1
|
Lv Y, Feng G, Yang L, Wu X, Wang C, Ye A, wang S, Xu C, Shi H. Differential whole-genome doubling based signatures for improvement on clinical outcomes and drug response in patients with breast cancer. Heliyon 2024; 10:e28586. [PMID: 38576569 PMCID: PMC10990872 DOI: 10.1016/j.heliyon.2024.e28586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Whole genome doublings (WGD), a hallmark of human cancer, is pervasive in breast cancer patients. However, the molecular mechanism of the complete impact of WGD on survival and treatment response in breast cancer remains unclear. To address this, we performed a comprehensive and systematic analysis of WGD, aiming to identify distinct genetic alterations linked to WGD and highlight its improvement on clinical outcomes and treatment response for breast cancer. A linear regression model along with weighted gene co-expression network analysis (WGCNA) was applied on The Cancer Genome Atlas (TCGA) dataset to identify critical genes related to WGD. Further Cox regression models with random selection were used to optimize the most useful prognostic markers in the TCGA dataset. The clinical implication of the risk model was further assessed through prognostic impact evaluation, tumor stratification, functional analysis, genomic feature difference analysis, drug response analysis, and multiple independent datasets for validation. Our findings revealed a high aneuploidy burden, chromosomal instability (CIN), copy number variation (CNV), and mutation burden in breast tumors exhibiting WGD events. Moreover, 247 key genes associated with WGD were identified from the distinct genomic patterns in the TCGA dataset. A risk model consisting of 22 genes was optimized from the key genes. High-risk breast cancer patients were more prone to WGD and exhibited greater genomic diversity compared to low-risk patients. Some oncogenic signaling pathways were enriched in the high-risk group, while primary immune deficiency pathways were enriched in the low-risk group. We also identified a risk gene, ANLN (anillin), which displayed a strong positive correlation with two crucial WGD genes, KIF18A and CCNE2. Tumors with high expression of ANLN were more prone to WGD events and displayed worse clinical survival outcomes. Furthermore, the expression levels of these risk genes were significantly associated with the sensitivities of BRCA cell lines to multiple drugs, providing valuable insights for targeted therapies. These findings will be helpful for further improvement on clinical outcomes and contribution to drug development in breast cancer.
Collapse
Affiliation(s)
| | | | - Lei Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Xiaoliang Wu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Chengyi Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Aokun Ye
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Shuyuan wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| | - Hongbo Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, 150081, China
| |
Collapse
|
2
|
Malvi P, Chava S, Cai G, Hu K, Zhu LJ, Edwards YJK, Green MR, Gupta R, Wajapeyee N. HOXC6 drives a therapeutically targetable pancreatic cancer growth and metastasis pathway by regulating MSK1 and PPP2R2B. Cell Rep Med 2023; 4:101285. [PMID: 37951219 PMCID: PMC10694669 DOI: 10.1016/j.xcrm.2023.101285] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 11/13/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, which lacks effective therapies. Here, we demonstrate that the transcription factor, homeobox C6 (HOXC6), is overexpressed in most PDACs, and its inhibition blocks PDAC tumor growth and metastasis. HOXC6 transcriptionally activates tumor-promoting kinase MSK1 and suppresses tumor-inhibitory protein PPP2R2B in PDAC. HOXC6-induced PPP2R2B suppression causes mammalian target of rapamycin (mTOR) pathway activation, which facilitates PDAC growth. Also, MSK1 upregulation by HOXC6 is necessary for PDAC growth because of its ability to suppress apoptosis via its substrate DDX17. Combinatorial pharmacological inhibition of MSK1 and mTOR potently suppressed PDAC tumor growth and metastasis in PDAC mouse models. PDAC cells with acquired resistance to MSK1/mTOR-inhibitors displayed activated insulin-like growth factor 1 receptor (IGF1R) signaling and were successfully eradicated by IGF1R inhibitor. Furthermore, MEK inhibitor trametinib enhanced the efficacy of dual MSK1 and mTOR inhibition. Collectively, these results identify therapeutic vulnerabilities of PDAC and an approach to overcome acquired drug resistance to prolong therapeutic benefit.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Chava
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guoping Cai
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Kai Hu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yvonne J K Edwards
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Michael R Green
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
3
|
Zhou Z, Jin H, Xu J. A gene signature driven by abnormally methylated DEGs was developed for TP53 wild-type ovarian cancer samples by integrative omics analysis of DNA methylation and gene expression data. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:20. [PMID: 36760264 PMCID: PMC9906212 DOI: 10.21037/atm-22-5764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023]
Abstract
Background Integrated omics analysis based on transcriptome and DNA methylation data combined with machine learning methods is very promising for the diagnosis, prognosis, and classification of cancer. In this study, the DNA methylation and gene expression data of ovarian cancer (OC) were analyzed to identify abnormally methylated differentially expressed genes (DEGs), screen potential therapeutic agents for OC, and construct a risk model based on the abnormally methylated DEGs to predict patient prognosis. Methods The gene expression and DNA methylation data of primary OC samples with tumor protein 53 (TP53) wild-type and normal samples were obtained from The Cancer Genome Atlas (TCGA) database. DEGs with aberrant methylation were analyzed by screening the intersection between DEGs and differentially methylated genes (DMGs). We attempted to search for potential drugs targeting DEGs with aberrant methylation by employing a network medicine framework. A gene signature based on the DEGs with aberrant methylation was constructed by regularized least absolute shrinkage and selection operator (LASSO) regression analysis. Results A total of 440 aberrant methylated DEGs were screened. Based on their gene expression profiles and methylation data from different regions, the results of both discriminative pattern recognition analysis and principal component analysis (PCA) showed a significant separation between tumor tissue and healthy ovarian tissue. In total, 126 potential therapeutic drugs were identified for OC by network-based proximity analysis. Five genes were identified in 440 aberrant methylated DEGs, which formed an aberrant methylated DEGs-driven gene signature. This signature could significantly distinguish the different overall survivals (OS) of OC patients and showed better predictive performance in both the training and validation sets. Conclusions In this study, the DNA methylation and gene expression data of OC were analyzed to identify abnormally methylated DEGs and potential therapeutic drugs, and a gene signature based on five aberrant methylation DEGs was constructed, which could better predict the risk of death in patients.
