1
|
Guo E, Dobrovolny HM. Mathematical Modeling of Oncolytic Virus Therapy Reveals Role of the Immune Response. Viruses 2023; 15:1812. [PMID: 37766219 PMCID: PMC10536413 DOI: 10.3390/v15091812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Oncolytic adenoviruses (OAds) present a promising path for cancer treatment due to their selectivity in infecting and lysing tumor cells and their ability to stimulate the immune response. In this study, we use an ordinary differential equation (ODE) model of tumor growth inhibited by oncolytic virus activity to parameterize previous research on the effect of genetically re-engineered OAds in A549 lung cancer tumors in murine models. We find that the data are best fit by a model that accounts for an immune response, and that the immune response provides a mechanism for elimination of the tumor. We also find that parameter estimates for the most effective OAds share characteristics, most notably a high infection rate and low viral clearance rate, that might be potential reasons for these viruses' efficacy in delaying tumor growth. Further studies observing E1A and P19 recombined viruses in different tumor environments may further illuminate the extent of the effects of these genetic modifications.
Collapse
Affiliation(s)
| | - Hana M. Dobrovolny
- Department of Physics & Astronomy, Texas Christian University, Fort Worth, TX 76109, USA
| |
Collapse
|
2
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
3
|
Pradhan AK, Bhoopathi P, Maji S, Kumar A, Guo C, Mannangatti P, Li J, Wang XY, Sarkar D, Emdad L, Das SK, Fisher PB. Enhanced Cancer Therapy Using an Engineered Designer Cytokine Alone and in Combination With an Immune Checkpoint Inhibitor. Front Oncol 2022; 12:812560. [PMID: 35402258 PMCID: PMC8988683 DOI: 10.3389/fonc.2022.812560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 02/03/2023] Open
Abstract
melanoma differentiation associated gene-7 or Interleukin-24 (mda-7, IL-24) displays expansive anti-tumor activity without harming corresponding normal cells/tissues. This anticancer activity has been documented in vitro and in vivo in multiple preclinical animal models, as well as in patients with advanced cancers in a phase I clinical trial. To enhance the therapeutic efficacy of MDA-7 (IL-24), we engineered a designer cytokine (a "Superkine"; IL-24S; referred to as M7S) with enhanced secretion and increased stability to engender improved "bystander" antitumor effects. M7S was engineered in a two-step process by first replacing the endogenous secretory motif with an alternate secretory motif to boost secretion. Among four different signaling peptides, the insulin secretory motif significantly enhanced the secretion of MDA-7 (IL-24) protein and was chosen for M7S. The second modification engineered in M7S was designed to enhance the stability of MDA-7 (IL-24), which was accomplished by replacing lysine at position K122 with arginine. This engineered "M7S Superkine" with increased secretion and stability retained cancer specificity. Compared to parental MDA-7 (IL-24), M7S (IL-24S) was superior in promoting anti-tumor and bystander effects leading to improved outcomes in multiple cancer xenograft models. Additionally, combinatorial therapy using MDA-7 (IL-24) or M7S (IL-24S) with an immune checkpoint inhibitor, anti-PD-L1, dramatically reduced tumor progression in murine B16 melanoma cells. These results portend that M7S (IL-24S) promotes the re-emergence of an immunosuppressive tumor microenvironment, providing a solid rationale for prospective translational applications of this therapeutic designer cytokine.
Collapse
Affiliation(s)
- Anjan K. Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Santanu Maji
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Padmanabhan Mannangatti
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Jiong Li
- Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Department of Medicinal Chemistry, Philips Institute for Oral Health Research, Virginia Commonwealth University, School of Pharmacy, Richmond, VA, United States
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,*Correspondence: Swadesh K. Das, ; Paul B. Fisher,
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,Virginia Commonwealth University (VCU) Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States,*Correspondence: Swadesh K. Das, ; Paul B. Fisher,
| |
Collapse
|
4
|
Insights into the Mechanisms of Action of MDA-7/IL-24: A Ubiquitous Cancer-Suppressing Protein. Int J Mol Sci 2021; 23:ijms23010072. [PMID: 35008495 PMCID: PMC8744595 DOI: 10.3390/ijms23010072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor growth, invasion, angiogenesis, and metastasis, and induction of potent "bystander" antitumor activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific cell death through apoptosis or toxic autophagy, which was initially established in vitro and in preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers. This review summarizes the history and our current understanding of the molecular/biological mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.
