1
|
Tejada Neyra MA, Neuberger U, Reinhardt A, Brugnara G, Bonekamp D, Sill M, Wick A, Jones DTW, Radbruch A, Unterberg A, Debus J, Heiland S, Schlemmer HP, Herold-Mende C, Pfister S, von Deimling A, Wick W, Capper D, Bendszus M, Kickingereder P. Voxel-wise radiogenomic mapping of tumor location with key molecular alterations in patients with glioma. Neuro Oncol 2019; 20:1517-1524. [PMID: 30107597 DOI: 10.1093/neuonc/noy134] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background This study aims to evaluate the impact of tumor location on key molecular alterations on a single voxel level in patients with newly diagnosed glioma. Methods A consecutive series of n = 237 patients with newly diagnosed glioblastoma and n = 131 patients with lower-grade glioma was analyzed. Volumetric tumor segmentation was performed on preoperative MRI with a semi-automated approach and images were registered to the standard Montreal Neurological Institute 152 space. Using a voxel-based lesion symptom mapping (VLSM) analysis, we identified specific brain regions that were associated with tumor-specific molecular alterations. We assessed a predefined set of n = 17 molecular characteristics in the glioblastoma cohort and n = 2 molecular characteristics in the lower-grade glioma cohort. Permutation adjustment (n = 1000 iterations) was used to correct for multiple testing, and voxel t-values that were greater than the t-value in >95% of the permutations were retained in the VLSM results (α = 0.05, power > 0.8). Results Tumor location predilection for isocitrate dehydrogenase (IDH) mutant tumors was found in both glioblastoma and lower-grade glioma cohorts, each showing a concordant predominance in the frontal lobe adjacent to the rostral extension of the lateral ventricles (permutation-adjusted P = 0.021 for the glioblastoma and 0.013 for the lower-grade glioma cohort). Apart from that, the VLSM analysis did not reveal a significant association of the tumor location with any other key molecular alteration in both cohorts (permutation-adjusted P > 0.05 each). Conclusion Our study highlights the unique properties of IDH mutations and underpins the hypothesis that the rostral extension of the lateral ventricles is a potential location for the cell of origin in IDH-mutant gliomas.
Collapse
Affiliation(s)
| | - Ulf Neuberger
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Annekathrin Reinhardt
- Department of Neuropathology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Gianluca Brugnara
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - David Bonekamp
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Sill
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK) Core Center Heidelberg, Heidelberg, Germany
| | - Antje Wick
- Neurology Clinic, University of Heidelberg Medical Center, Heidelberg, Germany
| | - David T W Jones
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK) Core Center Heidelberg, Heidelberg, Germany
| | - Alexander Radbruch
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University of Heidelberg Medical Center, Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCOR), Heidelberg, Germany.,Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital and DKFZ, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | | | - Christel Herold-Mende
- Department of Neurosurgery, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Stefan Pfister
- Hopp-Children's Cancer Center at the NCT Heidelberg (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, DKFZ, Heidelberg, Germany.,German Cancer Consortium (DKTK) Core Center Heidelberg, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, University of Heidelberg Medical Center, Heidelberg, Germany.,DKTK, Clinical Cooperation Unit Neuropathology, DKFZ, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic, University of Heidelberg Medical Center, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, DKTK, DKFZ, Heidelberg, Germany
| | - David Capper
- Department of Neuropathology, University of Heidelberg Medical Center, Heidelberg, Germany.,Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Neuropathology, Berlin, Germany.,DKTK, Partner Site Berlin, DKFZ, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| | - Philipp Kickingereder
- Department of Neuroradiology, University of Heidelberg Medical Center, Heidelberg, Germany
| |
Collapse
|
2
|
Paglia S, Sollazzo M, Di Giacomo S, de Biase D, Pession A, Grifoni D. Failure of the PTEN/aPKC/Lgl Axis Primes Formation of Adult Brain Tumours in Drosophila. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2690187. [PMID: 29445734 PMCID: PMC5763105 DOI: 10.1155/2017/2690187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/02/2017] [Accepted: 11/08/2017] [Indexed: 02/05/2023]
Abstract
Different regions in the mammalian adult brain contain immature precursors, reinforcing the concept that brain cancers, such as glioblastoma multiforme (GBM), may originate from cells endowed with stem-like properties. Alterations of the tumour suppressor gene PTEN are very common in primary GBMs. Very recently, PTEN loss was shown to undermine a specific molecular axis, whose failure is associated with the maintenance of the GBM stem cells in mammals. This axis is composed of PTEN, aPKC, and the polarity determinant Lethal giant larvae (Lgl): PTEN loss promotes aPKC activation through the PI3K pathway, which in turn leads to Lgl inhibition, ultimately preventing stem cell differentiation. To find the neural precursors responding to perturbations of this molecular axis, we targeted different neurogenic regions of the Drosophila brain. Here we show that PTEN mutation impacts aPKC and Lgl protein levels also in Drosophila. Moreover, we demonstrate that PI3K activation is not sufficient to trigger tumourigenesis, while aPKC promotes hyperplastic growth of the neuroepithelium and a noticeable expansion of the type II neuroblasts. Finally, we show that these neuroblasts form invasive tumours that persist and keep growing in the adult, leading the affected animals to untimely death, thus displaying frankly malignant behaviours.