Collapse
Affiliation(s)
- Zhu Zhou
- Gynaecology Department, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Hang Jin
- Gynaecology Department, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jian Xu
- Reproductive Center, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
4
|
Sebestyén A, Dankó T, Sztankovics D, Moldvai D, Raffay R, Cervi C, Krencz I, Zsiros V, Jeney A, Petővári G. The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev 2022; 40:989-1033. [PMID: 35029792 PMCID: PMC8825419 DOI: 10.1007/s10555-021-10006-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/26/2021] [Indexed: 12/14/2022]
Abstract
Despite advancements in cancer management, tumor relapse and metastasis are associated with poor outcomes in many cancers. Over the past decade, oncogene-driven carcinogenesis, dysregulated cellular signaling networks, dynamic changes in the tissue microenvironment, epithelial-mesenchymal transitions, protein expression within regulatory pathways, and their part in tumor progression are described in several studies. However, the complexity of metabolic enzyme expression is considerably under evaluated. Alterations in cellular metabolism determine the individual phenotype and behavior of cells, which is a well-recognized hallmark of cancer progression, especially in the adaptation mechanisms underlying therapy resistance. In metabolic symbiosis, cells compete, communicate, and even feed each other, supervised by tumor cells. Metabolic reprogramming forms a unique fingerprint for each tumor tissue, depending on the cellular content and genetic, epigenetic, and microenvironmental alterations of the developing cancer. Based on its sensing and effector functions, the mechanistic target of rapamycin (mTOR) kinase is considered the master regulator of metabolic adaptation. Moreover, mTOR kinase hyperactivity is associated with poor prognosis in various tumor types. In situ metabolic phenotyping in recent studies highlights the importance of metabolic plasticity, mTOR hyperactivity, and their role in tumor progression. In this review, we update recent developments in metabolic phenotyping of the cancer ecosystem, metabolic symbiosis, and plasticity which could provide new research directions in tumor biology. In addition, we suggest pathomorphological and analytical studies relating to metabolic alterations, mTOR activity, and their associations which are necessary to improve understanding of tumor heterogeneity and expand the therapeutic management of cancer.
Collapse
|
5
|
Yu L, Wei J, Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin Cancer Biol 2021; 85:69-94. [PMID: 34175443 DOI: 10.1016/j.semcancer.2021.06.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/10/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023]
Abstract
Cancer is the second leading cause of human death globally. PI3K/Akt/mTOR signaling is one of the most frequently dysregulated signaling pathways observed in cancer patients that plays crucial roles in promoting tumor initiation, progression and therapy responses. This is largely due to that PI3K/Akt/mTOR signaling is indispensable for many cellular biological processes, including cell growth, metastasis, survival, metabolism, and others. As such, small molecule inhibitors targeting major kinase components of the PI3K/Akt/mTOR signaling pathway have drawn extensive attention and been developed and evaluated in preclinical models and clinical trials. Targeting a single kinase component within this signaling usually causes growth arrest rather than apoptosis associated with toxicity-induced adverse effects in patients. Combination therapies including PI3K/Akt/mTOR inhibitors show improved patient response and clinical outcome, albeit developed resistance has been reported. In this review, we focus on revealing the mechanisms leading to the hyperactivation of PI3K/Akt/mTOR signaling in cancer and summarizing efforts for developing PI3K/Akt/mTOR inhibitors as either mono-therapy or combination therapy in different cancer settings. We hope that this review will facilitate further understanding of the regulatory mechanisms governing dysregulation of PI3K/Akt/mTOR oncogenic signaling in cancer and provide insights into possible future directions for targeted therapeutic regimen for cancer treatment, by developing new agents, drug delivery systems, or combination regimen to target the PI3K/Akt/mTOR signaling pathway. This information will also provide effective patient stratification strategy to improve the patient response and clinical outcome for cancer patients with deregulated PI3K/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Int J Mol Sci 2021; 22:3464. [PMID: 33801659 PMCID: PMC8037248 DOI: 10.3390/ijms22073464] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
The phospatidylinositol-3 kinase (PI3K) pathway is a crucial intracellular signaling pathway which is mutated or amplified in a wide variety of cancers including breast, gastric, ovarian, colorectal, prostate, glioblastoma and endometrial cancers. PI3K signaling plays an important role in cancer cell survival, angiogenesis and metastasis, making it a promising therapeutic target. There are several ongoing and completed clinical trials involving PI3K inhibitors (pan, isoform-specific and dual PI3K/mTOR) with the goal to find efficient PI3K inhibitors that could overcome resistance to current therapies. This review focuses on the current landscape of various PI3K inhibitors either as monotherapy or in combination therapies and the treatment outcomes involved in various phases of clinical trials in different cancer types. There is a discussion of the drug-related toxicities, challenges associated with these PI3K inhibitors and the adverse events leading to treatment failure. In addition, novel PI3K drugs that have potential to be translated in the clinic are highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Joan T. Garrett
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0514, USA; (R.M.); (H.P.); (S.A.); (M.K.K.)
| |
Collapse
|
7
|
Darici S, Alkhaldi H, Horne G, Jørgensen HG, Marmiroli S, Huang X. Targeting PI3K/Akt/mTOR in AML: Rationale and Clinical Evidence. J Clin Med 2020; 9:E2934. [PMID: 32932888 PMCID: PMC7563273 DOI: 10.3390/jcm9092934] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous hematopoietic malignancy characterized by excessive proliferation and accumulation of immature myeloid blasts in the bone marrow. AML has a very poor 5-year survival rate of just 16% in the UK; hence, more efficacious, tolerable, and targeted therapy is required. Persistent leukemia stem cell (LSC) populations underlie patient relapse and development of resistance to therapy. Identification of critical oncogenic signaling pathways in AML LSC may provide new avenues for novel therapeutic strategies. The phosphatidylinositol-3-kinase (PI3K)/Akt and the mammalian target of rapamycin (mTOR) signaling pathway, is often hyperactivated in AML, required to sustain the oncogenic potential of LSCs. Growing evidence suggests that targeting key components of this pathway may represent an effective treatment to kill AML LSCs. Despite this, accruing significant body of scientific knowledge, PI3K/Akt/mTOR inhibitors have not translated into clinical practice. In this article, we review the laboratory-based evidence of the critical role of PI3K/Akt/mTOR pathway in AML, and outcomes from current clinical studies using PI3K/Akt/mTOR inhibitors. Based on these results, we discuss the putative mechanisms of resistance to PI3K/Akt/mTOR inhibition, offering rationale for potential candidate combination therapies incorporating PI3K/Akt/mTOR inhibitors for precision medicine in AML.
Collapse
Affiliation(s)
- Salihanur Darici
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Hazem Alkhaldi
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Gillian Horne
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Heather G. Jørgensen
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| | - Sandra Marmiroli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy;
| | - Xu Huang
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, University of Glasgow, Glasgow G12 0ZD, UK; (H.A.); (G.H.); (H.G.J.)