Collapse
|
5
|
Santos Apolonio J, Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Silva Souza JV, Rocha Pinheiro SL, de Souza WR, Sande Loureiro M, de Melo FF. Oncolytic virus therapy in cancer: A current review. World J Virol 2021; 10:229-255. [PMID: 34631474 PMCID: PMC8474975 DOI: 10.5501/wjv.v10.i5.229] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
In view of the advancement in the understanding about the most diverse types of cancer and consequently a relentless search for a cure and increased survival rates of cancer patients, finding a therapy that is able to combat the mechanism of aggression of this disease is extremely important. Thus, oncolytic viruses (OVs) have demonstrated great benefits in the treatment of cancer because it mediates antitumor effects in several ways. Viruses can be used to infect cancer cells, especially over normal cells, to present tumor-associated antigens, to activate "danger signals" that generate a less immune-tolerant tumor microenvironment, and to serve transduction vehicles for expression of inflammatory and immunomodulatory cytokines. The success of therapies using OVs was initially demonstrated by the use of the genetically modified herpes virus, talimogene laherparepvec, for the treatment of melanoma. At this time, several OVs are being studied as a potential treatment for cancer in clinical trials. However, it is necessary to be aware of the safety and possible adverse effects of this therapy; after all, an effective treatment for cancer should promote regression, attack the tumor, and in the meantime induce minimal systemic repercussions. In this manuscript, we will present a current review of the mechanism of action of OVs, main clinical uses, updates, and future perspectives on this treatment.
Collapse
Affiliation(s)
- Jonathan Santos Apolonio
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Maria Luísa Cordeiro Santos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - João Victor Silva Souza
- Universidade Estadual do Sudoeste da Bahia, Campus Vitória da Conquista, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Wedja Rafaela de Souza
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
6
|
Spiesschaert B, Angerer K, Park J, Wollmann G. Combining Oncolytic Viruses and Small Molecule Therapeutics: Mutual Benefits. Cancers (Basel) 2021; 13:3386. [PMID: 34298601 PMCID: PMC8306439 DOI: 10.3390/cancers13143386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
The focus of treating cancer with oncolytic viruses (OVs) has increasingly shifted towards achieving efficacy through the induction and augmentation of an antitumor immune response. However, innate antiviral responses can limit the activity of many OVs within the tumor and several immunosuppressive factors can hamper any subsequent antitumor immune responses. In recent decades, numerous small molecule compounds that either inhibit the immunosuppressive features of tumor cells or antagonize antiviral immunity have been developed and tested for. Here we comprehensively review small molecule compounds that can achieve therapeutic synergy with OVs. We also elaborate on the mechanisms by which these treatments elicit anti-tumor effects as monotherapies and how these complement OV treatment.
Collapse
Affiliation(s)
- Bart Spiesschaert
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
- ViraTherapeutics GmbH, 6063 Rum, Austria
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Katharina Angerer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - John Park
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach a.d. Riss, Germany;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University Innsbruck, 6020 Innsbruck, Austria; (B.S.); (K.A.)
