higher levels of HPHPV E2 and had decreased APOBEC mutagenesis. Alternatively, they harbored inactivating alterations of key regulators of NF-κB, TNF receptor associated factor 3 (TRAF3), and cylindromatosis (CYLD), as well as retinoblastoma protein (RB1). HPV+ HNSCC cells in culture with experimental depletion of TRAF3 or CYLD displayed increased expression of the subclass-defining genes, as well as robust radio-sensitization, thus recapitulating both the tumor transcriptional state and improved treatment response observed in patient data. Across all gene sets investigated, methylation to expression correlations were the strongest for the subclass-defining, NF-κB-related genes. Increased tumor-infiltrating CD4+ T cells and increased Estrogen receptors alpha (ERα) expression were identified in NF-κB active tumors. Based on the relatively high rates of cure in HPV+ HNSCC, deintensification of therapy to reduce treatment-related morbidity is being studied at many institutions. Tumor subclassification based on oncogenic subtypes may help guide the selection of therapeutic intensity or modality for patients with HPV+ HNSCC.
Collapse
Affiliation(s)
- Travis P. Schrank
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Aditi Kothari
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - William H. Weir
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Wesley H. Stepp
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Hina Rehmani
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL60612
- University of Illinois Cancer Center, Chicago, IL60612
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL60612
- University of Illinois Cancer Center, Chicago, IL60612
| | - Andrew Sewell
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Xue Li
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jason Tasoulas
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Sulgi Kim
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Gray Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Yue Xie
- Dana Farber Cancer Institute Eastern Cooperative Oncology Group and the American College of Radiology Imaging Network Biostatistics Center, Boston, MA02109
| | - Yael Flamand
- Dana Farber Cancer Institute Eastern Cooperative Oncology Group and the American College of Radiology Imaging Network Biostatistics Center, Boston, MA02109
| | - Shanthi Marur
- Johns Hopkins Univ/Sidney Kimmel Cancer Center, Baltimore, MD21231
| | - Michele C. Hayward
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Di Wu
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, The University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC27599
| | - Barbara Burtness
- Department of Internal Medicine and Yale Cancer Center, New Haven, CT06510
| | - Karen S. Anderson
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
| | - Albert S. Baldwin
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Wendell G. Yarbrough
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Natalia Issaeva
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Pathology and Lab Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
6
|
Qin T, Li S, Henry LE, Chou E, Cavalcante RG, Garb BF, D'Silva NJ, Rozek LS, Sartor MA. Whole-genome CpG-resolution DNA Methylation Profiling of HNSCC Reveals Distinct Mechanisms of Carcinogenesis for Fine-scale HPV+ Cancer Subtypes. CANCER RESEARCH COMMUNICATIONS 2023; 3:1701-1715. [PMID: 37654626 PMCID: PMC10467604 DOI: 10.1158/2767-9764.crc-23-0009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/24/2023] [Accepted: 07/28/2023] [Indexed: 09/02/2023]
Abstract
DNA methylation is a vital early step in carcinogenesis. Most findings of aberrant DNA methylation in head and neck squamous cell carcinomas (HNSCC) are array based with limited coverage and resolution, and mainly explored by human papillomavirus (HPV) status, ignoring the high heterogeneity of this disease. In this study, we performed whole-genome bisulfite sequencing on a well-studied HNSCC cohort (n = 36) and investigated the methylation changes between fine-scaled HNSCC subtypes in relation to genomic instability, repetitive elements, gene expression, and key carcinogenic pathways. The previously observed hypermethylation phenotype in HPV-positive (HPV+) tumors compared with HPV-negative tumors was robustly present in the immune-strong (IMU) HPV+ subtype but absent in the highly keratinized (KRT) HPV+ subtype. Methylation levels of IMU tumors were significantly higher in repetitive elements, and methylation showed a significant correlation with genomic stability, consistent with the IMU subtype having more genomic stability and better prognosis. Expression quantitative trait methylation (cis-eQTM) analysis revealed extensive functionally-relevant differences, and differential methylation pathway analysis recapitulated gene expression pathway differences between subtypes. Consistent with their characteristics, KRT and HPV-negative tumors had high regulatory potential for multiple regulators of keratinocyte differentiation, which positively correlated with an expression-based keratinization score. Together, our findings revealed distinct mechanisms of carcinogenesis between subtypes in HPV+ HNSCC and uncovered previously ignored epigenomic differences and clinical implications, illustrating the importance of fine-scale subtype analysis in cancer. Significance This study revealed that the previously observed hypermethylation of HPV(+) HNSCC is due solely to the IMU subtype, illustrating the importance of fine-scale subtype analysis in such a heterogeneous disease. Particularly, IMU has significantly higher methylation of transposable elements, which can be tested as a prognosis biomarker in future translational studies.