| |
Collapse
|
8
|
Romero-Garcia S, Prado-Garcia H, Carlos-Reyes A. Role of DNA Methylation in the Resistance to Therapy in Solid Tumors. Front Oncol 2020; 10:1152. [PMID: 32850327 PMCID: PMC7426728 DOI: 10.3389/fonc.2020.01152] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in chemotherapeutic treatments against cancer, some types of highly aggressive and invasive cancer develop drug resistance against conventional therapies, which continues to be a major problem in the fight against cancer. In recent years, studies of alterations of DNA methylome have given us a better understanding of the role of DNA methylation in the development of tumors. DNA methylation (DNAm) is an epigenetic change that promotes the covalent transfer of methyl groups to DNA. This process suppresses gene expression through the modulation of the transcription machinery access to the chromatin or through the recruitment of methyl binding proteins. DNAm is regulated mainly by DNA methyltransferases. Aberrant DNAm contributes to tumor progression, metastasis, and resistance to current anti-tumoral therapies. Aberrant DNAm may occur through hypermethylation in the promoter regions of tumor suppressor genes, which leads to their silencing, while hypomethylation in the promoter regions of oncogenes can activate them. In this review, we discuss the impact of dysregulated methylation in certain genes, which impact signaling pathways associated with apoptosis avoidance, metastasis, and resistance to therapy. The analysis of methylome has revealed patterns of global methylation, which regulate important signaling pathways involved in therapy resistance in different cancer types, such as breast, colon, and lung cancer, among other solid tumors. This analysis has provided gene-expression signatures of methylated region-specific DNA that can be used to predict the treatment outcome in response to anti-cancer therapy. Additionally, changes in cancer methylome have been associated with the acquisition of drug resistance. We also review treatments with demethylating agents that, in combination with standard therapies, seem to be encouraging, as tumors that are in early stages can be successfully treated. On the other hand, tumors that are in advanced stages can be treated with these combination schemes, which could sensitize tumor cells that are resistant to the therapy. We propose that rational strategies, which combine specific demethylating agents with conventional treatment, may improve overall survival in cancer patients.
Collapse
Affiliation(s)
- Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Heriberto Prado-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Angeles Carlos-Reyes
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
9
|
Liu H, Huang B, Xue S, U KP, Tsang LL, Zhang X, Li G, Jiang X. Functional crosstalk between mTORC1/p70S6K pathway and heterochromatin organization in stress-induced senescence of MSCs. Stem Cell Res Ther 2020; 11:279. [PMID: 32660632 PMCID: PMC7359252 DOI: 10.1186/s13287-020-01798-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Stem cell senescence has been proposed as one of the major drivers of aging, and MSC senescence contributes to aging-related diseases. Activation of mTORC1 pathway and heterochromatin organization have been characterized as two characteristics of senescent cells; however, whether mTORC1 pathway interacts with heterochromatin organization and contributes to MSC senescence remains unknown. In this study, we investigated the interaction between heterochromatin organization and mTORC1/p70S6K pathway in stress-induced MSC senescence. Methods The stress-induced senescence models were established in human umbilical cord-derived MSCs by doxorubicin (Dox) or H2O2. Cellular senescence was evaluated by β-Gal activity, upregulation of cell cycle suppressor genes, and expression of SASP. Activation of heterochromatin organization and mTORC1 pathway was determined by Western blot and immunofluorescent staining. A D-galactose (D-Gal)-induced aging model was established in rats to evaluate the crosstalk between heterochromatin and mTORC1 pathway in vivo. Results We found that heterochromatin organization was provoked at the early stage of Dox- or H2O2-induced senescence. Disruption of heterochromatin organization led to robust DNA damage response and exacerbated cellular senescence. Suppression of mTORC1/p70S6K pathway by either rapamycin or p70S6K knockdown promoted heterochromatin organization and ameliorated Dox- or H2O2-induced DNA damage and senescence. In contrast, direct activation of mTORC1 by MHY1485 impaired heterochromatin organization and aggravated stress-induced senescence. Moreover, concomitant activation of mTORC1 pathway and heterochromatin organization was found in D-galactose-induced osteoporosis model in rats. Rapamycin alleviated cellular senescence and promoted heterochromatin organization in BMSCs derived from D-galactose-treated rats. Conclusions Altogether, our study indicates the existence of a complex interplay between the mTORC1/p70S6K pathway and the heterochromatin organization during stress-induced MSC senescence, with important implications for the understanding of aging as well as for its prevention and treatment.
Collapse
Affiliation(s)
- Hailong Liu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Biao Huang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Shaolong Xue
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Kin Pong U
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Lai Ling Tsang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China
| | - Xiaohu Zhang
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Gang Li
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China.,Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, People's Republic of China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, People's Republic of China. .,Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Enzyme-mediated depletion of serum l-Met abrogates prostate cancer growth via multiple mechanisms without evidence of systemic toxicity. Proc Natl Acad Sci U S A 2020; 117:13000-13011. [PMID: 32434918 PMCID: PMC7293657 DOI: 10.1073/pnas.1917362117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Extensive studies in prostate cancer and other malignancies have revealed that l-methionine (l-Met) and its metabolites play a critical role in tumorigenesis. Preclinical and clinical studies have demonstrated that systemic restriction of serum l-Met, either via partial dietary restriction or with bacterial l-Met-degrading enzymes exerts potent antitumor effects. However, administration of bacterial l-Met-degrading enzymes has not proven practical for human therapy because of problems with immunogenicity. As the human genome does not encode l-Met-degrading enzymes, we engineered the human cystathionine-γ-lyase (hMGL-4.0) to catalyze the selective degradation of l-Met. At therapeutically relevant dosing, hMGL-4.0 reduces serum l-Met levels to >75% for >72 h and significantly inhibits the growth of multiple prostate cancer allografts/xenografts without weight loss or toxicity. We demonstrate that in vitro, hMGL-4.0 causes tumor cell death, associated with increased reactive oxygen species, S-adenosyl-methionine depletion, global hypomethylation, induction of autophagy, and robust poly(ADP-ribose) polymerase (PARP) cleavage indicative of DNA damage and apoptosis.
Collapse
|
11
|
Hu Q, Zhou S, Hu X, Zhang H, Huang S, Wang Y. Systematic screening identifies a 2-gene signature as a high-potential prognostic marker of undifferentiated pleomorphic sarcoma/myxofibrosarcoma. J Cell Mol Med 2019; 24:1010-1021. [PMID: 31742892 PMCID: PMC6933343 DOI: 10.1111/jcmm.14814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/29/2019] [Accepted: 10/27/2019] [Indexed: 02/05/2023] Open
Abstract
The Cancer Genome Atlas (TCGA) Research Network confirmed that undifferentiated pleomorphic sarcoma (UPS) and myxofibrosarcoma (MFS) share a high level of genomic similarities and fall into a single spectrum of tumour. However, no molecular prognostic biomarkers have been identified in UPS/MFS. In this study, by extracting data from TCGA-Sarcoma (SARC), we explored relapse-related genes, their prognostic value and possible mechanisms of the dysregulations. After systematic screening, ITGA10 and PPP2R2B were included to construct a 2-gene signature. The 2-gene signature had an AUC value of 0.83 and had an independent prognostic value in relapse-free survival (RFS) (HR: 2.966, 95%CI: 1.995-4.410 P < .001), and disease-specific survival (DSS) (HR: 2.283, 95%CI: 1.358-3.835, P = .002), as a continuous variable. Gene-level copy number alterations (CNAs) were irrelevant to their dysregulation. Two CpG sites (cg15585341 and cg04126335) around the promoter of ITGA10 showed strong negative correlations with ITGA10 expression (Pearson's r < -0.6). Transcript preference was observed in PPP2R2B expression. The methylation of some CpG sites in two gene body regions showed at least moderate positive correlations (Pearson's r > .4) with PPP2R2B expression. Besides, the 2-gene signature showed a moderate negative correlation with CD4 + T cell infiltration. High-level CD4 + T cell infiltration and neutrophil infiltration were associated with significantly better RFS. Based on these findings, we infer that the 2-gene signature might be a potential prognostic marker in patients with UPS/MFS. Considering the potential benefits of immunotherapy for UPS/MFS patients, it is imperative to explore the predictive value of this signature in immunotherapeutic responses in the future.