- Institute of Virology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
7
|
Lin T, Wang D, Chen J, Zhang Z, Zhao Y, Wu Z, Wang Y. IL-24 inhibits the malignancy of human glioblastoma cells via destabilization of Zeb1. Biol Chem 2021; 402:839-848. [PMID: 33894112 DOI: 10.1515/hsz-2020-0373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/15/2021] [Indexed: 01/13/2023]
Abstract
Glioblastoma (GBM) is the most common and fatal type of primary malignant tumours in the central nervous system. Cytokines such as interleukins (ILs) play an important role in GBM progression. Our present study found that IL-24 is down-regulated in GBM cells. Recombinant IL-24 (rIL-24) can suppress the in vitro migration and invasion of GBM cells while increase its chemo-sensitivity to temozolomide (TMZ) treatment. rIL-24 negatively regulates the expression of Zeb1, one well known transcription factors of epithelial to mesenchymal transition (EMT) of cancer cells. Over expression of Zeb1 can attenuate IL-24-suppressed malignancy of GBM cells. Mechanistically, IL-24 decreases the protein stability of Zeb1 while has no effect on its mRNA stability. It is due to that IL-24 can increase the expression of FBXO45, which can destabilize Zeb1 in cancer cells. Collectively, we reveal that IL-24 can suppress the malignancy of GBM cells via decreasing the expression of Zeb1. It suggests that targeted activation of IL-24 signals might be a potential therapy approach for GBM treatment.
Collapse
Affiliation(s)
- Tie Lin
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Dongpeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Jun Chen
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin150030, People's Republic of China
| | - Zhan Zhang
- Department of Neurosurgery, Heilongjiang Provincial Hospital, Harbin150030, People's Republic of China
| | - Yuming Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Zhong Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| | - Yuehua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin150001, People's Republic of China
| |
Collapse
|
8
|
Bhoopathi P, Pradhan AK, Maji S, Das SK, Emdad L, Fisher PB. Theranostic Tripartite Cancer Terminator Virus for Cancer Therapy and Imaging. Cancers (Basel) 2021; 13:cancers13040857. [PMID: 33670594 PMCID: PMC7922065 DOI: 10.3390/cancers13040857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary An optimum cancer therapeutic virus should embody unique properties, including an ability to: Selectively procreate and kill tumor but not normal cells; produce a secreted therapeutic molecule (with broad-acting anti-cancer effects on primary and distant metastatic cells because of potent “bystander” activity); and monitor therapy non-invasively by imaging primary and distant metastatic cancers. We previously created a broad-spectrum, cancer-selective and replication competent therapeutic adenovirus that embodies two of these properties, i.e., specifically reproduces in cancer cells and produces a therapeutic cytokine, MDA-7/IL-24, a “cancer terminator virus” (CTV). We now expand on this concept and demonstrate the feasibility of producing a tripartite CTV (TCTV) selectively expressing three genes from three distinct promoters that replicate in the cancer cells while producing MDA-7/IL-24 and an imaging gene (i.e., luciferase). This novel first-in-class tripartite “theranostic” TCTV expands the utility of therapeutic viruses to non-invasively image and selectively destroy primary tumors and metastases. Abstract Combining cancer-selective viral replication and simultaneous production of a therapeutic cytokine, with potent “bystander” anti-tumor activity, are hallmarks of the cancer terminator virus (CTV). To expand on these attributes, we designed a next generation CTV that additionally enables simultaneous non-invasive imaging of tumors targeted for eradication. A unique tripartite CTV “theranostic” adenovirus (TCTV) has now been created that employs three distinct promoters to target virus replication, cytokine production and imaging capabilities uniquely in cancer cells. Conditional replication of the TCTV is regulated by a cancer-selective (truncated PEG-3) promoter, the therapeutic component, MDA-7/IL-24, is under a ubiquitous (CMV) promoter, and finally the imaging capabilities are synchronized through another cancer selective (truncated tCCN1) promoter. Using in vitro studies and clinically relevant in vivo models of breast and prostate cancer, we demonstrate that incorporating a reporter gene for imaging does not compromise the exceptional therapeutic efficacy of our previously reported bipartite CTV. This TCTV permits targeted treatment of tumors while monitoring tumor regression, with potential to simultaneously detect metastasis due to the cancer-selective activity of reporter gene expression. This “theranostic” virus provides a new genetic tool for distinguishing and treating localized and metastatic cancers.