Collapse
Affiliation(s)
- Simona Paglia
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Manuela Sollazzo
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Simone Di Giacomo
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Dario de Biase
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Annalisa Pession
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Daniela Grifoni
- Department of “Pharmacy and Biotechnology”, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
3
|
Wang K, Wang YY, Ma J, Wang JF, Li SW, Jiang T, Dai JP. Prognostic value of MGMT promoter methylation and TP53 mutation in glioblastomas depends on IDH1 mutation. Asian Pac J Cancer Prev 2015; 15:10893-8. [PMID: 25605197 DOI: 10.7314/apjcp.2014.15.24.10893] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Several molecular markers have been proposed as predictors of outcome in patients with glioblastomas. We investigated the prognostic significance of O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation and TP53 mutation status dependent on isocitrate dehydrogenase 1 (IDH1) mutation in glioblastoma patients. A cohort of 78 patients with histologically confirmed glioblastomas treated with radiation therapy and chemotherapy were reviewed retrospectively. We evaluated the prognostic value of MGMT promoter methylation and TP53 mutation status with regard to progression-free survival (PFS) and overall survival (OS). It was revealed that mutations in IDH1, promoter methylation of MGMT, TP53 mutation, age, Karnofsky performance status (KFS), and extension of resection were independent prognostic factors. In patients with an IDH1 mutation, those with an MGMT methylation were associated with longer PFS (p=0.016) and OS (p=0.013). Nevertheless, the presence of TP53 mutation could stratify the PFS and OS of patients with IDH1 wild type (p=0.003 and 0.029 respectively, log-rank). The MGMT promoter methylation and TP53 mutation were associated with a favorable outcome of patients with and without mutant IDH1, respectively. The results indicate that glioblastomas with MGMT methylation or TP53 mutations have improved survival that may be influenced by IDH1 mutation status.
Collapse
Affiliation(s)
- Kai Wang
- Department of Neuroradiology, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China E-mail :
| | | | | | | | | | | | | |
Collapse
|
4
|
Agnihotri S, Zadeh G. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. Neuro Oncol 2015; 18:160-72. [PMID: 26180081 DOI: 10.1093/neuonc/nov125] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 06/15/2015] [Indexed: 12/21/2022] Open
Abstract
A defining hallmark of glioblastoma is altered tumor metabolism. The metabolic shift towards aerobic glycolysis with reprogramming of mitochondrial oxidative phosphorylation, regardless of oxygen availability, is a phenomenon known as the Warburg effect. In addition to the Warburg effect, glioblastoma tumor cells also utilize the tricarboxylic acid cycle/oxidative phosphorylation in a different capacity than normal tissue. Altered metabolic enzymes and their metabolites are oncogenic and not simply a product of tumor proliferation. Here we highlight the advantages of why tumor cells, including glioblastoma cells, require metabolic reprogramming and how tumor metabolism can converge on tumor epigenetics and unanswered questions in the field.
Collapse
Affiliation(s)
- Sameer Agnihotri
- MacFeeters-Hamilton Brain Tumor Centre, Toronto, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada (S.A., G.Z.); Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Canada (G.Z)
| | - Gelareh Zadeh
- MacFeeters-Hamilton Brain Tumor Centre, Toronto, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada (S.A., G.Z.); Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Canada (G.Z)
| |
Collapse
|
5
|
Ke C, Tran K, Chen Y, Di Donato AT, Yu L, Hu Y, Linskey ME, Wang PH, Limoli CL, Zhou YH. Linking differential radiation responses to glioma heterogeneity. Oncotarget 2015; 5:1657-65. [PMID: 24722169 PMCID: PMC4039238 DOI: 10.18632/oncotarget.1823] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The phenotypic and genetic diversity that define tumor subpopulations within high-grade glioma can lead to therapeutic resistance and tumor recurrence. Given that cranial irradiation is a frontline treatment for malignant glioma, understanding how irradiation selectively effects different cellular subpopulations within these heterogeneous cancers should help identify interventions targeted to better combat this deadly disease. To analyze the radiation response of distinct glioma subpopulations, 2 glioma cells lines (U251, A172) were cultured under conditions that promoted either adherence or non-adherent spheroids. Past work has demonstrated that subpopulations derived from defined culture conditions exhibit differences in karyotype, proliferation, gene expression and tumorigenicity. Spheroid cultures from each of the glioma cell lines were found to be more radiosensitive, which was consistent with higher levels of oxidative stress and lower levels of both oxidative phosphorylation and glycolytic metabolism 1 week following irradiation. In contrast, radioresistant non-spheroid parental cultures showed increased glycolytic activity in response to irradiation, while oxidative phosphorylation was affected to a lesser extent. Overall these data suggest that prolonged radiation-induced oxidative stress can compromise the metabolic state of certain glioma subpopulations thereby altering their sensitivity to an important therapeutic intervention used routinely for the control of glioma.