Collapse
Affiliation(s)
- Qinsheng Hu
- Department of Orthopaedic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shijie Zhou
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xuefeng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hua Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Integrative Analysis Reveals Comprehensive Altered Metabolic Genes Linking with Tumor Epigenetics Modification in Pan-Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6706354. [PMID: 31828117 PMCID: PMC6881592 DOI: 10.1155/2019/6706354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/21/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023]
Abstract
Background Cancer cells undergo various rewiring of metabolism and dysfunction of epigenetic modification to support their biosynthetic needs. Although the major features of metabolic reprogramming have been elucidated, the global metabolic genes linking epigenetics were overlooked in pan-cancer. Objectives Identifying the critical metabolic signatures with differential expressions which contributes to the epigenetic alternations across cancer types is an urgent issue for providing the potential targets for cancer therapy. Method The differential gene expression and DNA methylation were analyzed by using the 5726 samples data from the Cancer Genome Atlas (TCGA). Results Firstly, we analyzed the differential expression of metabolic genes and found that cancer underwent overall metabolism reprogramming, which exhibited a similar expression trend with the data from the Gene Expression Omnibus (GEO) database. Secondly, the regulatory network of histone acetylation and DNA methylation according to altered expression of metabolism genes was summarized in our results. Then, the survival analysis showed that high expression of DNMT3B had a poorer overall survival in 5 cancer types. Integrative altered methylation and expression revealed specific genes influenced by DNMT3B through DNA methylation across cancers. These genes do not overlap across various cancer types and are involved in different function annotations depending on the tissues, which indicated DNMT3B might influence DNA methylation in tissue specificity. Conclusions Our research clarifies some key metabolic genes, ACLY, SLC2A1, KAT2A, and DNMT3B, which are most disordered and indirectly contribute to the dysfunction of histone acetylation and DNA methylation in cancer. We also found some potential genes in different cancer types influenced by DNMT3B. Our study highlights possible epigenetic disorders resulting from the deregulation of metabolic genes in pan-cancer and provides potential therapy in the clinical treatment of human cancer.
Collapse
|
13
|
Zahid KR, Yao S, Khan ARR, Raza U, Gou D. mTOR/HDAC1 Crosstalk Mediated Suppression of ADH1A and ALDH2 Links Alcohol Metabolism to Hepatocellular Carcinoma Onset and Progression in silico. Front Oncol 2019; 9:1000. [PMID: 31637215 PMCID: PMC6787164 DOI: 10.3389/fonc.2019.01000] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is ranked the third deadliest cancer worldwide whose molecular pathogenesis is not fully understood. Although deregulated metabolic pathways have been implicated in HCC onset and progression, the mechanisms triggering this metabolic imbalance are yet to be explored. Here, we identified a gene signature coding catabolic enzymes (Cat-GS) involved in key metabolic pathways like amino acid, lipid, carbohydrate, drug, and retinol metabolism as suppressed in HCC. A higher expression of deregulated Cat-GS is associated with good survival and less aggressive disease state in HCC patients. On the other hand, we identified mTOR signaling as a key determinant in HCC onset and progression, whose hyperactivation is found associated with poor survival and aggressive disease state in HCC patients. Next, out of Cat-GS, we established two key regulators of alcohol metabolism, alcohol dehydrogenase 1A (ADH1A) and aldehyde dehydrogenase 2 (ALDH2), as being transcriptionally suppressed by histone deacetylase 1 (HDAC1) at the downstream of mTORC1 signaling. Suppressed ADH1A and ALDH2 expression aligns well with HCC-specific molecular profile and can efficiently predict disease onset and progression, whereas higher ADH1A and ALDH2 expression is associated with good survival and less aggressive disease state in HCC patients. Overall, our in silico findings suggest that transcriptional suppression of alcohol metabolism regulators, ADH1A and ALDH2, at the downstream of mTOR signaling is, in part, responsible for triggering oncogenic transformation of hepatocytes resulting in disease onset and progression in HCC.
Collapse
Affiliation(s)
- Kashif Rafiq Zahid
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering Shenzhen University, Shenzhen, China
| | - Shun Yao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Abdur Rehman Raza Khan
- Military College of Signals, National University of Science and Technology, Rawalpindi, Pakistan
| | - Umar Raza
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Provincial Key Laboratory of Regional Immunity and Diseases, Carson International Cancer Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
14
|
Chiarini F, Evangelisti C, Lattanzi G, McCubrey JA, Martelli AM. Advances in understanding the mechanisms of evasive and innate resistance to mTOR inhibition in cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1322-1337. [PMID: 30928610 DOI: 10.1016/j.bbamcr.2019.03.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022]
Abstract
The development of drug-resistance by neoplastic cells is recognized as a major cause of targeted therapy failure and disease progression. The mechanistic (previously mammalian) target of rapamycin (mTOR) is a highly conserved Ser/Thr kinase that acts as the catalytic subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. Both mTORC1 and mTORC2 play key roles in a variety of healthy cell types/tissues by regulating physiological anabolic and catabolic processes in response to external cues. However, a body of evidence identified aberrant activation of mTOR signaling as a common event in many human tumors. Therefore, mTOR is an attractive target for therapeutic targeting in cancer and this fact has driven the development of numerous mTOR inhibitors, several of which have progressed to clinical trials. Nevertheless, mTOR inhibitors have met with a very limited success as anticancer therapeutics. Among other reasons, this failure was initially ascribed to the activation of several compensatory signaling pathways that dampen the efficacy of mTOR inhibitors. The discovery of these regulatory feedback mechanisms greatly contributed to a better understanding of cancer cell resistance to mTOR targeting agents. However, over the last few years, other mechanisms of resistance have emerged, including epigenetic alterations, compensatory metabolism rewiring and the occurrence of mTOR mutations. In this article, we provide the reader with an updated overview of the mechanisms that could explain resistance of cancer cells to the various classes of mTOR inhibitors.