Collapse
Affiliation(s)
- Praveen Bhoopathi
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- Correspondence: (P.B.); (P.B.F.)
| | - Anjan K. Pradhan
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
| | - Santanu Maji
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; (A.K.P.); (S.M.); (S.K.D.); (L.E.)
- VCU Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: (P.B.); (P.B.F.)
| |
Collapse
|
9
|
Liao S, Yang Y, Chen S, Bi Y, Huang Q, Wei Z, Qin A, Liu B. IL-24 inhibits endometrial cancer cell proliferation by promoting apoptosis through the mitochondrial intrinsic signaling pathway. Biomed Pharmacother 2020; 124:109831. [PMID: 31972354 DOI: 10.1016/j.biopha.2020.109831] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Endometrial cancer is a type of malignant tumor of the female reproductive system. Preserving fertility in endometrial cancer patients is currently a formidable challenge. Interleukin-24 (IL-24) is a unique cytokine tumor suppressor gene belonging to the IL-10 cytokine family. IL-24 has broad-spectrum antitumor activity through different signaling pathways but does not affect normal cells. IL-24 gene therapy may provide a new method for the treatment of endometrial cancer. METHODS Transfection was used for gene transfer. The expression of IL-24 and related pathway proteins in endometrial cancer tissue and the Ishikawa cell line was detected by immunohistochemistry and Western blotting, respectively. The antitumor function of IL-24 was examined in vitro and in vivo. Cell proliferation was determined by CCK-8 assay, cell migration was shown by wound-healing assay, and cell invasion was detected by Transwell assay. Apoptosis was analyzed by TUNEL assay, and HE staining was performed to observe the morphology of the samples. RESULTS Immunohistochemical analysis showed different expression levels of IL-24 in human endometrial cancer tissues and normal endometrial tissues. IL-24 increased protein expression of BAX and Cytochrome C, while BCL-2, MMP-3, VEGF, Caspase-9 and Caspase-3 expression was decreased. Overexpression of IL-24 inhibited cell proliferation, migration and invasion, but increased cell apoptosis in endometrial cancer. Mechanistically, we demonstrated that IL-24 inhibited endometrial cancer cell growth by inducing cell apoptosis through the mitochondrial intrinsic signaling pathway. In addition, IL-24 inhibited tumor development by inducing cell apoptosis and inhibiting angiogenesis, as shown in xenograft tumor experiments. CONCLUSIONS Our study demonstrates the antitumor effect of IL-24 on endometrial cancer and shows that IL-24 may be a promising therapeutic gene for endometrial cancer gene therapy.
Collapse
Affiliation(s)
- Shengbin Liao
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Yihua Yang
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Saiqiong Chen
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Yin Bi
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Qiuyan Huang
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Zhiyao Wei
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China
| | - Aiping Qin
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China.
| | - Bo Liu
- Center of Reproductive Medicine, Guangxi Medical University First Affiliated Hospital, Nanning, Guangxi, China.
| |
Collapse
|
10
|
Emdad L, Bhoopathi P, Talukdar S, Pradhan AK, Sarkar D, Wang XY, Das SK, Fisher PB. Recent insights into apoptosis and toxic autophagy: The roles of MDA-7/IL-24, a multidimensional anti-cancer therapeutic. Semin Cancer Biol 2019; 66:140-154. [PMID: 31356866 DOI: 10.1016/j.semcancer.2019.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
Apoptosis and autophagy play seminal roles in maintaining organ homeostasis. Apoptosis represents canonical type I programmed cell death. Autophagy is viewed as pro-survival, however, excessive autophagy can promote type II cell death. Defective regulation of these two obligatory cellular pathways is linked to various diseases, including cancer. Biologic or chemotherapeutic agents, which can reprogram cancer cells to undergo apoptosis- or toxic autophagy-mediated cell death, are considered effective tools for treating cancer. Melanoma differentiation associated gene-7 (mda-7) selectively promotes these effects in cancer cells. mda-7 was identified more than two decades ago by subtraction hybridization showing elevated expression during induction of terminal differentiation of metastatic melanoma cells following treatment with recombinant fibroblast interferon and mezerein (a PKC activating agent). MDA-7 was classified as a member of the IL-10 gene family based on its chromosomal location, and the presence of an IL-10 signature motif and a secretory sequence, and re-named interleukin-24 (MDA-7/IL-24). Multiple studies have established MDA-7/IL-24 as a potent anti-cancer agent, which when administered at supra-physiological levels induces growth arrest and cell death through apoptosis and toxic autophagy in a wide variety of tumor cell types, but not in corresponding normal/non-transformed cells. Furthermore, in a phase I/II clinical trial, MDA-7/IL-24 administered by means of a non-replicating adenovirus was well tolerated and displayed significant clinical activity in patients with multiple advanced cancers. This review examines our current comprehension of the role of MDA-7/IL-24 in mediating cancer-specific cell death via apoptosis and toxic autophagy.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.
