1
|
Lê H, Deforges J, Cutolo P, Lamarque A, Hua G, Lindner V, Jain S, Balloul JM, Benkirane-Jessel N, Quéméneur E. Patient-derived tumoroids and proteomic signatures: tools for early drug discovery. Front Immunol 2024; 15:1379613. [PMID: 38698850 PMCID: PMC11063793 DOI: 10.3389/fimmu.2024.1379613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
Onco-virotherapy is an emergent treatment for cancer based on viral vectors. The therapeutic activity is based on two different mechanisms including tumor-specific oncolysis and immunostimulatory properties. In this study, we evaluated onco-virotherapy in vitro responses on immunocompetent non-small cell lung cancer (NSCLC) patient-derived tumoroids (PDTs) and healthy organoids. PDTs are accurate tools to predict patient's clinical responses at the in vitro stage. We showed that onco-virotherapy could exert specific antitumoral effects by producing a higher number of viral particles in PDTs than in healthy organoids. In the present work, we used multiplex protein screening, based on proximity extension assay to highlight different response profiles. Our results pointed to the increase of proteins implied in T cell activation, such as IFN-γ following onco-virotherapy treatment. Based on our observation, oncolytic viruses-based therapy responders are dependent on several factors: a high PD-L1 expression, which is a biomarker of greater immune response under immunotherapies, and the number of viral particles present in tumor tissue, which is dependent to the metabolic state of tumoral cells. Herein, we highlight the use of PDTs as an alternative in vitro model to assess patient-specific responses to onco-virotherapy at the early stage of the preclinical phases.
Collapse
Affiliation(s)
- Hélène Lê
- Transgene S.A., Illkirch–Graffenstaden, France
- INSERM UMR1260, Regenerative Nanomedicine, Strasbourg, France
| | | | | | | | - Guoqiang Hua
- INSERM UMR1260, Regenerative Nanomedicine, Strasbourg, France
| | - Véronique Lindner
- INSERM UMR1260, Regenerative Nanomedicine, Strasbourg, France
- Department of Pathology, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | | | | | | | | |
Collapse
|
2
|
DNA methylome and single-cell transcriptome analyses reveal CDA as a potential druggable target for ALK inhibitor-resistant lung cancer therapy. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1236-1249. [PMID: 35999456 PMCID: PMC9440127 DOI: 10.1038/s12276-022-00836-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/08/2022]
Abstract
Acquired resistance to inhibitors of anaplastic lymphoma kinase (ALK) is a major clinical challenge for ALK fusion-positive non-small-cell lung cancer (NSCLC). In the absence of secondary ALK mutations, epigenetic reprogramming is one of the main mechanisms of drug resistance, as it leads to phenotype switching that occurs during the epithelial-to-mesenchymal transition (EMT). Although drug-induced epigenetic reprogramming is believed to alter the sensitivity of cancer cells to anticancer treatments, there is still much to learn about overcoming drug resistance. In this study, we used an in vitro model of ceritinib-resistant NSCLC and employed genome-wide DNA methylation analysis in combination with single-cell (sc) RNA-seq to identify cytidine deaminase (CDA), a pyrimidine salvage pathway enzyme, as a candidate drug target. CDA was hypomethylated and upregulated in ceritinib-resistant cells. CDA-overexpressing cells were rarely but definitively detected in the naïve cell population by scRNA-seq, and their abundance was increased in the acquired-resistance population. Knockdown of CDA had antiproliferative effects on resistant cells and reversed the EMT phenotype. Treatment with epigenome-related nucleosides such as 5-formyl-2'-deoxycytidine selectively ablated CDA-overexpressing resistant cells via accumulation of DNA damage. Collectively, our data suggest that targeting CDA metabolism using epigenome-related nucleosides represents a potential new therapeutic strategy for overcoming ALK inhibitor resistance in NSCLC.
Collapse
|
3
|
Guda MR, Tsung AJ, Asuthkar S, Velpula KK. Galectin-1 activates carbonic anhydrase IX and modulates glioma metabolism. Cell Death Dis 2022; 13:574. [PMID: 35773253 PMCID: PMC9247167 DOI: 10.1038/s41419-022-05024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 01/21/2023]
Abstract
Galectins are a family of β-galactose-specific binding proteins residing within the cytosol or nucleus, with a highly conserved carbohydrate recognition domain across many species. Accumulating evidence shows that Galectin 1 (Gal-1) plays an essential role in cancer, and its expression correlates with tumor aggressiveness and progression. Our preliminary data showed Gal-1 promotes glioma stem cell (GSC) growth via increased Warburg effect. mRNA expression and clinical data were obtained from The Cancer Genome Atlas database. The immunoblot analysis conducted using our cohort of human glioblastoma patient specimens (hGBM), confirmed Gal-1 upregulation in GBM. GC/MS analysis to evaluate the effects of Gal-1 depletion showed elevated levels of α-ketoglutaric acid, and citric acid with a concomitant reduction in lactic acid levels. Using Biolog microplate-1 mitochondrial functional assay, we confirmed that the depletion of Gal-1 increases the expression levels of the enzymes from the TCA cycle, suggesting a reversal of the Warburg phenotype. Manipulation of Gal-1 using RNA interference showed reduced ATP, lactate levels, cell viability, colony-forming abilities, and increased expression levels of genes implicated in the induction of apoptosis. Gal-1 exerts its metabolic role via regulating the expression of carbonic anhydrase IX (CA-IX), a surrogate marker for hypoxia. CA-IX functions downstream to Gal-1, and co-immunoprecipitation experiments along with proximity ligation assays confirm that Gal-1 physically associates with CA-IX to regulate its expression. Further, silencing of Gal-1 in mice models showed reduced tumor burden and increased survival compared to the mice implanted with GSC controls. Further investigation of Gal-1 in GSC progression and metabolic reprogramming is warranted.
Collapse
Affiliation(s)
- Maheedhara R. Guda
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA
| | - Andrew J. Tsung
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,grid.430852.80000 0001 0741 4132Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,Illinois Neurological Institute, Peoria, IL USA
| | - Swapna Asuthkar
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA
| | - Kiran K. Velpula
- grid.430852.80000 0001 0741 4132Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,grid.430852.80000 0001 0741 4132Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL USA ,grid.430852.80000 0001 0741 4132Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL USA
| |
Collapse
|
4
|
Huang CC, Chuang IC, Su YL, Luo HL, Chang YC, Chen JY, Hsiao CC, Huang EY. Prognostic Significance of Galectin-1 but Not Galectin-3 in Patients With Lung Adenocarcinoma After Radiation Therapy. Front Oncol 2022; 12:834749. [PMID: 35280768 PMCID: PMC8904358 DOI: 10.3389/fonc.2022.834749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction To investigate the role of tumor galectin-1 and galectin-3 in patients with lung adenocarcinoma after definitive radiation therapy. Methods A total of 41 patients with localized lung adenocarcinoma undergoing thoracic radiation therapy without concurrent chemotherapy were enrolled. Their paraffin-embedded lung tissues were sent for immunohistochemical staining for galectin-1 and galectin-3. The clinical treatment outcomes, including overall (OS), locoregional progression-free (LRPFS), and distant metastasis-free (DMFS) survivals, were evaluated. Univariable and multivariable Cox regression analyses were applied. Results Overexpression of tumor galectin-1 and galectin-3 were found in 26.8% and 19.5% of patients, respectively. Overexpression of tumor galectin-1 was the most significant prognosticator to predict worse LRPFS in both univariable (p = 0.007) and multivariable analyses (p = 0.022). Besides, patients with overexpression of tumor galectin-1 had a trend of worse OS (p = 0.066) than those with low expression in multivariable analysis, and worse DMFS (p = 0.035) in univariable analysis. The overexpression of tumor galectin-3 had no significant effect on survival outcomes. Conclusions The overexpression of tumor galectin-1, but not galectin-3, is associated with poor LRPFS of patients with lung adenocarcinoma after thoracic radiation therapy. Future research on the mechanism of galectin-1 affecting radiation response in lung adenocarcinoma may be worth exploring.