Collapse
Affiliation(s)
- Francesca Chiarini
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Camilla Evangelisti
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics, 40136 Bologna, BO, Italy; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, BO, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, BO, Italy.
| |
Collapse
|
15
|
Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer 2019; 18:26. [PMID: 30782187 PMCID: PMC6379961 DOI: 10.1186/s12943-019-0954-x] [Citation(s) in RCA: 958] [Impact Index Per Article: 191.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
Phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling is one of the most important intracellular pathways, which can be considered as a master regulator for cancer. Enormous efforts have been dedicated to the development of drugs targeting PI3K signaling, many of which are currently employed in clinical trials evaluation, and it is becoming increasingly clear that PI3K inhibitors are effective in inhibiting tumor progression. PI3K inhibitors are subdivided into dual PI3K/mTOR inhibitors, pan-PI3K inhibitors and isoform-specific inhibitors. In this review, we performed a critical review to summarize the role of the PI3K pathway in tumor development, recent PI3K inhibitors development based on clinical trials, and the mechanisms of resistance to PI3K inhibition.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ji Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yong Peng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
16
|
Luo H, Yu YY, Chen HM, Wu W, Li Y, Lin H. The combination of NVP-BEZ235 and rapamycin regulates nasopharyngeal carcinoma cell viability and apoptosis via the PI3K/AKT/mTOR pathway. Exp Ther Med 2019; 17:99-106. [PMID: 30651769 PMCID: PMC6307517 DOI: 10.3892/etm.2018.6896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a rare malignancy with a remarkable geographical distribution. Regarding NPC treatment, improving the survival rate of advanced patients seems promising. Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway deregulation is closely associated with tumorigenesis. In the present study, the NPC cell line SUNE1 was divided into four groups: Control, NVP-BEZ235, rapamycin, and NVP-BEZ235+rapamycin. SUNE1 cells in the NVP-BEZ235 group were incubated with NVP-BEZ235; cells in the rapamycin group were incubated with rapamycin, whereas the NVP-BEZ235+rapamycin group refers to SUNE1 cells incubated with a mixture of NVP-BEZ235 and rapamycin. The control group was treated with the same amount of vehicle. Morphological, MTT, terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling and flow cytometry assays demonstrated that NVP-BEZ235 and rapamycin caused morphological changes, inhibited cell viability and induced cellular apoptosis. In addition, reverse transcription-quantitative polymerase chain reaction and western blot revealed that the combination of NVP-BEZ235 and rapamycin affected the activation of the PI3K/AKT/mTOR pathway. The combination of NVP-BEZ235 and rapamycin significantly improved the effect of the drug therapy. The potential underlying mechanism may comprise the joint effects of inhibiting cell viability, promoting cellular apoptosis and reducing relative signal protein expression levels in SUNE1 cells. These findings provided novel evidence that NVP-BEZ235 suppresses NPC development, and indicated a promising potential application of combination drug therapy (NVP-BEZ235+rapamycin) for the clinical treatment of NPC.
Collapse
Affiliation(s)
- Hui Luo
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yu-Yu Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hong-Mei Chen
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Wei Wu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Li
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hong Lin
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
17
|
McKenna M, McGarrigle S, Pidgeon GP. The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochim Biophys Acta Rev Cancer 2018; 1870:185-197. [PMID: 30318472 DOI: 10.1016/j.bbcan.2018.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/09/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
The PI3K/Akt/mTOR pathway plays a role in various oncogenic processes in breast cancer and key pathway aberrations have been identified which drive the different molecular subtypes. Early drugs developed targeting this pathway produced some clinical success but were hampered by pharmacokinetics, tolerability and efficacy problems. This created a need for new PI3K pathway-inhibiting drugs, which would produce more robust results allowing incorporation into treatment regimens for breast cancer patients. In this review, the most promising candidates from the new generation of PI3K-pathway inhibitors is explored, presenting evidence from preclinical and early clinical research, as well as ongoing trials utilising these drugs in breast cancer cohorts. The problems hindering the development of drugs targeting the PI3K pathway are examined, which have created problems for their use as monotherapies. PI3K pathway inhibitor combinations therefore remains a dynamic research area, and their role in combination with immunotherapies and epigenetic therapies is also inspected.
Collapse
Affiliation(s)
- Michael McKenna
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sarah McGarrigle
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Graham P Pidgeon
- Department of Surgery, Trinity Translational Medicine Institute, St. James's Hospital, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
18
|
Kauko O, Westermarck J. Non-genomic mechanisms of protein phosphatase 2A (PP2A) regulation in cancer. Int J Biochem Cell Biol 2018; 96:157-164. [DOI: 10.1016/j.biocel.2018.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 12/03/2017] [Accepted: 01/09/2018] [Indexed: 02/08/2023]
|
19
|
Yang Y, Zhang Y, Qu X, Xia J, Li D, Li X, Wang Y, He Z, Li S, Zhou Y, Xie L, Yang Z. Identification of differentially expressed genes in the development of osteosarcoma using RNA-seq. Oncotarget 2018; 7:87194-87205. [PMID: 27888627 PMCID: PMC5349981 DOI: 10.18632/oncotarget.13554] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/07/2016] [Indexed: 12/26/2022] Open
Abstract
Objective Osteosarcoma (OS) is a malignant bone tumor with high morbidity in young adults and adolescents. This study aimed to discover potential early diagnosis biomarkers in OS. Results In total, 111 differentially expressed genes (DEGs) were identified in primary OS compared with normal controls and 235 DEGs were identified in metastatic OS compared with primary OS. AURKB and PPP2R2B were the significantly up-regulated and down-regulated hub proteins, respectively, in the PPI protein-protein network (PPI) network of primary OS. ISG15 and BTRC were the significantly up-regulated and down-regulated hub proteins, respectively, in the network of metastatic OS. The DEGs in metastatic OS compared with primary OS were significantly enriched in the arachidonic acid metabolism, malaria, and chemokine signaling pathways. Finally, we employed quantitative real-time polymerase chain reaction (qRT-PCR) to validate the expression levels of candidate DEGs and the results indicated that our bioinformatics approach was acceptable. Materials and Methods The mRNA expression profiling of 20 subjects was obtained through high-throughput RNA-sequencing. DEGs were identified between primary OS and normal Control, and between primary OS and metastatic OS, respectively. Functional annotation and PPI networks were used to obtain insights into the functions of DEGs. qRT-PCR was performed to detect the expression levels of dysregulated genes in OS. Conclusions Our work might provide groundwork for the further exploration of tumorigenesis and metastasis mechanisms of OS.