Collapse
Affiliation(s)
- Chao Ke
- Neurological Surgery, University of California, Irvine, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Anatomical localization of p53 mutated tumors: A radiographic study of human glioblastomas. J Neurol Sci 2014; 346:94-8. [DOI: 10.1016/j.jns.2014.07.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/08/2014] [Accepted: 07/30/2014] [Indexed: 11/20/2022]
|
7
|
Wang Y, Zhang T, Li S, Fan X, Ma J, Wang L, Jiang T. Anatomical localization of isocitrate dehydrogenase 1 mutation: a voxel-based radiographic study of 146 low-grade gliomas. Eur J Neurol 2014; 22:348-54. [PMID: 25318355 DOI: 10.1111/ene.12578] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND AND PURPOSE A brain tumor's location is associated with the genetic profile of its tumor precursor cells. Mutations in isocitrate dehydrogenase 1 (IDH1) are an early event in tumor development and play a critical role in gliomagenesis. This study was conducted to specify the anatomical characteristics of IDH1 mutation in low-grade gliomas and to further explore the origin of gliomas with IDH1 mutation. The impact of IDH1 mutation on disease prognosis was also evaluated. METHODS The pre-operative magnetic resonance images obtained from 146 patients with histologically confirmed low-grade glioma were analyzed retrospectively. All tumors were manually marked and registered to the standard location. Voxel-based lesion-symptom mapping analysis was used to identify brain regions associated with a high occurrence of IDH1 mutation. Progression-free survival and overall survival were estimated using the Kaplan-Meier method, and potential prognostic factors were evaluated using the multivariate proportional hazards model. RESULTS Isocitrate dehydrogenase 1 mutated low-grade gliomas occurred most frequently in the frontal lobe, and specifically in the area surrounding the rostral extension of the lateral ventricles. Additionally, it was demonstrated that IDH1 mutation was an independent predictor for longer progression-free survival and overall survival. CONCLUSIONS Low-grade gliomas with IDH1 mutation are region-specific and preferentially located surrounding the rostral extension of the lateral ventricles. Furthermore, such mutations are associated with a favorable clinical outcome.
Collapse
Affiliation(s)
- Y Wang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Wang YY, Zhang T, Li SW, Qian TY, Fan X, Peng XX, Ma J, Wang L, Jiang T. Mapping p53 mutations in low-grade glioma: a voxel-based neuroimaging analysis. AJNR Am J Neuroradiol 2014; 36:70-6. [PMID: 25104286 DOI: 10.3174/ajnr.a4065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND PURPOSE Brain tumor location has proved to be a prognostic factor that may be associated with features of neoplastic origin. Mutation of p53 is an atypical genetic change that occurs during tumorigenesis. Thus, a potential correlation may exist between tumor location and p53 status. The purpose of the current study was to identify anatomic characteristics of mutant p53 expression by using quantitative neuroimaging analyses. MATERIALS AND METHODS Preoperative MR images from 182 patients with histologically confirmed low-grade gliomas were retrospectively analyzed. All tumors were manually marked and registered to the standard space. Using a voxel-based lesion-symptom mapping analysis, we located brain regions associated with a high occurrence of p53 mutation and corrected them by using a permutation test. The acquired clusters were further included as a factor in survival analyses. RESULTS Statistical analysis demonstrated that the left medial temporal lobe and right anterior temporal lobe were specifically associated with high expression of mutant p53. Kaplan-Meier curves showed that tumors located in these regions were associated with significantly worse progression-free survival compared with tumors occurring elsewhere. CONCLUSIONS Our voxel-level imaging analysis provides new evidence that genetic changes during cancer may have anatomic specificity. Additionally, the current study suggests that tumor location identified on structural MR images could potentially be used for customized presurgical outcome prediction.
Collapse
Affiliation(s)
- Y Y Wang
- From the Beijing Neurosurgical Institute (Y.Y.W., T.J.) Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.)
| | - T Zhang
- Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.)
| | - S W Li
- Neuroradiology (S.W.L., J.M.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - T Y Qian
- Siemens Healthcare (T.Y.Q.), MR Collaboration NE Asia, Beijing, China
| | - X Fan
- Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.)
| | - X X Peng
- Department of Epidemiology and Biostatistics (X.X.P.), School of Public Health and Family Medicine, Capital Medical University, Beijing, China
| | - J Ma
- Neuroradiology (S.W.L., J.M.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - L Wang
- Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.) China National Clinical Research Center for Neurological Diseases (L.W.), Beijing, China
| | - T Jiang
- From the Beijing Neurosurgical Institute (Y.Y.W., T.J.) Departments of Neurosurgery (Y.Y.W., T.Z., X.F., L.W., T.J.) Beijing Institute for Brain Disorders (T.J.), Beijing, China.