Collapse
Affiliation(s)
- Chun-Chieh Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - I-Chieh Chuang
- Department of Anatomical Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Li Su
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hao-Lun Luo
- Department of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ya-Chun Chang
- Department of Internal Medicine, Kaohsiung Municipal Min-Sheng Hospital, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jo-Ying Chen
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chang-Chun Hsiao
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Eng-Yen Huang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
5
|
Reprogramming the tumor metastasis cascade by targeting galectin-driven networks. Biochem J 2021; 478:597-617. [PMID: 33600595 DOI: 10.1042/bcj20200167] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/28/2020] [Accepted: 01/21/2021] [Indexed: 12/31/2022]
Abstract
A sequence of interconnected events known as the metastatic cascade promotes tumor progression by regulating cellular and molecular interactions between tumor, stromal, endothelial, and immune cells both locally and systemically. Recently, a new concept has emerged to better describe this process by defining four attributes that metastatic cells should undergo. Every individual hallmark represents a unique trait of a metastatic cell that impacts directly in the outcome of the metastasis process. These critical features, known as the hallmarks of metastasis, include motility and invasion, modulation of the microenvironment, cell plasticity and colonization. They are hierarchically regulated at different levels by several factors, including galectins, a highly conserved family of β-galactoside-binding proteins abundantly expressed in tumor microenvironments and sites of metastasis. In this review, we discuss the role of galectins in modulating each hallmark of metastasis, highlighting novel therapeutic opportunities for treating the metastatic disease.
Collapse
|
6
|
Mir MA, Mehraj U, Sheikh BA. Recent Advances in Chemotherapeutic Implications of Deguelin: A Plant-Derived Retinoid. ACTA ACUST UNITED AC 2021. [DOI: 10.2174/2210315510666200128125950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deguelin, a plant retinoid has emerged to be a promising therapeutic agent in the treatment
of different cancers. Recent studies demonstrate that deguelin has potential as an angiogenesis
antagonist in malignant and endothelial cells by specifically targeting HGF-c-Met and VEGFVEGFR
pathways. It is reported to have profound therapeutic effects in pancreatic cancer by inactivation
of the hedgehog (Hh) signalling pathway and suppresses the expression of matrix metalloproteinases
such as MMP-2 and MMP-9. The basic underlying mechanisms for deguelin mediated anti-
NSCLC effects were uncovered through its induction of elevated intracellular Reactive Oxygen Species
(ROS) levels and suppression of the PI3K /Akt-HK2 signalling pathway. Deguelin induces cell
apoptosis by targeting various pathways most notably regulating the expression of galectin-1 and
binding directly to anti-apoptotic Bcl-2 (B-cell lymphoma 2), Bcl-xl (B-cell lymphoma-extralarge)
and Mcl-1 (Myeloid Cell Leukemia Sequence 1) in the hydrophobic grooves thereby liberating BAD
and BAX from binding with these proteins. These results derived from the effect of Deguelin on various
cancer cell lines have further elucidated its role as a novel anti-tumorigenic agent targeting angiogenesis,
apoptosis, cell proliferation and migration for cancer chemoprevention. In this review, an
attempt has been made to highlight the potential therapeutic effects of Deguelin in destroying the
cancer cells by inhibiting various tumour promoting pathways and its uses as a therapeutic agent
alone or in combination.
Collapse
Affiliation(s)
- Manzoor A. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Bashir A. Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
7
|
Li Z, Tian J, Du L, Gao Y, Wang Y, You F, Wang L. Anlotinib exerts anti-cancer efficiency on lung cancer stem cells in vitro and in vivo through reducing NF-κB activity. J Cell Mol Med 2021; 25:5547-5559. [PMID: 33955683 PMCID: PMC8184695 DOI: 10.1111/jcmm.16564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/18/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Anlotinib is a multi-target tyrosine kinase inhibitor. Previous studies confirmed that anlotinib exerts anti-cancer efficiency. However, the functional roles of anlotinib on cancer stem cells (CSCs) are yet to be elucidated. In this study, lung CSCs were isolated and identified in vitro, and mouse xenografts were established in vivo. MTT assays, tumour sphere formation assays, TdT-mediated dUTP nick-end labelling (TUNEL) staining, Annexin V-FITC/PI staining, immunofluorescence analysis and Western blot were performed to investigate the anti-cancer effects of anlotinib on lung CSCs. The results showed that anlotinib inhibits the growth of lung CSCs in vitro and in vivo. In addition, anlotinib induced apoptosis of these cells along with down-regulated expression level of Bcl-2 whereas up-regulated Bax and cleaved caspase-3 expression. It also sensitized lung CSCs to the cytotoxicity of cisplatin and paclitaxel; the tumour sphere formation and expression levels of multiple stemness-associated markers, such as ALDH1 and CD133, were also decreased. Furthermore, the underlying mechanism indicated that anlotinib reduces the phosphorylated levels of NF-κB p65 and IκB-α in lung CSCs. Taken together, these findings suggested that anlotinib exerts potent anti-cancer effects against lung CSCs through apoptotic induction and stemness phenotypic attenuation. The mechanism could be associated with the suppression of NF-κB activity.
Collapse
Affiliation(s)
- Zhuohong Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juncai Tian
- Lung Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.,Department of Respiratory Medicine, The First People's Hospital of Ziyang, Ziyang, China
| | - Lei Du
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Gao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Wang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- Lung Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Abstract
Background Galectins are proteins that bind β-galactosides such as N-acetyllactosamine present in N-linked and O-linked glycoproteins and that seem to be implicated in inflammatory and immune responses as well as fibrotic mechanisms. This preliminary study investigated serum galectins as clinical biomarkers in lung transplant patients with chronic lung allograft dysfunction (CLAD), phenotype bronchiolitis obliterans syndrome (BOS). Materials and Methods Nineteen lung transplant patients [median age (IQR), 55 (45–62) years; 53% males] were enrolled in the study. Peripheral blood concentrations of galectins-1, 3 and 9 were determined with commercial ELISA kits. Results Galectin-1 concentrations were higher in BOS than in stable LTX patients (p = 0.0394). In logistic regression analysis, testing BOS group as dependent variable with Gal-1 and 3 as independent variables, area under the receiver operating characteristics (AUROC) curve was 98.9% (NPV 90% and PPV 88.9%, p = 0.0003). With the stable LTX group as dependent variable and Gal-1, 3 and 9 as independent variables, AUROC was 92.6% (NPV 100% and PPV 90%, p = 0.0023). In stable patients were observed an inverse correlation of Gal-3 with DLCO% and KCO%, and between Gal-9 and KCO%. Conclusion Galectins-1, 3 and 9 are possible clinical biomarkers in lung transplant patients with diagnostic and prognostic meaning. These molecules may be directly implicated in the pathological mechanisms of BOS. The hypothesis that they could be new therapeutic targets in BOS patients is intriguing and also worth exploring.