| |
Collapse
|
11
|
De Carlo F, Thomas L, Brooke B, Varney ET, Nande R, Boskovic O, Marshall GD, Claudio PP, Howard CM. Microbubble-mediated delivery of human adenoviruses does not elicit innate and adaptive immunity response in an immunocompetent mouse model of prostate cancer. J Transl Med 2019; 17:19. [PMID: 30635014 PMCID: PMC6329087 DOI: 10.1186/s12967-019-1771-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background Gene transfer to malignant sites using human adenoviruses (hAds) has been limited because of their immunogenic nature and host specificity. Murine cells often lack some of the receptors needed for hAds attachment, thus murine cells are generally non-permissive for human adenoviral infection and replication, which limits translational studies. Methods We have developed a gene transfer method that uses a combination of lipid-encapsulated perfluorocarbon microbubbles and ultrasound to protect and deliver hAds to a target tissue, bypassing the requirement of specific receptors. Results In an in vitro model, we showed that murine TRAMP-C2 and human DU145 prostate cancer cells display a comparable expression pattern of receptors involved in hAds adhesion and internalization. We also demonstrated that murine and human cells showed a dose-dependent increase in the percentage of cells transduced by hAd-GFP (green fluorescent protein) after 24 h and that GFP transgene was efficiently expressed at 48 and 72 h post-transduction. To assess if our image-guided delivery system could effectively protect the hAds from the immune system in vivo, we injected healthy immunocompetent mice (C57BL/6) or mice bearing a syngeneic prostate tumor (TRAMP-C2) with hAd-GFP/MB complexes. Notably, we did not observe activation of innate (TNF-α and IL-6 cytokines), or adaptive immune response (neutralizing antibodies, INF-γ+ CD8+ T cells). Conclusions This study brings us a step closer to demonstrating the feasibility of murine cancer models to investigate the clinical translation of image guided site-specific adenoviral gene therapy mediated by ultrasound-targeted microbubble destruction. Electronic supplementary material The online version of this article (10.1186/s12967-019-1771-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flavia De Carlo
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,National Center for Natural Products Research, University of Mississippi, University, MS, USA.,Department of Radiation Oncology, Medical Center Cancer Institute, Jackson, MS, USA
| | - Litty Thomas
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,National Center for Natural Products Research, University of Mississippi, University, MS, USA.,Department of Radiation Oncology, Medical Center Cancer Institute, Jackson, MS, USA
| | - Bell Brooke
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA.,National Center for Natural Products Research, University of Mississippi, University, MS, USA.,Department of Radiation Oncology, Medical Center Cancer Institute, Jackson, MS, USA
| | - Elliot T Varney
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, 39126, USA
| | - Rounak Nande
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Olivia Boskovic
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Gailen D Marshall
- Division of Clinical Immunology and Allergy, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Pier Paolo Claudio
- Department of BioMolecular Sciences, University of Mississippi, University, MS, USA. .,National Center for Natural Products Research, University of Mississippi, University, MS, USA. .,Department of Radiation Oncology, Medical Center Cancer Institute, Jackson, MS, USA. .,Department of BioMolecular Sciences, Department of Radiation Oncology, University of Mississippi, Jackson, MS, 39126, USA.