| |
Collapse
|
9
|
Abstract
Glioblastoma (GBM) is the most malignant brain tumor where patients' survival is only 14.6 months, despite multimodal therapy with debulking surgery, concurrent chemotherapy and radiotherapy. There is an urgent, unmet need for novel, effective therapeutic strategies for this devastating disease. Although several immunotherapies are under development for the treatment of GBM patients, the use of natural killer (NK) cells is still marginal despite this being a promising approach to treat cancer. In regard of our knowledge on the role of NG2/CSPG4 in promoting GBM aggressiveness we investigated the potential of an innovative immunotherapeutic strategy combining mAb9.2.27 against NG2/CSPG4 and NK cells in preclinical animal models of GBM. Multiple immune escape mechanisms maintain the tumor microenvironment in an anti-inflammatory state to promote tumor growth, however, the distinct roles of resident microglia versus recruited macrophages is not elucidated. We hypothesized that exploiting the cytokine release capabilities of activated (NK) cells to reverse the anti-inflammatory axis combined with mAb9.2.27 targeting the NG2/CSPG4 may favor tumor destruction by editing pro-GBM immune responses. Combination treatment with NK+mAb9.2.27 diminished tumor growth that was associated with reduced tumor proliferation, increased cellular apoptosis and prolonged survival compared to vehicle and monotherapy controls. The therapeutic efficacy was mediated by recruitment of CCR2low macrophages into the tumor microenvironment, increased ED1 and MHC class II expression on microglia that might render them competent for GBM antigen presentation, as well as elevated IFN-γ and TNF-α levels in the cerebrospinal fluid compared to controls. Depletion of systemic macrophages by liposome-encapsulated clodronate decreased the CCR2low macrophages recruited to the brain and abolished the beneficial outcomes. Moreover, mAb9.2.27 reversed tumor-promoting effects of patient-derived tumor-associated macrophage/microglia(TAM) ex vivo.Taken together, these findings indicate thatNK+mAb9.2.27 treatment may be an amenable therapeutic strategy to treat NG2/CSPG4 expressing GBMs. We provide a novel conceptual approach of combination immunotherapy for glioblastoma. The results traverse beyond the elucidation of NG2/CSPG4 as a therapeutic target, but demonstrate a proof of concept that this antibody may hold potential for the treatment of GBM by activation of tumor infiltrated microglia/macrophages.
Collapse
|
10
|
Gont A, Hanson JEL, Lavictoire SJ, Parolin DA, Daneshmand M, Restall IJ, Soucie M, Nicholas G, Woulfe J, Kassam A, Da Silva VF, Lorimer IAJ. PTEN loss represses glioblastoma tumor initiating cell differentiation via inactivation of Lgl1. Oncotarget 2014; 4:1266-79. [PMID: 23907540 PMCID: PMC3787156 DOI: 10.18632/oncotarget.1164] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma multiforme is an aggressive and incurable type of brain tumor. A subset of undifferentiated glioblastoma cells, known as glioblastoma tumor initiating cells (GTICs), has an essential role in the malignancy of this disease and also appears to mediate resistance to radiation therapy and chemotherapy. GTICs retain the ability to differentiate into cells with reduced malignant potential, but the signaling pathways controlling differentiation are not fully understood at this time. PTEN loss is a very common in glioblastoma multiforme and leads to aberrant activation of the phosphoinositide 3-kinase pathway. Increased signalling through this pathway leads to activation of multiple protein kinases, including atypical protein kinase C. In Drosophila, active atypical protein kinase C has been shown to promote the self-renewal of neuroblasts, inhibiting their differentiation along a neuronal lineage. This effect is mediated by atypical protein kinase c-mediated phosphorylation and inactivation of Lgl, a protein that was first characterized as a tumour suppressor in Drosophila. The effects of the atypical protein kinase C/Lgl pathway on the differentiation status of GTICs, and its potential link to PTEN loss, have not been assessed previously. Here we show that PTEN loss leads to the phosphorylation and inactivation of Lgl by atypical protein kinase C in glioblastoma cells. Re-expression of PTEN in GTICs promoted their differentiation along a neuronal lineage. This effect was also seen when atypical protein kinase C was knocked down using RNA interference, and when a non-phosphorylatable, constitutively active form of Lgl was expressed in GTICs. Thus PTEN loss, acting via atypical protein kinase C activation and Lgl inactivation, helps to maintain GTICs in an undifferentiated state.