Collapse
|
9
|
Navarro P, Martínez-Bosch N, Blidner AG, Rabinovich GA. Impact of Galectins in Resistance to Anticancer Therapies. Clin Cancer Res 2020; 26:6086-6101. [DOI: 10.1158/1078-0432.ccr-18-3870] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/27/2020] [Accepted: 07/22/2020] [Indexed: 11/16/2022]
|
10
|
Leung Z, Ko FCF, Tey SK, Kwong EML, Mao X, Liu BHM, Ma APY, Fung YME, Che CM, Wong DKH, Lai CL, Ng IOL, Yam JWP. Galectin-1 promotes hepatocellular carcinoma and the combined therapeutic effect of OTX008 galectin-1 inhibitor and sorafenib in tumor cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:423. [PMID: 31640796 PMCID: PMC6805403 DOI: 10.1186/s13046-019-1402-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022]
Abstract
Background Galectins are beta-galactose specific binding proteins. In human cancers, including hepatocellular carcinoma (HCC), galectin-1 (Gal-1) is often found to be overexpressed. In order to combat the dismal diagnosis and death rates of HCC, gene silencing and targeted inhibition of Gal-1 was investigated for its improved therapeutic potential. Methods Cellular and secretory Gal-1 levels were analyzed using HCC clinical samples. The study of Gal-1 was carried by both knockdown and overexpression approaches. The stable clones were tested by in vitro assays and in vivo experiments. Mass spectrometry was used to identify downstream targets of Gal-1. The upstream regulator of Gal-1, microRNA-22 (miR-22) was characterized by functional assays. The therapeutic effect of inhibiting Gal-1 was also analyzed. Results Gal-1 overexpression was observed in HCC and correlated with aggressive clinicopathological features and poorer survival. The loss of Gal-1 resulted in hindered cell migration, invasion and anchorage independent growth. This was also observed in the animal models, in that when Gal-1 was knocked down, there were fewer lung metastases. Proteomic profiling of control and Gal-1 knockdown cells identified that the level of retention in endoplasmic reticulum 1 (RER1) was suppressed when Gal-1 level was reduced. The cell motility of Gal-1 knockdown cells was enhanced upon the rescue of RER1 expression. In HCC tissues, Gal-1 and RER1 expressions displayed a significant positive correlation. The upstream regulator of Gal-1, miR-22 was observed to be underexpressed in HCC tissues and negatively correlated with Gal-1. Silencing of miR-22 resulted in the upregulation of Gal-1 and enhanced cell growth, migration and invasion. However, such enhancement was abolished in cells treated with OTX008, an inhibitor of Gal-1. Combinational treatment of OTX008 and sorafenib significantly reduced tumor growth and size. Conclusions Gal-1 overexpression was detected in HCC and this played a role in promoting tumorigenic processes and metastasis. The function of Gal-1 was found to be mediated through RER1. The correlations between miR-22, Gal-1 and RER1 expressions demonstrated the importance of miR-22 regulation on Gal-1/RER1 oncogenic activity. Lastly, the combinational treatment of OTX008 and sorafenib proved to be an improved therapeutic option compared to when administering sorafenib alone. Electronic supplementary material The online version of this article (10.1186/s13046-019-1402-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zoe Leung
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | | | - Sze Keong Tey
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | | | - Xiaowen Mao
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | | | - Angel Po Yee Ma
- Department of Pathology, The University of Hong Kong, Hong Kong, China
| | - Yi Man Eva Fung
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Chi-Ming Che
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
| | - Danny Ka Ho Wong
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China
| | - Ching Lung Lai
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, China.,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China
| | - Judy Wai Ping Yam
- Department of Pathology, The University of Hong Kong, Hong Kong, China. .,State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong, China. .,Department of Pathology, Block T, Queen Mary Hospital, Hong Kong, China.
| |
Collapse
|
11
|
Rajayi H, Tavasolian P, Rezalotfi A, Ebrahimi M. Cancer Stem Cells Targeting; the Lessons from the Interaction of the Immune System, the Cancer Stem Cells and the Tumor Niche. Int Rev Immunol 2019; 38:267-283. [DOI: 10.1080/08830185.2019.1669593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hajar Rajayi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parsova Tavasolian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alaleh Rezalotfi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Regenerative Biomedicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Dei S, Braconi L, Romanelli MN, Teodori E. Recent advances in the search of BCRP- and dual P-gp/BCRP-based multidrug resistance modulators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:710-743. [PMID: 35582565 PMCID: PMC8992508 DOI: 10.20517/cdr.2019.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
The development of multidrug resistance (MDR) is one of the major challenges to the success of chemotherapy treatment of cancer. This phenomenon is often associated with the overexpression of the ATP-binding cassette (ABC) transporters P-gp (P-glycoprotein, ABCB1), multidrug resistance-associated protein 1, ABCC1 and breast cancer resistance protein, ABCG2 (BCRP). These transporters are constitutively expressed in many tissues playing relevant protective roles by the regulation of the permeability of biological membranes, but they are also overexpressed in malignant tissues. P-gp is the first efflux transporter discovered to be involved in cancer drug resistance, and over the years, inhibitors of this pump have been disclosed to administer them in combination with chemotherapeutic agents. Three generations of inhibitors of P-gp have been examined in preclinical and clinical studies; however, these trials have largely failed to demonstrate that coadministration of pump inhibitors elicits an improvement in therapeutic efficacy of antitumor agents, although some of the latest compounds show better results. Therefore, new and innovative strategies, such as the fallback to natural products and the discover of dual activity ligands emerged as new perspectives. BCRP is the most recently ABC protein identified to be involved in multidrug resistance. It is overexpressed in several haematological and solid tumours together with P-gp, threatening the therapeutic effectiveness of different chemotherapeutic drugs. The chemistry of recently described BCRP inhibitors and dual P-gp/BCRP inhibitors, as well as their preliminary pharmacological evaluation are discussed, and the most recent advances concerning these kinds of MDR modulators are reviewed.
Collapse
Affiliation(s)
- Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| |
Collapse
|
13
|
Kumar A, Jaitak V. Natural products as multidrug resistance modulators in cancer. Eur J Med Chem 2019; 176:268-291. [PMID: 31103904 DOI: 10.1016/j.ejmech.2019.05.027] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 01/21/2023]
Abstract
Cancer is a prominent cause of death globally. Currently, many drugs that are in clinical practice are having a high prevalence of side effect and multidrug resistance. Risk of tumors acquiring resistance to chemotherapy (multidrug resistance) remains a significant hurdle to the successful treatment of various types of cancer. Membrane-embedded drug transporters, generally overexpressed in cancer, are the leading cause among multiple mechanisms of multidrug resistance (MDR). P-glycoprotein (P-gp) also MDR1/ABCB1, multidrug resistance associated protein 1 (MRP1/ABCC1), MRP2 and breast cancer resistance protein (BCRP/ABCG2) are considered to be a prime factor for induction of MDR. To date, several chemical substances have been tested in a number of clinical trials for their MDR modulatory activity which are not having devoid of any side effects that necessitates to find newer and safer way to tackle the current problem of multidrug resistance in cancer. The present study systematically discusses the various classes of natural products i.e flavonoids, alkaloids, terpenoids, coumarins (from plants, marine, and microorganisms) as potential MDR modulators and/or as a source of promising lead compounds. Recently a bisbenzyl isoquinoline alkaloid namely tetrandrine, isolated from Chinese herb Stephania tetrandra (Han-Fang-Chi) is in clinical trials for its MDR reversal activity.