Collapse
Affiliation(s)
- Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Shiting Li
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Leanne E. Henry
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Elysia Chou
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Raymond G. Cavalcante
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bailey F. Garb
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nisha J. D'Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Laura S. Rozek
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Chagas BS, Tibúrcio Júnior E, Silva RCDO, dos Santos DL, Barros Junior MR, de Lima RDCP, Invenção MDCV, Santos VEP, França Neto PL, Silva Júnior AH, Silva Neto JC, Batista MVDA, de Freitas AC. E7 Oncogene HPV58 Variants Detected in Northeast Brazil: Genetic and Functional Analysis. Microorganisms 2023; 11:1915. [PMID: 37630475 PMCID: PMC10458125 DOI: 10.3390/microorganisms11081915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Cervical cancer is associated with persistent infections by high-risk Human Papillomavirus (HPV) types that may have nucleotide polymorphisms and, consequently, different oncogenic potentials. Therefore, this study aimed to evaluate the genetic variability and structural effects of the E7 oncogene of HPV58 in cervical scraping samples from Brazilian women. The study was developed with patients from hospitals in the metropolitan area of Recife, PE, Brazil. The most frequent HPV types were, in descending order of abundance, HPV16, 31, and 58. Phylogenetic analysis demonstrated that the isolates were classified into sublineages A2, C1, and D2. Two positively selected mutations were found in E7: 63G and 64T. The mutations G41R, G63D, and T64A in the E7 protein reduced the stability of the protein structure. Utilizing an NF-kB reporter assay, we observed a decrease in the NK-kB pathway activity with the HPV58-E7 variant 54S compared to the WT E7. The other detected E7 HPV58 variants presented similar NF-kB pathway activity compared to the WT E7. In this study, it was possible to identify mutations that may interfere with the molecular interaction between the viral oncoproteins and host proteins.
Collapse
Affiliation(s)
- Bárbara Simas Chagas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Elias Tibúrcio Júnior
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Ruany Cristyne de Oliveira Silva
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Daffany Luana dos Santos
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Marconi Rego Barros Junior
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Rita de Cássia Pereira de Lima
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Maria da Conceição Viana Invenção
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Vanessa Emanuelle Pereira Santos
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Pedro Luiz França Neto
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| | - Antônio Humberto Silva Júnior
- Center for Biological and Health Sciences, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil;
| | - Jacinto Costa Silva Neto
- Laboratory of Molecular and Cytological Research, Department of Histology, Federal University of Pernambuco, Recife 50670-901, PE, Brazil;
| | - Marcus Vinícius de Aragão Batista
- Laboratory of Molecular Genetics and Biotechnology, Department of Biology, Federal University of Sergipe, São Cristóvão 49100-000, SE, Brazil;
| | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy (LEMTE), Department of Genetics, Federal University of Pernambuco, Recife 50670-901, PE, Brazil; (B.S.C.); (E.T.J.); (R.C.d.O.S.); (D.L.d.S.); (M.R.B.J.); (R.d.C.P.d.L.); (M.d.C.V.I.); (V.E.P.S.); (P.L.F.N.)
| |
Collapse
|
8
|
Direct Comparison of HPV16 Viral Genomic Integration, Copy Loss, and Structural Variants in Oropharyngeal and Uterine Cervical Cancers Reveal Distinct Relationships to E2 Disruption and Somatic Alteration. Cancers (Basel) 2022; 14:cancers14184488. [PMID: 36139648 PMCID: PMC9496734 DOI: 10.3390/cancers14184488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Squamous cell carcinoma of the oropharynx caused by HPV type 16 (HPV16+ OPSCC) is the most common HPV-associated malignancy in the USA and has many molecular differences from uterine cervical squamous cell carcinoma (UCSCC). Our understanding of HPV oncogenesis relied on studies of UCSCC revealing a consensus model reliant on HPV integration with a loss of E2. Here, we compare patterns of HPV integration in UCSCC and OPSCC by analysis of affinity capture sequencing of the HPV16 genome in 104 OPSCC and 44 UCSCC tumors. These cohorts were contemporaneously sequenced using an identical strategy. Integration was identified using discordant read pair clustering and assembly-based approaches. Viral integration sites, structural variants, and copy losses were examined. While large-scale deep losses of HPV16 genes were common in UCSCC and were associated with E2 loss, deep copy losses of the HPV16 genome were infrequent in HPV16+ OPSCC. Similarly, structural variants within HPV16 favored E2 loss in UCSCC but not OPSCC. HPV16 integration sites were non-random, with recurrent integration hot-spots identified. OPSCC tumors had many more integration sites per tumor when compared to UCSCC and had more integration sites in genomic regions with high gene density. These data show that viral integration and E2 disruption are distinct in UCSCC and OPSCC. Our findings also add to growing literature suggesting that HPV tumorigenesis in OPSCC does not follow the model developed based on UCSCC.
Collapse
|