Collapse
Affiliation(s)
- Alexander Gont
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Spina R, Filocamo G, Iaccino E, Scicchitano S, Lupia M, Chiarella E, Mega T, Bernaudo F, Pelaggi D, Mesuraca M, Pazzaglia S, Semenkow S, Bar EE, Kool M, Pfister S, Bond HM, Eberhart CG, Steinkühler C, Morrone G. Critical role of zinc finger protein 521 in the control of growth, clonogenicity and tumorigenic potential of medulloblastoma cells. Oncotarget 2014; 4:1280-92. [PMID: 23907569 PMCID: PMC3787157 DOI: 10.18632/oncotarget.1176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The stem cell-associated transcription co-factor ZNF521 has been implicated in the control of hematopoietic, osteo-adipogenic and neural progenitor cells. ZNF521 is highly expressed in cerebellum and in particular in the neonatal external granule layer that contains candidate medulloblastoma cells-of-origin, and in the majority of human medulloblastomas. Here we have explored its involvement in the control of human and murine medulloblastoma cells. The effect of ZNF521 on growth and tumorigenic potential of human medulloblastoma cell lines as well as primary Ptc1−/+ mouse medulloblastoma cells was investigated in a variety of in vitro and in vivo assays, by modulating its expression using lentiviral vectors carrying the ZNF521 cDNA, or shRNAs that silence its expression. Enforced overexpression of ZNF521 in DAOY medulloblastoma cells significantly increased their proliferation, growth as spheroids and ability to generate clones in single-cell cultures and semisolid media, and enhanced their migratory ability in wound-healing assays. Importantly, ZNF521-expressing cells displayed a greatly enhanced tumorigenic potential in nude mice. All these activities required the ZNF521 N-terminal motif that recruits the nucleosome remodeling and histone deacetylase complex, which might therefore represent an appealing therapeutic target. Conversely, silencing of ZNF521 in human UW228 medulloblastoma cells that display high baseline expression decreased their proliferation, clonogenicity, sphere formation and wound-healing ability. Similarly, Zfp521 silencing in mouse Ptc1−/+ medulloblastoma cells drastically reduced their growth and tumorigenic potential. Our data strongly support the notion that ZNF521, through the recruitment of the NuRD complex, contributes to the clonogenic growth, migration and tumorigenicity of medulloblastoma cells.
Collapse
Affiliation(s)
- Raffaella Spina
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Dept. of Experimental and Clinical Medicine, University of Catanzaro Magna Græcia, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Brain metastasis-initiating cells: survival of the fittest. Int J Mol Sci 2014; 15:9117-33. [PMID: 24857921 PMCID: PMC4057778 DOI: 10.3390/ijms15059117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022] Open
Abstract
Brain metastases (BMs) are the most common brain tumor in adults, developing in about 10% of adult cancer patients. It is not the incidence of BM that is alarming, but the poor patient prognosis. Even with aggressive treatments, median patient survival is only months. Despite the high rate of BM-associated mortality, very little research is conducted in this area. Lack of research and staggeringly low patient survival is indicative that a novel approach to BMs and their treatment is needed. The ability of a small subset of primary tumor cells to produce macrometastases is reminiscent of brain tumor-initiating cells (BTICs) or cancer stem cells (CSCs) hypothesized to form primary brain tumors. BTICs are considered stem cell-like due to their self-renewal and differentiation properties. Similar to the subset of cells forming metastases, BTICs are most often a rare subpopulation. Based on the functional definition of a TIC, cells capable of forming a BM could be considered to be brain metastasis-initiating cells (BMICs). These putative BMICs would not only have the ability to initiate tumor growth in a secondary niche, but also the machinery to escape the primary tumor, migrate through the circulation, and invade the neural niche.
Collapse
|
13
|
Kast RE, Ellingson BM, Marosi C, Halatsch ME. Glioblastoma treatment using perphenazine to block the subventricular zone’s tumor trophic functions. J Neurooncol 2013; 116:207-12. [DOI: 10.1007/s11060-013-1308-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/10/2013] [Indexed: 02/02/2023]
|
14
|
Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. ANNUAL REVIEW OF PATHOLOGY 2013; 9:1-25. [PMID: 23937436 DOI: 10.1146/annurev-pathol-011110-130324] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glioblastoma (GBM) is one of the most lethal human cancers. Genomic analyses are defining the molecular architecture of GBM, uncovering relevant subsets of patients whose disease may require different treatments. Many pharmacological targets have been revealed, promising to transform patient care through targeted therapies. However, for most patients, clinical responses to targeted inhibitors are either not apparent or not durable. In this review, we address the challenge of developing more effective, molecularly guided approaches for the treatment of GBM patients. We summarize the current state of knowledge regarding molecular classifiers and examine their benefit for stratifying patients for treatment. We survey the molecular landscape of the disease, discussing the challenges raised by acquired drug resistance. Furthermore, we analyze the biochemical features of GBM, suggesting a next generation of drug targets, and we examine the contribution of tumor heterogeneity and its implications. We conclude with an analysis of the experimental approaches and their potential benefit to patients.