Collapse
Affiliation(s)
- Amit Kumar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Mansa Road, Bathinda, 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Mansa Road, Bathinda, 151001, India.
| |
Collapse
|
14
|
Martinez-Bosch N, Barranco LE, Orozco CA, Moreno M, Visa L, Iglesias M, Oldfield L, Neoptolemos JP, Greenhalf W, Earl J, Carrato A, Costello E, Navarro P. Increased plasma levels of galectin-1 in pancreatic cancer: potential use as biomarker. Oncotarget 2018; 9:32984-32996. [PMID: 30250644 PMCID: PMC6152472 DOI: 10.18632/oncotarget.26034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 01/08/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is the most frequent type of pancreatic cancer and one of the deadliest diseases overall. New biomarkers are urgently needed to allow early diagnosis, one of the only factors that currently improves prognosis. Here we analyzed whether the detection of circulating galectin-1 (Gal-1), a soluble carbohydrate-binding protein overexpressed in PDA tissue samples, can be used as a biomarker for PDA. Gal-1 levels were determined by ELISA in plasma from healthy controls and patients diagnosed with PDA, using three independent cohorts. Patients with chronic pancreatitis (CP) were also included in the study to analyze the potential of Gal-1 to discriminate between cancer and inflammatory process. Plasma Gal-1 levels were significantly increased in patients with PDA as compared to controls in all three cohorts. Gal-1 sensitivity and specificity values were similar to that of the CA19-9 biomarker (the only FDA-approved blood test biomarker for PDA), and the combination of Gal-1 and CA19-9 significantly improved their individual discriminatory powers. Moreover, high levels of Gal-1 were associated with lower survival in patients with non-resected tumors. Collectively, our data indicate a strong potential of using circulating Gal-1 levels as a biomarker for detection and prognostics of patients with PDA.
Collapse
Affiliation(s)
- Neus Martinez-Bosch
- Cancer Research Program, IMIM, Hospital del Mar Medical Research Institute, Unidad Asociade CSIC, Barcelona, Spain
| | - Luis E Barranco
- Cancer Research Program, IMIM, Hospital del Mar Medical Research Institute, Unidad Asociade CSIC, Barcelona, Spain
- Department of Gastroenterology, Universidad Autonoma de Barcelona, Hospital del Mar, Barcelona, Spain
| | - Carlos A Orozco
- Cancer Research Program, IMIM, Hospital del Mar Medical Research Institute, Unidad Asociade CSIC, Barcelona, Spain
| | - Mireia Moreno
- Cancer Research Program, IMIM, Hospital del Mar Medical Research Institute, Unidad Asociade CSIC, Barcelona, Spain
| | - Laura Visa
- Department of Medical Oncology, Hospital del Mar, Barcelona, Spain
| | - Mar Iglesias
- Department of Pathology, Universidad Autonoma de Barcelona, Hospital del Mar, CIBERONC, Barcelona, Spain
| | - Lucy Oldfield
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - John P Neoptolemos
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Julie Earl
- Department of Medical Oncology, Ramon y Cajal University Hospital, CIBERONC, IRYCIS, Alcala University, Madrid, Spain
| | - Alfredo Carrato
- Department of Medical Oncology, Ramon y Cajal University Hospital, CIBERONC, IRYCIS, Alcala University, Madrid, Spain
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Pilar Navarro
- Cancer Research Program, IMIM, Hospital del Mar Medical Research Institute, Unidad Asociade CSIC, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Barcelona, Spain
| |
Collapse
|
15
|
You JL, Wang W, Tang MY, Ye YH, Liu AX, Zhu YM. A potential role of galectin-1 in promoting mouse trophoblast stem cell differentiation. Mol Cell Endocrinol 2018; 470:228-239. [PMID: 29122660 DOI: 10.1016/j.mce.2017.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 11/24/2022]
Abstract
Galectin-1 is highly expressed in blastocysts and trophoblast giant cells during implantation, and dysregulated galectin-1 is associated with many pregnancy-related abnormalities. Elevated galectin-1 contributes to cancer cells invasion. Here, we found that galectin-1 is expressed in mouse oocytes, preimplantation embryos (all stages), and trophoblast stem (TS) cells. Peak levels of galectin-1 mRNA and protein were detected on day 4 and day 5 after the induction of TS cells differentiation. Overexpression of galectin-1 increased TS cells migration and invasion, whereas knockdown of galectin-1 attenuated these effects. Additionally, knockdown of galectin-1 in TS cells decreased the expression of matrix metalloproteinase (MMP) 2/9, ZEB-1, Snail, N-cadherin, TGF-β, Nodal, and phospho-Smad2/3, whereas the expression of E-cadherin was increased. In contrast, overexpression of galectin-1 in TS cells increased the expression of MMP2/9, ZEB-1, and N-cadherin, whereas the expression of E-cadherin was decreased. These findings suggest a potential role of galectin-1 in the differentiation of mouse TS cells.
Collapse
Affiliation(s)
- Jia-Li You
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min-Yue Tang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Hui Ye
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ai-Xia Liu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yi-Min Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
16
|
Wang F, Zheng Y, Orange M, Yang C, Yang B, Liu J, Tan T, Ma X, Chen T, Yin X, Tang X, Zhu H. PTRF suppresses the progression of colorectal cancers. Oncotarget 2018; 8:48650-48659. [PMID: 27203393 PMCID: PMC5564714 DOI: 10.18632/oncotarget.9424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/11/2016] [Indexed: 01/04/2023] Open
Abstract
As a key component of caveolae structure on the plasma membrane, accumulated evidence has suggested that Polymerase I and Transcript Release Factor (PTRF) plays a pivotal role in suppressing the progression of human malignances. However, the function of PTRF in the development of colorectal cancers is still unclear. Here we report that the expression of PTRF is significantly reduced in tumor tissues derived from human patients with colorectal cancers, and that the downregulation of PTRF correlates to the advanced stage of the disease. In addition, we found that the expression of PTRF negatively regulates the tumorigenic activities of colorectal cell lines (Colo320, HT29 and CaCo2). Furthermore, ectopic PTRF expression caused significant suppression of cellular proliferation, and anchorage-independent colony growth of Colo320 cells, which have the lowest expression level of PTRF in the three studied cell lines. Meanwhile, shRNA mediated knockdown of PTRF in CaCo2 cells significantly promoted cellular proliferation and anchorage-independent colony growth. In addition, in vivo assays further revealed that tumor growth was significantly inhibited in xenografts with ectopic PTRF expression as compared to untreated Colo320 cells, but was markedly enhanced in PTRF knockdown CaCo2 cells. Biochemical studies revealed that overexpression of PTRF led to the suppression of the AKT/mTOR pathway, as evidenced by reduced phosphorylation of AKT, mTOR, and downstream MMP-9. Thus, these findings, for the first time, demonstrated that PTRF inhibits the tumorigenesis of colorectal cancers and that it might serve as a potential therapeutic target for human colon cancer patients.
Collapse
Affiliation(s)
- Fengyun Wang
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongqiu Zheng
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Matthew Orange
- Department of Physical Education and Human Performance, Central Connecticut State University, New Britain, CT, USA
| | - Chunlin Yang
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bin Yang
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiong Liu
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Xiangxue Ma
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tin Chen
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolan Yin
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xudong Tang
- Gastroenterology Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
17
|
Dubé-Delarosbil C, St-Pierre Y. The emerging role of galectins in high-fatality cancers. Cell Mol Life Sci 2018; 75:1215-1226. [PMID: 29119229 PMCID: PMC11105754 DOI: 10.1007/s00018-017-2708-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/13/2022]
Abstract
Although we witnessed considerable progress in the prevention and treatment of cancer during the past few decades, a number of cancers remain difficult to treat. The main reasons for this are a lack of effective biomarkers necessary for an early detection and inefficient treatments for cancer that are diagnosed at late stages of the disease. Because of their alarmin-like properties and their protumorigenic role during cancer progression, members of the galectin family are uniquely positioned to provide information that could be used for the exploration of possible avenues for the treatment of high fatality cancer (HFC). A rapid overview of studies that examined the expressions and functions of galectins in cancer cells reveals that they play a central role in at least three major features that characterize HFCs: (1) induction of systemic and local immunosuppression, (2) chemoresistance of cancer cells, and (3) increased invasive behavior. Defining the galectinome in HFCs will also lead to a better understanding of tumor heterogeneity while providing critical information that could improve the accuracy of biomarker panels for a more personalized treatment of HFCs. In this review, we discuss the relevance of the galectinome in HFC and its possible contribution to providing potential solutions.