Collapse
Affiliation(s)
- Yihao Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Ya Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Xin Qu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Junfeng Xia
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Dongqi Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Xiaojuan Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Yu Wang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Zewei He
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Su Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Yonghong Zhou
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Lin Xie
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan 650118, China
| |
Collapse
|
20
|
McCubrey JA, Abrams SL, Lertpiriyapong K, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Steelman LS. Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells-Power of nutraceuticals. Adv Biol Regul 2018; 67:190-211. [PMID: 28988970 DOI: 10.1016/j.jbior.2017.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Over the past fifty years, society has become aware of the importance of a healthy diet in terms of human fitness and longevity. More recently, the concept of the beneficial effects of certain components of our diet and other compounds, that are consumed often by different cultures in various parts of the world, has become apparent. These "healthy" components of our diet are often referred to as nutraceuticals and they can prevent/suppress: aging, bacterial, fungal and viral infections, diabetes, inflammation, metabolic disorders and cardiovascular diseases and have other health-enhancing effects. Moreover, they are now often being investigated because of their anti-cancer properties/potentials. Understanding the effects of various natural products on cancer cells may enhance their usage as anti-proliferative agents which may be beneficial for many health problems. In this manuscript, we discuss and demonstrate how certain nutraceuticals may enhance other anti-cancer drugs to suppress proliferation of cancer cells.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA; Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
21
|
Koh KX, Tan GH, Hui Low SH, Mohd Omar MF, Han MJ, Iacopetta B, Soo R, Beloueche-Babari M, Bhattacharya B, Soong R. Acquired resistance to PI3K/mTOR inhibition is associated with mitochondrial DNA mutation and glycolysis. Oncotarget 2017; 8:110133-110144. [PMID: 29299135 PMCID: PMC5746370 DOI: 10.18632/oncotarget.22655] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/27/2017] [Indexed: 01/31/2023] Open
Abstract
Acquired resistance (AQR) to drug treatment occurs frequently in cancer patients and remains an impediment to successful therapy. The aim of this study was to gain insight into how AQR arises following the application of PI3K/mTOR inhibitors. H1975 lung cancer cells with EGFR T790M mutations that confer resistance to EGFR inhibitors underwent prolonged treatment with the PI3K/mTOR inhibitor, BEZ235. Monoclonal cells with stable and increased resistance to BEZ235 were obtained after 8 months treatment. These AQR clones showed class-specific resistance to PI3K/mTOR inhibitors, reduced G1 cell cycle arrest and impedance of migration following PI3K/mTOR inhibition, reduced PTEN expression and increased Akt and S6RP phosphorylation. Transcriptome analysis revealed the AQR clones had increased expression of the metabolite transporters SLC16A9 and SLC16A7, suggestive of altered cell metabolism. Subsequent experiments revealed that AQR clones possess features consistent with elevated glycolysis, including increased levels of glucose, lactate, glutamine, glucose dependence, GLUT1 expression, and rates of post-glucose extracellular acidification, and decreased levels of reactive oxygen species and rates of oxygen consumption. Combination treatment of BEZ235 with the glycolysis inhibitor 3-bromopyruvate was synergistic in AQR clones, but only additive in parental cells. DNA sequencing revealed the presence of a mitochondrial DNA (mtDNA) MT-C01 variant in AQR but not parental cells. Depletion of mitochondrial DNA in parental cells induced resistance to BEZ235 and other PI3K/mTOR inhibitors, and was accompanied by increased glycolysis. The results of this study provide the first evidence that a metabolic switch associated with mtDNA mutation can be an underlying mechanism for AQR.
Collapse
Affiliation(s)
- King Xin Koh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Gim Hwa Tan
- Department of Haematology Oncology, National University Cancer Institute of Singapore, Singapore, Singapore
| | - Sarah Hong Hui Low
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Mohd Feroz Mohd Omar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Min Ji Han
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Barry Iacopetta
- School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| | - Ross Soo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Haematology Oncology, National University Cancer Institute of Singapore, Singapore, Singapore
| | - Mounia Beloueche-Babari
- Division of Radiotherapy and Imaging, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Bhaskar Bhattacharya
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Richie Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Genomic rearrangements in sporadic lymphangioleiomyomatosis: an evolving genetic story. Mod Pathol 2017; 30:1223-1233. [PMID: 28643793 DOI: 10.1038/modpathol.2017.52] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 12/12/2022]
Abstract
Sporadic lymphangioleiomyomatosis is a progressive pulmonary cystic disease resulting from the infiltration of smooth muscle-like lymphangioleiomyomatosis cells into the lung. The migratory/metastasizing properties of the lymphangioleiomyomatosis cell together with the presence of somatic mutations, primarily in the tuberous sclerosis complex gene (TSC2), lead many to consider this a low-grade malignancy. As malignant tumors characteristically accumulate somatic structural variations, which have not been well studied in sporadic lymphangioleiomyomatosis, we utilized mate pair sequencing to define structural variations within laser capture microdissected enriched lymphangioleiomyomatosis cell populations from five sporadic lymphangioleiomyomatosis patients. Lymphangioleiomyomatosis cells were confirmed in each tissue by hematoxylin eosin stain review and by HMB-45 immunohistochemistry in four cases. A mutation panel demonstrated characteristic TSC2 driver mutations in three cases. Genomic profiles demonstrated normal diploid coverage across all chromosomes, with no aneuploidy or detectable gains/losses of whole chromosomal arms typical of neoplastic diseases. However, somatic rearrangements and smaller deletions were validated in the two cases which lacked TSC2 driver mutations. Most significantly, one of these sporadic lymphangioleiomyomatosis cases contained two different size deletions encompassing the entire TSC1 locus. The detection of a homozygous deletion of TSC1 driving a predicted case of sporadic lymphangioleiomyomatosis, consistent with the common two-hit TSC2 mutation model, has never been reported for sporadic lymphangioleiomyomatosis. However, while no evidence of the hereditary tuberous sclerosis complex disease was reported for this patient, the potential for mosaicism and sub-clinical phenotype cannot be ruled out. Nevertheless, this study demonstrates that somatic structural rearrangements are present in lymphangioleiomyomatosis disease and provides a novel method of genomic characterization of sporadic lymphangioleiomyomatosis cells, aiding in defining cases with no detected mutations by conventional methodologies. These structural rearrangements could represent additional pathogenic mechanisms in sporadic lymphangioleiomyomatosis disease, potentially affecting response to therapy and adding to the complex genetic story of this rare disease.
Collapse
|
23
|
Spangle JM, Roberts TM, Zhao JJ. The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:123-131. [PMID: 28315368 DOI: 10.1016/j.bbcan.2017.03.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/10/2017] [Accepted: 03/11/2017] [Indexed: 12/27/2022]
Abstract
The PI3-kinase/AKT pathway integrates signals from external cellular stimuli to regulate essential cellular functions, and is frequently aberrantly activated in human cancers. Recent research demonstrates that tight regulation of the epigenome is critical in preserving and restricting transcriptional activation, which can impact cellular growth and proliferation. In this review we examine mechanisms by which the PI3K/AKT pathway regulates the epigenome to promote oncogenesis, and highlight how connections between PI3K/AKT and the epigenome may impact the future therapeutic treatment of cancers featuring a hyperactivated PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jennifer M Spangle
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 44 Binney St, Boston, MA 02115, USA.
| | - Thomas M Roberts
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 44 Binney St, Boston, MA 02115, USA
| | - Jean J Zhao
- Department of Cancer Biology, Dana Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 44 Binney St, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Verbrugge SE, Al M, Assaraf YG, Kammerer S, Chandrupatla DMSH, Honeywell R, Musters RPJ, Giovannetti E, O'Toole T, Scheffer GL, Krige D, de Gruijl TD, Niessen HWM, Lems WF, Kramer PA, Scheper RJ, Cloos J, Ossenkoppele GJ, Peters GJ, Jansen G. Multifactorial resistance to aminopeptidase inhibitor prodrug CHR2863 in myeloid leukemia cells: down-regulation of carboxylesterase 1, drug sequestration in lipid droplets and pro-survival activation ERK/Akt/mTOR. Oncotarget 2017; 7:5240-57. [PMID: 26496029 PMCID: PMC4868683 DOI: 10.18632/oncotarget.6169] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/04/2015] [Indexed: 12/14/2022] Open
Abstract
Aminopeptidase inhibitors are receiving attention as combination chemotherapeutic agents for the treatment of refractory acute myeloid leukemia. However, the factors determining therapeutic efficacy remain elusive. Here we identified the molecular basis of acquired resistance to CHR2863, an orally available hydrophobic aminopeptidase inhibitor prodrug with an esterase-sensitive motif, in myeloid leukemia cells. CHR2863 enters cells by diffusion and is retained therein upon esterase activity-mediated conversion to its hydrophilic active metabolite drug CHR6768, thereby exerting amino acid depletion. Carboxylesterases (CES) serve as candidate prodrug activating enzymes given CES1 expression in acute myeloid leukemia specimens. We established two novel myeloid leukemia sublines U937/CHR2863(200) and U937/CHR2863(5uM), with low (14-fold) and high level (270-fold) CHR2863 resistance. The latter drug resistant cells displayed: (i) complete loss of CES1-mediated drug activation associated with down-regulation of CES1 mRNA and protein, (ii) marked retention/sequestration of the prodrug, (iii) a substantial increase in intracellular lipid droplets, and (iv) a dominant activation of the pro-survival Akt/mTOR pathway. Remarkably, the latter feature coincided with a gain of sensitivity to the mTOR inhibitor rapamycin. These finding delineate the molecular basis of CHR2863 resistance and offer a novel modality to overcome this drug resistance in myeloid leukemia cells.