Collapse
Affiliation(s)
- Timothy F Cloughesy
- Department of Neurology and Neuro-Oncology Program, University of California, Los Angeles, California 90095;
| | | | | |
Collapse
|
15
|
Pathological features of highly invasive glioma stem cells in a mouse xenograft model. Brain Tumor Pathol 2013; 31:77-84. [PMID: 23670138 DOI: 10.1007/s10014-013-0149-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/12/2013] [Indexed: 12/23/2022]
Abstract
Glioma stem cells (GSCs) may be a source of tumor progression and recurrence after multimodal therapy, because of their high invasive potential. The purpose of this study was to compare the invasive and migratory properties of GSCs and non-GSCs and examine the distribution of these cells in a mouse xenograft model. Three GSC lines, G144, Y02, and Y10, cultured from human glioblastoma, were used in the study. Matrigel-invasion assays of infiltration and time-lapse studies of migration were performed for comparison of the GSCs with the corresponding differentiated non-GSC lines. Cells were also transplanted into mouse brain and the different distribution of GSCs and non-GSCs was examined in the tumor xenograft model. All 3 GSC lines had greater invasion and migration ability than the corresponding non-GSCs. In vivo, GSCs infiltrated more widely than non-GSCs and reached the contralateral hemisphere via the corpus callosum in the early stage of tumorigenesis. GSCs also primarily penetrated the subventricular zone (SVZ). GSCs have high invasive potential and tend to be present in the outer tumor bulk and infiltrate the contralateral hemisphere via the corpus callosum, in addition to penetrating the SVZ.
Collapse
|
16
|
Current status of gene therapy for brain tumors. Transl Res 2013; 161:339-54. [PMID: 23246627 PMCID: PMC3733107 DOI: 10.1016/j.trsl.2012.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/14/2012] [Accepted: 11/16/2012] [Indexed: 01/06/2023]
Abstract
Glioblastoma (GBM) is the most common and deadliest primary brain tumor in adults, with current treatments having limited impact on disease progression. Therefore the development of alternative treatment options is greatly needed. Gene therapy is a treatment strategy that relies on the delivery of genetic material, usually transgenes or viruses, into cells for therapeutic purposes, and has been applied to GBM with increasing promise. We have included selectively replication-competent oncolytic viruses within this strategy, although the virus acts directly as a complex biologic anti-tumor agent rather than as a classic gene delivery vehicle. GBM is a good candidate for gene therapy because tumors remain locally within the brain and only rarely metastasize to other tissues; the majority of cells in the brain are post-mitotic, which allows for specific targeting of dividing tumor cells; and tumors can often be accessed neurosurgically for administration of therapy. Delivery vehicles used for brain tumors include nonreplicating viral vectors, normal adult stem/progenitor cells, and oncolytic viruses. The therapeutic transgenes or viruses are typically cytotoxic or express prodrug activating suicide genes to kill glioma cells, immunostimulatory to induce or amplify anti-tumor immune responses, and/or modify the tumor microenvironment such as blocking angiogenesis. This review describes current preclinical and clinical gene therapy strategies for the treatment of glioma.
Collapse
|
17
|
Triscott J, Lee C, Hu K, Fotovati A, Berns R, Pambid M, Luk M, Kast RE, Kong E, Toyota E, Yip S, Toyota B, Dunn SE. Disulfiram, a drug widely used to control alcoholism, suppresses the self-renewal of glioblastoma and over-rides resistance to temozolomide. Oncotarget 2013; 3:1112-23. [PMID: 23047041 PMCID: PMC3717961 DOI: 10.18632/oncotarget.604] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastomas (GBM) are associated with high rates of relapse. These brain tumors are often resistant to chemotherapies like temozolomide (TMZ) and there are very few treatment options available to patients. We recently reported that polo-like kinase-1 (PLK1) is associated with the proliferative subtype of GBM; which has the worst prognosis. In this study, we addressed the potential of repurposing disulfiram (DSF), a drug widely used to control alcoholism for the past six decades. DSF has good safety profiles and penetrates the blood-brain barrier. Here we report that DSF inhibited the growth of TMZ resistant GBM cells, (IC90=100 nM), but did not affect normal human astrocytes. At similar DSF concentrations, self-renewal was blocked by ~100% using neurosphere growth assays. Likewise the drug completely inhibited the self-renewal of the BT74 and GBM4 primary cell lines. Additionally, DSF suppressed growth and self-renewal of primary cells from two GBM tumors. These cells were resistant to TMZ, had unmethylated MGMT, and expressed high levels of PLK1. Consistent with its role in suppressing GBM growth, DSF inhibited the expression of PLK1 in GBM cells. Likewise, PLK1 inhibition with siRNA, or small molecules (BI-2536 or BI-6727) blocked growth of TMZ resistant cells. Our studies suggest that DSF has the potential to be repurposed for treatment of refractory GBM.