Collapse
Affiliation(s)
| | - Yves St-Pierre
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
18
|
Galectin-1 knockdown improves drug sensitivity of breast cancer by reducing P-glycoprotein expression through inhibiting the Raf-1/AP-1 signaling pathway. Oncotarget 2018; 8:25097-25106. [PMID: 28212576 PMCID: PMC5421912 DOI: 10.18632/oncotarget.15341] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/16/2017] [Indexed: 12/15/2022] Open
Abstract
Galectin-1 (Gal-1), a member of the galectin family of carbohydrate binding proteins, plays a pivotal role in various cellular processes of tumorigenesis. The regulatory effect of Gal-1 on multidrug resistance (MDR) breast cancer cells is still unclear. qRT-PCR and western blot showed that Gal-1 and MDR gene 1 (MDR1) were both highly expressed in breast tumor tissues and cell lines. MTT assay and flow cytometry revealed that Gal-1 knockdown improved sensitivity to paclitaxel (PTX) and adriamycin (ADR) in MCF-7/PTX and MCF-7/ADR cells via inhibition of cell viability and promotion of cell apoptosis, while MDR1 overexpression weakened the sensitivity to PTX and ADR induced by Gal-1 knockdown. Furthermore, the negative effects of Gal-1 knockdown on sensitivity to PTX and ADR in MCF-7/PTX and MCF-7/ADR cells were revealed to be mediated via the suppression of Raf-1/AP-1 pathway. In conclusion, Gal-1 knockdown dramatically improved drug sensitivity of breast cancer by reducing P-glycoprotein (P-gp) expression via inhibiting the Raf-1/AP-1 pathway, providing a novel therapeutic target to overcome MDR in breast cancer.
Collapse
|
19
|
Ji YM, Zhou XF, Zhang J, Zheng X, Li SB, Wei ZQ, Liu T, Cheng DL, Liu P, Song K, Tan T, Zhu H, Guo JL. DEPTOR suppresses the progression of esophageal squamous cell carcinoma and predicts poor prognosis. Oncotarget 2017; 7:14188-98. [PMID: 26893358 PMCID: PMC4924707 DOI: 10.18632/oncotarget.7420] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/29/2016] [Indexed: 01/14/2023] Open
Abstract
As a naturally occurring inhibitor of mTOR, accumulated evidence has suggested that DEPTOR plays a pivotal role in suppressing the progression of human malignances. However, the function of DEPTOR in the development of esophageal squamous cell carcinoma (ESCC) is still unclear. Here we report that the expression of DEPTOR is significantly reduced in tumor tissues derived from human patients with ESCC, and the downregulation of DEPTOR predicts a poor prognosis of ESCC patients. In addition, we found that the expression of DEPTOR negatively regulates the tumorigenic activities of ESCC cell lines (KYSE150, KYSE510 and KYSE190). Furthermore, ectopic DEPTOR expression caused a significant suppression of the cellular proliferation, migration and invasion of KYSE150 cells, which has the lowest expression level of DEPTOR in the three cell lines. Meanwhile, CRISPR/Cas9 mediated knockout of DEPTOR in KYSE-510 cells significantly promoted cellular proliferation, migration and invasion. In addition, in vivo assays further revealed that tumor growth was significantly inhibited in xenografts with ectopic DEPTOR expression as compared to untreated KYSE150 cells, and was markedly enhanced in DEPTOR knockout KYSE-510 cells. Biochemical studies revealed that overexpression of DEPTOR led to the suppression of AKT/mTOR pathway as evidenced by reduced phosphorylation of AKT, mTOR and downstream SGK1, indicating DEPTOR might control the progression of ESCC through AKT/mTOR signaling pathway. Thus, these findings, for the first time, demonstrated that DEPTOR inhibits the tumorigenesis of ESCC cells and might serve as a potential therapeutic target or prognostic marker for human patients with ESCC.
Collapse
Affiliation(s)
- Yan-Mei Ji
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Xue-Feng Zhou
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jun Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Xiang Zheng
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Sheng-Bao Li
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Zhi-Qiang Wei
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Tao Liu
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Dong-Liang Cheng
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Ping Liu
- Department of Pathology, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| | - Kuncheng Song
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jia-Long Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, People's Republic of China
| |
Collapse
|
20
|
Saeednejad Zanjani L, Madjd Z, Abolhasani M, Andersson Y, Rasti A, Shariftabrizi A, Asgari M. Cytoplasmic expression of CD133 stemness marker is associated with tumor aggressiveness in clear cell renal cell carcinoma. Exp Mol Pathol 2017; 103:218-228. [PMID: 29050853 DOI: 10.1016/j.yexmp.2017.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/10/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022]
Abstract
Prominin-1 (CD133) is one of the most commonly used markers for cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. However, the clinical and prognostic significance of CSCs in renal cell carcinoma (RCC) remains unclear. The aim of this study was to investigate the expression patterns and prognostic significance of the cancer stem cell marker CD133 in different histological subtypes of RCC. CD133 expression was evaluated using immunohistochemistry in 193 well-defined renal tumor samples on tissue microarrays, including 136 (70.5%) clear cell renal cell carcinomas (CCRCCs), 26 (13.5%) papillary RCCs, and 31 (16.1%) chromophobe RCCs. The association between CD133 expression and clinicopathological features as well as the survival outcomes was determined. There was a statistically significant difference between CD133 expression among the different RCC subtypes. In CCRCC, higher cytoplasmic expression of CD133 was significantly associated with increase in grade, stage, microvascular invasion (MVI) and lymph node invasion (LNI), while no association was found with the membranous expression. Moreover, on multivariate analysis, TNM stage and nuclear grade were independent prognostic factors for overall survival (OS) in cytoplasmic expression. We showed that higher cytoplasmic CD133 expression was associated with more aggressive tumor behavior and more advanced disease in CCRCC but not in the other examined subtypes. Our results demonstrated that higher cytoplasmic CD133 expression is clinically significant in CCRCC and is associated with increased tumor aggressiveness and is useful for predicting cancer progression.