| | - Candace M Howard
- Department of Radiology, University of Mississippi Medical Center, Jackson, MS, 39126, USA.
| |
Collapse
|
12
|
Yang J, Yin H, Yang J, Wei Y, Fang L, Chai D, Zhang Q, Zheng J. Tumor-Penetrating Peptide Enhances Antitumor Effects of IL-24 Against Prostate Cancer. Transl Oncol 2018; 12:453-461. [PMID: 30580153 PMCID: PMC6302246 DOI: 10.1016/j.tranon.2018.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/04/2018] [Accepted: 12/04/2018] [Indexed: 12/24/2022] Open
Abstract
The interleukin-24 (IL-24), a member of the IL-10-related cytokine gene family, is well known for its tumor suppressor activity in a broad spectrum of human tumors without damaging normal cells. However, poor tumor penetration remains a key problem for the efficacy of IL-24 as a treatment. iRGD is a novel tumor-specific peptide with unique tumor-penetrating and cell-internalizing properties. To enhance the tumor-penetrating and antitumor effects of IL-24, we engineered a recombinant protein consisting of the IL-24 fused to iRGD, which was named IL-24-iRGD. The aim of the present study was to investigate the antitumor effects of IL-24-iRGD in prostate cancer cells in vitro and in vivo. It was observed that IL-24-iRGD induced cell apoptosis, suppressed cell growth of PC-3 in vitro, and promoted protein penetration into tumors in vivo, whereas it had no effect on normal cell line RWPE-1. Then, PC-3 cells were subcutaneously injected into nude mice, and these tumor-bearing mice were administered with IL-24, IL-24-iRGD, or PBS via the tail vein. The IL-24- and IL-24-iRGD-treated groups exhibited tumor growth inhibition rates of 38.6% and 65.6%, respectively, when compared with the PBS-treated group. Besides, cell apoptosis was examined by TdT-mediated dUTP nick end labeling, and the expression of cleaved caspase-3 was analyzed by immunohistochemical staining. The results demonstrated that IL-24-iRGD induced apoptosis and inhibited the growth of PC-3 cells to a significantly greater extent when compared with IL-24 treatment alone. It may provide an improved strategy for antitumor therapy and the clinical treatment of prostate cancer.
Collapse
Affiliation(s)
- Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Hong Yin
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; Center of Radiotherapy of The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Jie Yang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; Center of Radiotherapy of The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China
| | - Yanhong Wei
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; Center of Cancer of The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China
| | - Qing Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China.
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China; Center of Radiotherapy of The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou 221002, China.
| |
Collapse
|
13
|
Pradhan AK, Bhoopathi P, Talukdar S, Shen XN, Emdad L, Das SK, Sarkar D, Fisher PB. Recombinant MDA-7/IL24 Suppresses Prostate Cancer Bone Metastasis through Downregulation of the Akt/Mcl-1 Pathway. Mol Cancer Ther 2018; 17:1951-1960. [PMID: 29934341 DOI: 10.1158/1535-7163.mct-17-1002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/23/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022]
Abstract
Prostate cancer is a principal cause of cancer-associated morbidity in men. Although 5-year survival of patients with localized prostate cancer approaches 100%, survival decreases precipitously after metastasis. Bone is the preferred site for disseminated prostate cancer cell colonization, altering the equilibrium of bone homeostasis resulting in weak and fragile bones. Currently, no curative options are available for prostate cancer bone metastasis. Melanoma differentiation associated gene-7 (MDA-7)/IL24 is a well-studied cytokine established as a therapeutic in a wide array of cancers upon delivery as a gene therapy. In this study, we explored the potential anticancer properties of MDA-7/IL24 delivered as a recombinant protein. Using bone metastasis experimental models, animals treated with recombinant MDA-7/IL24 had significantly less metastatic lesions in their femurs as compared with controls. The inhibitory effects of MDA-7/IL24 on bone metastasis resulted from prostate cancer-selective killing and inhibition of osteoclast differentiation, which is necessary for bone resorption. Gain- and loss-of-function genetic approaches document that prosurvival Akt and Mcl-1 pathways are critically important in the antibone metastatic activity of MDA-7/IL24. Our previous findings showed that MDA-7/IL24 gene therapy plus Mcl-1 inhibitors cooperate synergistically. Similarly, an Mcl-1 small-molecule inhibitor synergized with MDA-7/IL24 and induced robust antibone metastatic activity. These results expand the potential applications of MDA-7/IL24 as an anticancer molecule and demonstrate that purified recombinant protein is nontoxic in preclinical animal models and has profound inhibitory effects on bone metastasis, which can be enhanced further when combined with an Mcl-1 inhibitory small molecule. Mol Cancer Ther; 17(9); 1951-60. ©2018 AACR.