Collapse
Affiliation(s)
- Joanna Triscott
- Department of Pediatrics, University of British Columbia, Vancouver, BC
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hothi P, Martins TJ, Chen L, Deleyrolle L, Yoon JG, Reynolds B, Foltz G. High-throughput chemical screens identify disulfiram as an inhibitor of human glioblastoma stem cells. Oncotarget 2013; 3:1124-36. [PMID: 23165409 PMCID: PMC3717950 DOI: 10.18632/oncotarget.707] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma Multiforme (GBM) continues to have a poor patient prognosis despite optimal standard of care. Glioma stem cells (GSCs) have been implicated as the presumed cause of tumor recurrence and resistance to therapy. With this in mind, we screened a diverse chemical library of 2,000 compounds to identify therapeutic agents that inhibit GSC proliferation and therefore have the potential to extend patient survival. High-throughput screens (HTS) identified 78 compounds that repeatedly inhibited cellular proliferation, of which 47 are clinically approved for other indications and 31 are experimental drugs. Several compounds (such as digitoxin, deguelin, patulin and phenethyl caffeate) exhibited high cytotoxicity, with half maximal inhibitory concentrations (IC50) in the low nanomolar range. In particular, the FDA approved drug for the treatment of alcoholism, disulfiram (DSF), was significantly potent across multiple patient samples (IC50 of 31.1 nM). The activity of DSF was potentiated by copper (Cu), which markedly increased GSC death. DSF–Cu inhibited the chymotrypsin-like proteasomal activity in cultured GSCs, consistent with inactivation of the ubiquitin-proteasome pathway and the subsequent induction of tumor cell death. Given that DSF is a relatively non-toxic drug that can penetrate the blood-brain barrier, we suggest that DSF should be tested (as either a monotherapy or as an adjuvant) in pre-clinical models of human GBM. Data also support targeting of the ubiquitin-proteasome pathway as a therapeutic approach in the treatment of GBM.
Collapse
Affiliation(s)
- Parvinder Hothi
- The Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Kannan K, Inagaki A, Silber J, Gorovets D, Zhang J, Kastenhuber ER, Heguy A, Petrini JH, Chan TA, Huse JT. Whole-exome sequencing identifies ATRX mutation as a key molecular determinant in lower-grade glioma. Oncotarget 2013; 3:1194-203. [PMID: 23104868 PMCID: PMC3717947 DOI: 10.18632/oncotarget.689] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The molecular foundations of lower-grade gliomas (LGGs)—astrocytoma, oligodendroglioma, and oligoastrocytoma—remain less well characterized than those of their fully malignant counterpart, glioblastoma. Mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) likely represent initiating pathogenic events. However, while IDH mutations appear to dramatically alter cellular epigenomic landscapes, definitive downstream transformative mechanisms have not been characterized. It remains likely, therefore, that additional genomic abnormalities collaborate with IDH mutation to drive oncogenesis in LGG. We performed whole exome sequencing in 4 LGGs, followed by focused resequencing in an additional 28, and found a high incidence of mutations in the ATRX gene (α thalassemia/mental retardation syndrome X-linked). ATRX forms a core component of a chromatin remodeling complex active in telomere biology. Mutations in ATRX have been identified in multiple tumor types and appear to cause alternative lengthening of telomeres (ALT), a presumed precursor to genomic instability. In our samples, ATRX mutation was entirely restricted to IDH-mutant tumors, closely correlated with TP53 mutation and astrocytic differentiation, and mutually exclusive with 1p/19q codeletion, the molecular hallmark of oligodendroglioma. Moreover, ATRX mutation was highly enriched in tumors of so-called early progenitor-like transcriptional subclass (~85%), which our prior work has linked to specific cells of origin in the forebrain subventricular zone. Finally, ATRX mutation correlated with ALT, providing a mechanistic link to genomic instability. In summary, our findings both identify ATRX mutation as a defining molecular determinant for a large subset of IDH-mutant gliomas and have direct implications on pathogenic mechanisms across the wide spectrum of LGGs.
Collapse
Affiliation(s)
- Kasthuri Kannan
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Akt and c-Myc induce stem-cell markers in mature primary p53⁻/⁻ astrocytes and render these cells gliomagenic in the brain of immunocompetent mice. PLoS One 2013; 8:e56691. [PMID: 23424671 PMCID: PMC3570527 DOI: 10.1371/journal.pone.0056691] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/14/2013] [Indexed: 11/25/2022] Open
Abstract
Astrocytomas and their most malignant variant glioblastoma multiforme (GBM) represent the vast majority of primary brain tumors. Despite the current progress in neurosurgery, radiation therapy and chemotherapy, most astrocytomas remain fatal disorders. Although brain tumor biology is a matter of intense research, the cell-of-origin and the complete astrocytoma-inducing signaling pathway remain unknown. To further identify the mechanisms leading to gliomagenesis, we transduced primary astrocytes on a p53−/− background with c-Myc, constitutively active myr-Akt or both, myr-Akt and c-Myc. Transduced astrocytes showed oncogene-specific alterations of morphology, proliferation and differentiation. Following prolonged periods of cultivation, oncogene-transduced astrocytes expressed several stem-cell markers. Furthermore, astrocytes coexpressing c-Myc and Akt were tumorigenic when implanted into the brain of immunocompetent C57BL/6 mice. Our results reveal that the loss of p53 combined with oncogene overexpression in mature astrocytes simulates pivotal features of glioma pathogenesis, providing a good model for assessing the development of secondary glioblastomas.