Collapse
Affiliation(s)
- Sue Ellen Verbrugge
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands.,Present address: Department of Clinical Chemistry, UMCU, Utrecht, The Netherlands
| | - Marjon Al
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | - Yehuda G Assaraf
- The Fred Wyszkowsky Cancer Research Laboratory, Faculty of Biology, The Technion-Israel Institute of Technology, Haifa, Israel
| | - Sarah Kammerer
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands.,Present address: Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Durga M S H Chandrupatla
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands.,Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Richard Honeywell
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Rene P J Musters
- Department of Physiology, VU University, Amsterdam, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tom O'Toole
- Department of Molecular Cell Biology, VU University, Amsterdam, The Netherlands
| | - George L Scheffer
- Departments of Pathology and Cardiac Surgery, ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
| | - David Krige
- Chroma Therapeutics Ltd, Abingdon, United Kingdom.,Present address: Immunocore Ltd, Oxford, UK
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Hans W M Niessen
- Departments of Pathology and Cardiac Surgery, ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
| | - Willem F Lems
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Rik J Scheper
- Departments of Pathology and Cardiac Surgery, ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Tan P, Tiong IS, Fleming S, Pomilio G, Cummings N, Droogleever M, McManus J, Schwarer A, Catalano J, Patil S, Avery S, Spencer A, Wei A. The mTOR inhibitor everolimus in combination with azacitidine in patients with relapsed/refractory acute myeloid leukemia: a phase Ib/II study. Oncotarget 2016; 8:52269-52280. [PMID: 28881728 PMCID: PMC5581027 DOI: 10.18632/oncotarget.13699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/20/2016] [Indexed: 12/11/2022] Open
Abstract
Therapeutic options are limited in relapsed/refractory acute myeloid leukemia (AML). We evaluated the maximum tolerated dose (MTD) and preliminary efficacy of mammalian target of rapamycin (mTOR) inhibitor, everolimus (days 5–21) in combination with azacitidine 75 mg/m2 subcutaneously (days 1–5 and 8–9 every 28 days) in 40 patients with relapsed (n = 27), primary refractory (n = 11) or elderly patients unfit for intensive chemotherapy (n = 2). MTD was not reached following everolimus dose escalation (2.5, 5 or 10 mg; n = 19) to the 10 mg dose level which was expanded (n = 21). Major adverse events (grade > 2) were mostly disease-related: neutropenia (73%), thrombocytopenia (67%), mucositis (24%) and febrile neutropenia (19%). Overall survival (OS) of the entire cohort was 8.5 months, and overall response rate (ORR; including CR/CRi/PR/MLFS) was 22.5%. Furthermore, a landmark analysis beyond cycle 1 revealed superior OS and ORR in patients receiving 2.5 mg everolimus with azoles, compared to those without azoles (median OS 12.8 vs. 6.0 months, P = 0.049, and ORR 50% vs. 16%, P = 0.056), potentially due to achievement of higher everolimus blood levels. This study demonstrates that everolimus in combination with azacitidine is tolerable, with promising clinical activity in advanced AML.
Collapse
Affiliation(s)
- Peter Tan
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia
| | - Ing Soo Tiong
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Shaun Fleming
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia
| | - Giovanna Pomilio
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Nik Cummings
- Department of Pathology, Alfred Hospital, Melbourne, Australia
| | - Mark Droogleever
- Faculty of Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Julie McManus
- Department of Pathology, Alfred Hospital, Melbourne, Australia
| | - Anthony Schwarer
- Eastern Health Clinical School, Monash University, Box Hill, Australia
| | - John Catalano
- Clinical Haematology, Frankston Hospital, Frankston, Australia
| | - Sushrut Patil
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia
| | - Sharon Avery
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia
| | - Andrew Spencer
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Andrew Wei
- Malignant Haematology and Stem Cell Transplantation Service, Alfred Hospital, Melbourne, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
26
|
Calvayrac O, Pradines A, Favre G. RHOB expression controls the activity of serine/threonine protein phosphatase PP2A to modulate mesenchymal phenotype and invasion in non-small cell lung cancers. Small GTPases 2016; 9:339-344. [PMID: 27676292 DOI: 10.1080/21541248.2016.1234429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Metastatic dissemination is the cause of death in the vast majority of cancers, including lung cancers. In order to metastasize, tumor cells must undergo a well-known series of changes, however the molecular details of how they manage to overcome the barriers at each stage remain incomplete. One critical step is acquiring the ability to migrate through the extracellular matrix. Loss of expression of the RAS-related small GTPase RHOB is a common feature of lung cancer progression, and we recently reported that this induces an epithelial-to-mesenchymal transition (EMT) that is dependent on SLUG overexpression and E-Cadherin inhibition and is characterized by 3-dimensional cell shape reorganization and the increased invasiveness of bronchial cells. RHOB loss was found to induce AKT1 activation, which in turn activates RAC1 through its GEF TRIO. Further investigation of this pathway revealed that RHOB interacts with and positively regulates PP2A, one of the major cellular serine-threonine phosphatases, by recruiting its regulatory subunit B55. Here we discuss the role of this newly discovered RHOB/PP2A/AKT1/RAC1 pathway in relation to mesenchymal migration and invasion in lung cancer.