Collapse
Affiliation(s)
| | - Zahra Madjd
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Abolhasani
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran; Hasheminejad Kidney Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Yvonne Andersson
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Arezoo Rasti
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ahmad Shariftabrizi
- Department of Nuclear Medicine and Molecular Imaging, State University of New York at Buffalo, Buffalo, NY 14223, USA
| | - Mojgan Asgari
- Oncopathology Research Centre, Iran University of Medical Sciences (IUMS), Tehran, Iran; Hasheminejad Kidney Center, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
21
|
Chang WA, Tsai MJ, Kuo PL, Hung JY. Role of galectins in lung cancer. Oncol Lett 2017; 14:5077-5084. [PMID: 29113148 PMCID: PMC5662908 DOI: 10.3892/ol.2017.6882] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 07/07/2017] [Indexed: 12/27/2022] Open
Abstract
Lung cancer is the leading cause of cancer-associated mortality worldwide and is also associated with a poor prognosis. As in numerous other types of cancer, galectins have been demonstrated to be involved in the progression of lung cancer. Galectins belong to a superfamily of lectins, which are carbohydrate-binding proteins. There are at least 15 members in the galectin family, however, only galectin-1, −2, −3, −4, −7, −8, −9, −10, −12, and −13 are found in humans. Galectins are able to mediate interactions between cells, including homotypic and heterotypic interactions; they also facilitate the bindings between cells and extracellular matrix components. These cell-cell and cell-matrix interactions, as well as the galectin signaling on the cell surface, are able to modulate signaling pathways and thereby influence cellular functions and behaviors. Galectin-1, −3, −4, −7, −8 and −9 are associated with lung cancer. These galectins are associated with tumor invasion, migration, metastasis and progression, and may serve important roles in the tumor microenvironment of lung cancer. The majority of galectins are associated with the progression of lung cancer, with the exception of galectin-9, which is associated with enhanced anticancer immunity. Therefore, galectins may be potential targets for developing novel lung cancer therapies.
Collapse
Affiliation(s)
- Wei-An Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Ming-Ju Tsai
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Jen-Yu Hung
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C.,Department of Internal Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
22
|
Kathiriya JJ, Nakra N, Nixon J, Patel PS, Vaghasiya V, Alhassani A, Tian Z, Allen-Gipson D, Davé V. Galectin-1 inhibition attenuates profibrotic signaling in hypoxia-induced pulmonary fibrosis. Cell Death Discov 2017; 3:17010. [PMID: 28417017 PMCID: PMC5385413 DOI: 10.1038/cddiscovery.2017.10] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/10/2017] [Indexed: 12/18/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by lung remodeling arising from epithelial injury, aberrant fibroblast growth, and excessive deposition of extracellular matrix. Repeated epithelial injury elicits abnormal wound repair and lung remodeling, often associated with alveolar collapse and edema, leading to focal hypoxia. Here, we demonstrate that hypoxia is a physiological insult that contributes to pulmonary fibrosis (PF) and define its molecular roles in profibrotic activation of lung epithelial cells. Hypoxia increased transcription of profibrotic genes and altered the proteomic signatures of lung epithelial cells. Network analysis of the hypoxic epithelial proteome revealed a crosstalk between transforming growth factor-β1 and FAK1 (focal adhesion kinase-1) signaling, which regulated transcription of galectin-1, a profibrotic molecule. Galectin-1 physically interacted with and activated FAK1 in lung epithelial cells. We developed a novel model of exacerbated PF wherein hypoxia, as a secondary insult, caused PF in mice injured with subclinical levels of bleomycin. Hypoxia elevated expression of phosphorylated FAK1, galectin-1, and α-smooth muscle actin and reduced caspase-3 activation, suggesting aberrant injury repair. Galectin-1 inhibition caused apoptosis in the lung parenchyma and reduced FAK1 activation, preventing the development of hypoxia-induced PF. Galectin-1 inhibition also attenuated fibrosis-associated lung function decline. Further, galectin-1 transcript levels were increased in the lungs of IPF patients. In summary, we have identified a profibrotic role of galectin-1 in hypoxia signaling driving PF.
Collapse
Affiliation(s)
- Jaymin J Kathiriya
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Niyati Nakra
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jenna Nixon
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Puja S Patel
- University of Miami, Coral Gables, FL 33124, USA
| | - Vijay Vaghasiya
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ahmed Alhassani
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Zhi Tian
- University of Miami, Coral Gables, FL 33124, USA
| | - Diane Allen-Gipson
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Vrushank Davé
- Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.,Department of Cancer Biology and Evolution, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
23
|
CD133 overexpression correlates with clinicopathological features of gastric cancer patients and its impact on survival: a systematic review and meta-analysis. Oncotarget 2016; 6:42019-27. [PMID: 26503471 PMCID: PMC4747206 DOI: 10.18632/oncotarget.5714] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
Background CD133 is one of the most commonly used markers of cancer stem cells (CSCs), which are characterized by their ability for self-renewal and tumorigenicity. However, the clinical and prognostic significance of CD133 in gastric cancer remains controversial. To clarify a precise determinant of the clinical significance of CD133, we conducted a systematic review and meta-analysis to elucidate the correlation of CD133 overexpression with prognosis and clinicopathological features of GC patients. Methods A search in the Cochrane Library, Pubmed, Medline, Web of Knowledge and Chinese CNKI, CBM (up to Jun 30, 2015) was performed using the following keywords gastric cancer, CD133, AC133, prominin-1, etc. Electronic searches were supplemented by hand searching reference lists, abstracts and proceedings from meetings. Outcomes included overall survival and various clinicopathological features. Two reviewers independently screened the literature according to the inclusion and exclusion criteria, extracted the data, and assessed the methodological quality of the included studies, and then RevMan 5.2.0 software was used for meta-analysis. Results A total of 603 gastric cancer patients from 8 studies were included. The results of the meta-analyses showed that, there were significant differences of CD133 expression in the following comparisons: gastric cancer tissues vs. normal esophageal tissue (OR = 3.49, 95% CI [2.48, 490], P < 0.00001), lymph node metastasis vs. non-lymph node metastasis (OR = 2.75, 95% CI [1.99, 3.81], P < 0.00001), distant metastasis vs. non-distant metastasis (OR = 2.38, 95%CI [1.47, 3.85], P < 0.0004), clinical stages III~IV vs. clinical stages I~II (OR = 2.83, 95% CI [2.13, 3.76], P < 0.00001), as well as the accumulative 5-year overall survival rates of CD133-positive vs. CD133-negative patients (OR = 0.23, 95% CI [0.16, 0.33], P < 0.00001). Conclusion Overexpression of CD133 is associated with lymph node metastasis, distant metastasis, poor TNM stage. Additionally, CD133-positive gastric cancer patients had worse prognosis. Our results indicate that CD133 may be involved in the carcinogenesis of gastric cancer. Evaluation of cytoplasmic CD133 overexpression in gastric cancer tissue sections may be useful in the future as a novel prognostic factor. Nevertheless, due to the poor quality and small sample size of included trials, more well-designed multi-center randomized controlled trials should be performed.