Collapse
|
21
|
Abstract
Glioma is a heterogeneous disease process with differential histology and treatment response. It was previously thought that the histological features of glial tumors indicated their cell of origin. However, the discovery of continuous neuro-gliogenesis in the normal adult brain and the identification of brain tumor stem cells within glioma have led to the hypothesis that these brain tumors originate from multipotent neural stem or progenitor cells, which primarily divide asymmetrically during the postnatal period. Asymmetric cell division allows these cell types to concurrently self-renew whilst also producing cells for the differentiation pathway. It has recently been shown that increased symmetrical cell division, favoring the self-renewal pathway, leads to oligodendroglioma formation from oligodendrocyte progenitor cells. In contrast, there is some evidence that asymmetric cell division maintenance in tumor stem-like cells within astrocytoma may lead to acquisition of treatment resistance. Therefore cell division mode in normal brain stem and progenitor cells may play a role in setting tumorigenic potential and the type of tumor formed. Moreover, heterogeneous tumor cell populations and their respective cell division mode may confer differential sensitivity to therapy. This review aims to shed light on the controllers of cell division mode which may be therapeutically targeted to prevent glioma formation and improve treatment response.
Collapse
|
22
|
Glioblastoma, a Brief Review of History, Molecular Genetics, Animal Models and Novel Therapeutic Strategies. Arch Immunol Ther Exp (Warsz) 2012; 61:25-41. [DOI: 10.1007/s00005-012-0203-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 11/22/2012] [Indexed: 01/06/2023]
|
23
|
Frattini V, Pisati F, Speranza MC, Poliani PL, Frigé G, Cantini G, Kapetis D, Cominelli M, Rossi A, Finocchiaro G, Pellegatta S. FOXP3, a novel glioblastoma oncosuppressor, affects proliferation and migration. Oncotarget 2012; 3:1146-57. [PMID: 23888189 PMCID: PMC3717952 DOI: 10.18632/oncotarget.644] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022] Open
Abstract
The transcription factor FOXP3 plays an essential role in regulatory T cell development and function. In addition, it has recently been identified as a tumor suppressor in different cancers. Here, we report that FOXP3 is expressed in normal brain but strongly down-regulated in glioblastoma (GB) and in corresponding GB stem-like cells growing in culture as neurospheres (GB-NS), as evaluated by real time-PCR and confirmed by immunohistochemistry on an independent set of GB. FOXP3 expression was higher in low-grade gliomas than in GB. Interestingly, we also found that neurosphere generation, a feature present in 58% of the GB that we examined, correlated with lower expression of FOXP3 and shorter patient survival. FOXP3 silencing in one GB-NS expressing measurable levels of the gene caused a significant increase in proliferation and migration as well as highly aggressive growth in xenografts. Conversely, FOXP3 over-expression impaired GB-NS migration and proliferation in vitro. We also demonstrated using ChiP that FOXP3 is a transcriptional regulator of p21 and c-MYC supporting the idea that dysregulated expression of these factors is a major mechanism of tumorigenesis driven by the loss of FOXP3 expression in gliomas. These findings support the assertion that FOXP3 exhibits tumor suppressor activity in glioblastomas.
Collapse
Affiliation(s)
- Véronique Frattini
- Unit of Molecular Neuro-Oncology, Fondazione I.R.C.C.S. Istituto Neurologico C. Besta, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
AbstractGlioblastoma Multiforme (GBM) is the most malignant and devastating primary brain tumour with a median survival of ∼12–16 months. Although recent large scale sequencing projects have shed considerable light into the complexity of the disease, there remains much to be elucidated in the hopes of generating effective therapeutic strategies. Although these studies investigate the mutations and expression of bulk tumour they have limits with respect to cell of origin and the concept of brain tumour initiating cells (BTIC). Current research has challenged the old paradigm of the stochastic model as recent evidence suggests that a subset of cancer cells within a tumor is responsible for tumor initiation, maintenance, and resistance to therapy. To gain a better understanding of the different compartment of cells that GBM comprise of require careful and elegant experiments. In addition to studying GBM, exploring the role of normal neural stem cells and progenitors cells is essential to partially explain whether these GBM BTIC behave similarly or differently then their non transformed counterparts. Here we discuss the recent literature between the two models, candidate regions of glioma genesis, candidate cells of origin for GBM, and possible therapeutic avenues to explore.
Collapse
|