Collapse
Affiliation(s)
- Olivier Calvayrac
- a Inserm, Center de Recherche en Cancérologie de Toulouse, CRCT UMR-1037 , Toulouse , France.,b Université Paul Sabatier , Toulouse , France
| | - Anne Pradines
- a Inserm, Center de Recherche en Cancérologie de Toulouse, CRCT UMR-1037 , Toulouse , France.,b Université Paul Sabatier , Toulouse , France.,c Institut Claudius Regaud, IUCT-Oncopole, Laboratoire de Biologie Médicale Oncologique , Toulouse , France
| | - Gilles Favre
- a Inserm, Center de Recherche en Cancérologie de Toulouse, CRCT UMR-1037 , Toulouse , France.,b Université Paul Sabatier , Toulouse , France.,c Institut Claudius Regaud, IUCT-Oncopole, Laboratoire de Biologie Médicale Oncologique , Toulouse , France
| |
Collapse
|
27
|
Wu YH, Chang TH, Huang YF, Chen CC, Chou CY. COL11A1 confers chemoresistance on ovarian cancer cells through the activation of Akt/c/EBPβ pathway and PDK1 stabilization. Oncotarget 2016; 6:23748-63. [PMID: 26087191 PMCID: PMC4695149 DOI: 10.18632/oncotarget.4250] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/28/2015] [Indexed: 01/18/2023] Open
Abstract
Chemoresistance to anticancer drugs substantially reduces survival in epithelial ovarian carcinoma (EOC). Here, microarray analysis showed that collagen type XI alpha 1 (COL11A1) is a chemotherapy response-associated gene. Chemoresistant cells expressed higher COL11A1 and c/EBPβ than chemosensitive cells. COL11A1 or c/EBPβ downregulation suppressed chemoresistance, whereas COL11A1 overexpression attenuated sensitivity to cisplatin and paclitaxel.The c/EBPβ binding site in the COL11A1 promoter was identified as the major determinant of cisplatin- and paclitaxel-induced COL11A1 expression. Immunoprecipitation and immunofluorescence showed that in resistant cells, Akt and PDK1 were highly expressed and that anticancer drugs enhanced binding activity between COL11A1 and PDK1 binding and attenuated PDK1 ubiquitination and degradation. Conversely, chemosensitive cells showed decreased activity of COL11A1 binding to PDK1 and increased PDK1 ubiquitination, which were reversed by COL11A1 overexpression. Analysis of 104 EOC patients showed that high COL11A1 mRNA levels are significantly associated with poor chemoresponse and clinical outcome.
Collapse
Affiliation(s)
- Yi-Hui Wu
- Department of Obstetrics and Gynaecology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei, Taiwan
| | - Yu-Fang Huang
- Department of Obstetrics and Gynaecology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Chia-Yi Christian Hospital, Chia-Yi, Taiwan.,Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Cheng-Yang Chou
- Department of Obstetrics and Gynaecology, College of Medicine, National Cheng Kung University and Hospital, Tainan, Taiwan
| |
Collapse
|
28
|
Kimball R, Wayment M, Merrill D, Wahlquist T, Reynolds PR, Arroyo JA. Hypoxia reduces placental mTOR activation in a hypoxia-induced model of intrauterine growth restriction (IUGR). Physiol Rep 2015; 3:3/12/e12651. [PMID: 26660559 PMCID: PMC4760431 DOI: 10.14814/phy2.12651] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is a protein that regulates cell growth in response to altered nutrient and growth factor availability. Our objective was to assess activated mTOR and its intracellular intermediates p70, and 4EBP1 in placental and invasive trophoblast cells in a hypoxia‐induced model of intrauterine growth restriction (IUGR) in rats. Rats were treated with hypoxia (9%) for 4 days. Placental and fetal weights, as well as conceptus numbers were recorded at the time of necropsy. Immunohistochemistry was used to determine the level of trophoblast invasion and apoptosis. Western blots were used to determine the activation of mTOR, p70, and 4EBP1 in the placenta and the uterine mesometrial compartment. We observed (1) decreased placental (21%) and fetal (24%) weights (P < 0.05); (2) decreased trophoblast invasion; (3) significantly increased active 4EBP1 (28%; P < 0.05) in invasive trophoblast cells yet no changes in the activation of mTOR and p70 proteins; and (4) a significant decrease in the activation of mTOR (48%; P < 0.05) with no differences in p70 or 4EBP1 activation in the placenta. We conclude that the development of IUGR is correlated with decreased activation of the mTOR protein in the placenta and increased 4EBP1 activity in the invading trophoblast. These results provide important insight into the physiological relevance of these pathways. Furthermore, modification of these and other related targets during gestation may alleviate IUGR severity.
Collapse
Affiliation(s)
- Rebecca Kimball
- Lung and Placenta Research Laboratory, , Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Montana Wayment
- Lung and Placenta Research Laboratory, , Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Daniel Merrill
- Lung and Placenta Research Laboratory, , Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Tyler Wahlquist
- Lung and Placenta Research Laboratory, , Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Paul R Reynolds
- Lung and Placenta Research Laboratory, , Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | - Juan A Arroyo
- Lung and Placenta Research Laboratory, , Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| |
Collapse
|
29
|
Zhi X, Chen W, Xue F, Liang C, Chen BW, Zhou Y, Wen L, Hu L, Shen J, Bai X, Liang T. OSI-027 inhibits pancreatic ductal adenocarcinoma cell proliferation and enhances the therapeutic effect of gemcitabine both in vitro and in vivo. Oncotarget 2015; 6:26230-41. [PMID: 26213847 PMCID: PMC4694897 DOI: 10.18632/oncotarget.4579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/10/2015] [Indexed: 02/06/2023] Open
Abstract
Despite its relative rarity, pancreatic ductal adenocarcinoma (PDAC) accounts for a large percentage of cancer deaths. In this study, we investigated the in vitro efficacy of OSI-027, a selective inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2, to treat PDAC cell lines alone, and in combination with gemcitabine (GEM). Similarly, we tested the efficacy of these two compounds in a xenograft mouse model of PDAC. OSI-027 significantly arrested cell cycle in G0/G1 phase, inhibited the proliferation of Panc-1, BxPC-3, and CFPAC-1 cells, and downregulated mTORC1, mTORC2, phospho-Akt, phospho-p70S6K, phospho-4E-BP1, cyclin D1, and cyclin-dependent kinase 4 (CDK4) in these cells. Moreover, OSI-027 also downregulated multidrug resistance (MDR)-1, which has been implicated in chemotherapy resistance in PDAC cells and enhanced apoptosis induced by GEM in the three PDAC cell lines. When combined, OSI-027 with GEM showed synergistic cytotoxic effects both in vitro and in vivo. This is the first evidence of the efficacy of OSI-027 in PDAC and may provide the groundwork for a new clinical PDAC therapy.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cell Cycle Checkpoints
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Deoxycytidine/analogs & derivatives
- Deoxycytidine/pharmacology
- Dose-Response Relationship, Drug
- Drug Synergism
- Gene Expression Regulation, Neoplastic
- Humans
- Imidazoles/pharmacology
- Inhibitory Concentration 50
- Mechanistic Target of Rapamycin Complex 1
- Mechanistic Target of Rapamycin Complex 2
- Mice, Inbred BALB C
- Mice, Nude
- Multiprotein Complexes/antagonists & inhibitors
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Protein Kinase Inhibitors/pharmacology
- RNA Interference
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Time Factors
- Transfection
- Triazines/pharmacology
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
- Gemcitabine
Collapse
Affiliation(s)
- Xiao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Fei Xue
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Chao Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Bryan Wei Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Yue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Liang Wen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Liqiang Hu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Jian Shen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
- Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R.China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R.China
- Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R.China
- Collaborative Innovation Center for Cancer Medicine, Zhejiang University, Hangzhou, P.R.China
| |
Collapse
|