Collapse
|
24
|
Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies. Drug Resist Updat 2016; 27:14-29. [DOI: 10.1016/j.drup.2016.05.001] [Citation(s) in RCA: 464] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 04/24/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
|
25
|
Li G, Gao Y, Cui L, Wu L, Yang X, Chen J. Anguilla japonicalectin 1 delivery through adenovirus vector induces apoptotic cancer cell death through interaction with PRMT5. J Gene Med 2016; 18:65-74. [DOI: 10.1002/jgm.2878] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/20/2016] [Accepted: 03/07/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Gongchu Li
- College of Life Sciences; Zhejiang Sci-Tech University; Hangzhou Zhejiang China
| | - Yajun Gao
- College of Life Sciences; Zhejiang Sci-Tech University; Hangzhou Zhejiang China
| | - Lianzhen Cui
- College of Life Sciences; Zhejiang Sci-Tech University; Hangzhou Zhejiang China
| | - Liqin Wu
- College of Life Sciences; Zhejiang Sci-Tech University; Hangzhou Zhejiang China
| | - Xinyan Yang
- College of Life Sciences; Zhejiang Sci-Tech University; Hangzhou Zhejiang China
| | - Jing Chen
- Institute of Life Sciences, College of Life and Environmental Sciences; Hangzhou Normal University; Hangzhou Zhejiang China
| |
Collapse
|
26
|
Yan B, Zhao D, Yao Y, Bao Z, Lu G, Zhou J. Deguelin Induces the Apoptosis of Lung Squamous Cell Carcinoma Cells through Regulating the Expression of Galectin-1. Int J Biol Sci 2016; 12:850-60. [PMID: 27313498 PMCID: PMC4910603 DOI: 10.7150/ijbs.14773] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/16/2016] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is the leading cause of cancer mortality around the world. Despite advances in the targeted therapy, patients with lung squamous cell carcinoma(SCC) still benefit few from it, and the search for potential effective therapies is imperative. Here, we demonstrated that deguelin induced significant apoptosis of lung SCC cells in vitro. Importantly, we found deguelin down-regulated the expression of galectin-1, which was involved in a wide range of tumorous physiologic process. Thus, we both over-expressed and down-regulated galectin-1 to perform its role in deguelin-induced apoptosis. We found that increased galectin-1 attenuated apoptosis of SCC cells exposed to deguelin, while galectin-1 knockdown sensitized lung cancer cells to deguelin treatment. Additionally, we observed that down-regulation of galectin-1 resulted in suppression of Ras/Raf/ERK pathway which was involved in deguelin-induced cell apoptosis. We also found that deguelin had a significant anti-tumor ability with decline of galectin-1 in vivo. In conclusion, these findings confirm that deguelin may act as a new chemo-preventive agent through inducing apoptosis of lung SCC cells in a galectin-1 dependent manner.
Collapse
Affiliation(s)
- Bing Yan
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Dejian Zhao
- 2. Department of Clinical Laboratory, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinan Yao
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhang Bao
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Guohua Lu
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianying Zhou
- 1. Department of Respiratory Diseases, First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Galectin-1 suppression delineates a new strategy to inhibit myeloma-induced angiogenesis and tumoral growth in vivo. Leukemia 2016; 30:2351-2363. [PMID: 27311934 DOI: 10.1038/leu.2016.137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/22/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
Abstract
Galectin-1 (Gal-1) is involved in tumoral angiogenesis, hypoxia and metastases. Actually the Gal-1 expression profile in multiple myeloma (MM) patients and its pathophysiological role in MM-induced angiogenesis and tumoral growth are unknown. In this study, we found that Gal-1 expression by MM cells was upregulated in hypoxic conditions and that stable knockdown of hypoxia inducible factor-1α significantly downregulated its expression. Therefore, we performed Gal-1 inhibition using lentivirus transfection of shRNA anti-Gal-1 in human myeloma cell lines (HMCLs), and showed that its suppression modified transcriptional profiles in both hypoxic and normoxic conditions. Interestingly, Gal-1 inhibition in MM cells downregulated proangiogenic genes, including MMP9 and CCL2, and upregulated the antiangiogenic ones SEMA3A and CXCL10. Consistently, Gal-1 suppression in MM cells significantly decreased their proangiogenic properties in vitro. This was confirmed in vivo, in two different mouse models injected with HMCLs transfected with anti-Gal-1 shRNA or the control vector. Gal-1 suppression in both models significantly reduced tumor burden and microvascular density as compared with the control mice. Moreover, Gal-1 suppression induced smaller lytic lesions on X-ray in the intratibial model. Overall, our data indicate that Gal-1 is a new potential therapeutic target in MM blocking angiogenesis.
Collapse
|
28
|
Zheng L, Xu C, Guan Z, Su X, Xu Z, Cao J, Teng L. Galectin-1 mediates TGF-β-induced transformation from normal fibroblasts into carcinoma-associated fibroblasts and promotes tumor progression in gastric cancer. Am J Transl Res 2016; 8:1641-1658. [PMID: 27186290 PMCID: PMC4859895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
Rcinoma-associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment. Cancer cells can induce the transformation from normal fibroblasts (NFs) into CAFs, reciprocally, CAFs promote tumor invasion and proliferation. TGF-β has been the mostly accepted factor to fuel NFs transformation into CAFs. Galectin-1 (Gal1) is highly upregulated in CAFs of multiple human cancers, and overexpression of Gal1 in CAFs promotes tumor progression. The effect of Gal1 on TGF-β-induced CAFs activation has not yet been established in gastric cancer (GC). In this study, we show that Gal1 expression in stroma is positively related to TGF-β in epithelial cells by retrospective analysis of GC patient samples. Meanwhile, conditioned media (CMs) from gastric cancer cells induce expression of both Gal1 and the CAFs marker alpha smooth muscle actin (α-SMA) in NFs via TGF-β secretion. Knockdown of Gal1 prevents TGF-β-induced the conversion of NFs to CAFs. CMs from fibroblasts overexpressing Gal1 inhibits cancer cells apoptosis, promotes migration and invasion in vitro. Thus, Gal1 is significantly involved in the development of tumor-promoting microenvironment by enhancing TGF-β signaling in a positive feedback loop. Targeting Gal1 in tumor stroma should be considered as a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Lingyan Zheng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Cong Xu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Zhonghai Guan
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Xingyun Su
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Zhenzhen Xu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| | - Jiang Cao
- Clinical Research Center, The Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou, Zhejiang, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhou, Zhejiang, China
| |
Collapse
|
29
|
Sun M, Hong S, Li W, Wang P, You J, Zhang X, Tang F, Wang P, Zhang C. MiR-99a regulates ROS-mediated invasion and migration of lung adenocarcinoma cells by targeting NOX4. Oncol Rep 2016; 35:2755-66. [PMID: 26986073 DOI: 10.3892/or.2016.4672] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/05/2016] [Indexed: 11/06/2022] Open
Abstract
miR-99a is frequently downregulated in various types of human malignancies including lung adenocarcinoma. Recent studies have reported that miR-99a regulates cell growth and cell cycle progression by targeting mTOR, AKT1 and FGFR3. However, the underlying mechanisms involved in the modulation of invasion and migration by miR-99a remain elusive. In this study, we analyzed the relationship between the expression of miR-99a and clinical stage or metastasis in 90 matched lung adenocarcinoma and adjacent non-tumor lung tissues. Downregulation of miR-99a was significantly associated with advanced stage and tumor metastasis in lung adenocarcinoma patients, and it was found to be a poor prognostic factor in lung adenocarcinoma. Furthermore, functional experiments found that overexpression of miR-99a inhibited the proliferation, migration and invasion of lung adenocarcinoma A549 and Calu3 cells in vitro. We then identified NOX4 as a target gene of miR-99a and NOX4 mediated the inhibition of invasion and migration of lung adenocarcinoma cells by miR-99a. By targeting NOX4-mediated ROS production, miR-99a regulated the invasion and migration of lung adenocarcinoma cells. Moreover, overexpression of miR-99a significantly inhibited tumor growth in vivo. Immunohistochemical staining analysis of the mouse tumor tissues revealed that NOX4 levels were downregulated in the miR-99a treatment group, confirming the in vitro data of NOX4 as a direct target gene of miR-99a. Taken together, these data indicate for the first time that miR-99a directly regulates the invasion and migration in lung adenocarcinoma by targeting NOX4 and that overexpression of miR-99a may become a therapeutic strategy for lung adenocarcinoma.