Collapse
Affiliation(s)
- Anjan K Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Praveen Bhoopathi
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia. .,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia
| |
Collapse
|
14
|
Liu B, Chen F, Wu Y, Wang X, Feng M, Li Z, Zhou M, Wang Y, Wu L, Liu X, Liang D. Enhanced tumor growth inhibition by mesenchymal stem cells derived from iPSCs with targeted integration of interleukin24 into rDNA loci. Oncotarget 2018; 8:40791-40803. [PMID: 28388559 PMCID: PMC5522332 DOI: 10.18632/oncotarget.16584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/13/2017] [Indexed: 12/16/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are a promising source of mesenchymal stem cells (MSCs) for clinical applications. In this study, we transformed human iPSCs using a non-viral vector carrying the IL24 transgene pHrn-IL24. PCR and southern blotting confirmed IL24 integration into the rDNA loci in four of 68 iPSC clones. We then differentiated a high expressing IL24-iPSC clone into MSCs (IL24-iMSCs) that showed higher expression of IL24 in culture supernatants and in cell lysates than control iMSCs. IL24-iMSCs efficiently differentiated into osteoblasts, chondrocytes and adipocytes. Functionally, IL24-iMSCs induced in vitro apoptosis in B16-F10 melanoma cells more efficiently than control iMSCs when co-cultured in Transwell assays. In vivo tumor xenograft studies in mice demonstrated that IL24-iMSCs inhibited melanoma growth more than control iMSCs did. Immunofluorescence and histochemical analysis showed larger necrotic areas and cell nuclear aggregation in tumors with IL24-iMSCs than control iMSCs, indicating that IL24-iMSCs inhibited tumor growth by inducing apoptosis. These findings demonstrate efficient transformation of iPSCs through gene targeting with non-viral vectors into a rDNA locus. The ability of these genetically modified MSCs to inhibit in vivo melanoma growth is suggestive of the clinical potential of autologous cell therapy in cancer.
Collapse
Affiliation(s)
- Bo Liu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Fei Chen
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Yong Wu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Xiaolin Wang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Mai Feng
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Zhuo Li
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Miaojin Zhou
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Yanchi Wang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Xionghao Liu
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| | - Desheng Liang
- The State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, China
| |
Collapse
|
15
|
Abstract
Subtraction hybridization identified genes displaying differential expression as metastatic human melanoma cells terminally differentiated and lost tumorigenic properties by treatment with recombinant fibroblast interferon and mezerein. This approach permitted cloning of multiple genes displaying enhanced expression when melanoma cells terminally differentiated, called melanoma differentiation associated (mda) genes. One mda gene, mda-7, has risen to the top of the list based on its relevance to cancer and now inflammation and other pathological states, which based on presence of a secretory sequence, chromosomal location, and an IL-10 signature motif has been named interleukin-24 (MDA-7/IL-24). Discovered in the early 1990s, MDA-7/IL-24 has proven to be a potent, near ubiquitous cancer suppressor gene capable of inducing cancer cell death through apoptosis and toxic autophagy in cancer cells in vitro and in preclinical animal models in vivo. In addition, MDA-7/IL-24 embodied profound anticancer activity in a Phase I/II clinical trial following direct injection with an adenovirus (Ad.mda-7; INGN-241) in tumors in patients with advanced cancers. In multiple independent studies, MDA-7/IL-24 has been implicated in many pathological states involving inflammation and may play a role in inflammatory bowel disease, psoriasis, cardiovascular disease, rheumatoid arthritis, tuberculosis, and viral infection. This review provides an up-to-date review on the multifunctional gene mda-7/IL-24, which may hold potential for the therapy of not only cancer, but also other pathological states.