Collapse
Affiliation(s)
- Mei Sun
- Department of Radiation Oncology, Tianjin Huan Hu Hospital, Tianjin 300060, P.R. China
| | - Shunming Hong
- Department of Postgraduate Studies, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Wenhan Li
- Department of Postgraduate Studies, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Pengfei Wang
- Department of Postgraduate Studies, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Jinqiang You
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Xuebin Zhang
- Department of Pathology, Tianjin Huan Hu Hospital, Tianjin 300060, P.R. China
| | - Fan Tang
- Department of Pathology, Tianjin Huan Hu Hospital, Tianjin 300060, P.R. China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Chunzhi Zhang
- Department of Radiation Oncology, Tianjin Huan Hu Hospital, Tianjin 300060, P.R. China
| |
Collapse
|
30
|
Zhou X, Guo J, Ji Y, Pan G, Liu T, Zhu H, Zhao J. Reciprocal Negative Regulation between EGFR and DEPTOR Plays an Important Role in the Progression of Lung Adenocarcinoma. Mol Cancer Res 2016; 14:448-57. [PMID: 26896556 DOI: 10.1158/1541-7786.mcr-15-0480] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/10/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Xuefeng Zhou
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Jialong Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Yanmei Ji
- Department of Intensive Care Unit, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Gaofeng Pan
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Tao Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, P.R. China
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.
| |
Collapse
|
31
|
MacDonagh L, Gray SG, Breen E, Cuffe S, Finn SP, O'Byrne KJ, Barr MP. Lung cancer stem cells: The root of resistance. Cancer Lett 2016; 372:147-56. [PMID: 26797015 DOI: 10.1016/j.canlet.2016.01.012] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/06/2016] [Accepted: 01/07/2016] [Indexed: 02/07/2023]
Abstract
In the absence of specific treatable mutations, platinum-based chemotherapy remains the gold standard of treatment for lung cancer patients. However, 5-year survival rates remain poor due to the development of resistance and eventual relapse. Resistance to conventional cytotoxic therapies presents a significant clinical challenge in the treatment of this disease. The cancer stem cell (CSC) hypothesis suggests that tumors are arranged in a hierarchical structure, with the presence of a small subset of stem-like cells that are responsible for tumor initiation and growth. This CSC population has a number of key properties such as the ability to asymmetrically divide, differentiate and self-renew, in addition to having increased intrinsic resistance to therapy. While cytotoxic chemotherapy kills the bulk of tumor cells, CSCs are spared and have the ability to recapitulate the heterogenic tumor mass. The identification of lung CSCs and their role in tumor biology and treatment resistance may lead to innovative targeted therapies that may ultimately improve clinical outcomes in lung cancer patients. This review will focus on lung CSC markers, their role in resistance and their relevance as targets for future therapies.
Collapse
Affiliation(s)
- Lauren MacDonagh
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Steven G Gray
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Eamon Breen
- Flow Cytometry Core Facility, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Sinead Cuffe
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland
| | - Stephen P Finn
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland; Department of Histopathology, St. James's Hospital and Trinity College Dublin, Ireland
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, Queensland University of Technology, Brisbane, Australia
| | - Martin P Barr
- Thoracic Oncology Research Group, School of Clinical Medicine, Institute of Molecular Medicine, Trinity Centre for Health Sciences, St. James's Hospital and Trinity College Dublin, Ireland.
| |
Collapse
|
32
|
Lee YS, Hwang SG, Kim JK, Park TH, Kim YR, Myeong HS, Choi JD, Kwon K, Jang CS, Ro YT, Noh YH, Kim SY. Identification of novel therapeutic target genes in acquired lapatinib-resistant breast cancer by integrative meta-analysis. Tumour Biol 2015; 37:2285-97. [PMID: 26361955 DOI: 10.1007/s13277-015-4033-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 09/02/2015] [Indexed: 12/11/2022] Open
Abstract
Acquired resistance to lapatinib is a highly problematic clinical barrier that has to be overcome for a successful cancer treatment. Despite efforts to determine the mechanisms underlying acquired lapatinib resistance (ALR), no definitive genetic factors have been reported to be solely responsible for the acquired resistance in breast cancer. Therefore, we performed a cross-platform meta-analysis of three publically available microarray datasets related to breast cancer with ALR, using the R-based RankProd package. From the meta-analysis, we were able to identify a total of 990 differentially expressed genes (DEGs, 406 upregulated, 584 downregulated) that are potentially associated with ALR. Gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs showed that "response to organic substance" and "p53 signaling pathway" may be largely involved in ALR process. Of these, many of the top 50 upregulated and downregulated DEGs were found in oncogenesis of various tumors and cancers. For the top 50 DEGs, we constructed the gene coexpression and protein-protein interaction networks from a huge database of well-known molecular interactions. By integrative analysis of two systemic networks, we condensed the total number of DEGs to six common genes (LGALS1, PRSS23, PTRF, FHL2, TOB1, and SOCS2). Furthermore, these genes were confirmed in functional module eigens obtained from the weighted gene correlation network analysis of total DEGs in the microarray datasets ("GSE16179" and "GSE52707"). Our integrative meta-analysis could provide a comprehensive perspective into complex mechanisms underlying ALR in breast cancer and a theoretical support for further chemotherapeutic studies.
Collapse
Affiliation(s)
- Young Seok Lee
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sun Goo Hwang
- Plant Genomics Laboratory, Department of Applied Plant Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Jin Ki Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Tae Hwan Park
- Department of Plastic and Reconstructive Surgery, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Young Rae Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Ho Sung Myeong
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jong Duck Choi
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Kang Kwon
- School of Korean Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Cheol Seong Jang
- Plant Genomics Laboratory, Department of Applied Plant Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Young Tae Ro
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yun Hee Noh
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, School of Medicine, Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
33
|
Punt S, Thijssen VL, Vrolijk J, de Kroon CD, Gorter A, Jordanova ES. Galectin-1, -3 and -9 Expression and Clinical Significance in Squamous Cervical Cancer. PLoS One 2015; 10:e0129119. [PMID: 26066796 PMCID: PMC4467041 DOI: 10.1371/journal.pone.0129119] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/04/2015] [Indexed: 12/13/2022] Open
Abstract
Galectins are proteins that bind β-galactoside sugars and provide a new type of potential biomarkers and therapeutic targets in cancer. Galectin-1, -3 and -9 have become the focus of different research groups, but their expression and function in cervical cancer is still unclear. The aim of this study was to determine the phenotype of galectin-1, -3 and -9 expressing cells and the association with clinico-pathological parameters in cervical cancer. Galectin expression was scored in tumor cells, tumor epithelium infiltrating immune cells and stromal cells in squamous cervical cancer (n = 160). Correlations with clinico-pathological parameters and survival were studied according to the REMARK recommendations. We additionally investigated whether the galectins were expressed by tumor cells, fibroblasts, macrophages and T cells. Galectin-1 and -9 were both expressed by tumor cells in 11% of samples, while 84% expressed galectin-3. Strong galectin-1 expression by tumor cells was an independent predictor for poor survival (hazard ratio: 8.02, p = 0.001) and correlated with increased tumor invasion (p = 0.032) and receiving post-operative radiotherapy (p = 0.020). Weak and positive tumor cell galectin-3 expression were correlated with increased and decreased tumor invasion, respectively (p = 0.012). Tumor cell expression of galectin-9 showed a trend toward improved survival (p = 0.087). The predominant immune cell type expressing galectin-1, -3 and -9 were CD163+ macrophages. Galectin-1 and -3 were expressed by a minor population of T cells. Galectin-1 was mainly expressed by fibroblasts in the tumor stroma. To conclude, while tumor cell expression of galectin-9 seemed to represent a beneficial response, galectin-1 expression might be used as a marker for a more aggressive anti-cancer treatment.
Collapse
Affiliation(s)
- Simone Punt
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Victor L. Thijssen
- Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Johannes Vrolijk
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cornelis D. de Kroon
- Department of Gynecology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arko Gorter
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ekaterina S. Jordanova
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Gynecological Oncology Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|