Collapse
|
16
|
Emdad L, Das SK, Wang XY, Sarkar D, Fisher PB. Cancer terminator viruses (CTV): A better solution for viral-based therapy of cancer. J Cell Physiol 2018; 233:5684-5695. [PMID: 29278667 DOI: 10.1002/jcp.26421] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/20/2017] [Indexed: 12/30/2022]
Abstract
In principle, viral gene therapy holds significant potential for the therapy of solid cancers. However, this promise has not been fully realized and systemic administration of viruses has not proven as successful as envisioned in the clinical arena. Our research is focused on developing the next generation of efficacious viruses to specifically treat both primary cancers and a major cause of cancer lethality, metastatic tumors (that have spread from a primary site of origin to other areas in the body and are responsible for an estimated 90% of cancer deaths). We have generated a chimeric tropism-modified type 5 and 3 adenovirus that selectively replicates in cancer cells and simultaneously produces a secreted anti-cancer toxic cytokine, melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24), referred to as a Cancer Terminator Virus (CTV) (Ad.5/3-CTV). In preclinical animal models, injection into a primary tumor causes selective cell death and therapeutic activity is also observed in non-injected distant tumors, that is, "bystander anti-tumor activity." To enhance the impact and therapeutic utility of the CTV, we have pioneered an elegant approach in which viruses are encapsulated in microbubbles allowing "stealth delivery" to tumor cells that when treated with focused ultrasound causes viral release killing tumor cells through viral replication, and producing and secreting MDA-7/IL-24, which stimulates the immune system to attack distant cancers, inhibits tumor angiogenesis and directly promotes apoptosis in distant cancer cells. This strategy is called UTMD (ultrasound-targeted microbubble-destruction). This novel CTV and UTMD approach hold significant promise for the effective therapy of primary and disseminated tumors.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Swadesh K Das
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| | - Paul B Fisher
- Department of Human and Molecular Genetics, School of Medicine, VCU Institute of Molecular Medicine and VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
17
|
Matricellular protein CCN1 mediates doxorubicin-induced cardiomyopathy in mice. Oncotarget 2017; 7:36698-36710. [PMID: 27167338 PMCID: PMC5095032 DOI: 10.18632/oncotarget.9162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/23/2016] [Indexed: 12/24/2022] Open
Abstract
Doxorubicin (DOX) is an effective chemotherapeutic agent however its clinical use is limited by its cumulative cardiotoxicity. Matricellular protein CCN1 mediates work-overload-induced cardiac injury. We aimed to assess the role of CCN1 in DOX-associated cardiomyopathy. Here we discovered CCN1 expression in the myocardium 1 day after DOX treatment (15 mg/kg; i.p.) in mice. Whereas CCN1 synergizes with Fas ligand (FasL) to induce cardiomyocyte apoptosis, we found that FasL was also induced by DOX in the heart. To assess the function of CCN1 in vivo, knockin mice (Ccn1dm/dm) expressing an β6β1-binding defective CCN1 mutant were treated with a single dose of DOX (15 mg/kg; i.p.). Compared with wild-type mice, Ccn1dm/dm mice were resistant to DOX-induced cardiac injury and dysfunction 14 days after injection. Using rat cardiomyoblast H9c2 cells, we demonstrated that DOX induced reactive oxygen species accumulation to upregulate CCN1 and FasL expression. CCN1 mediated DOX cardiotoxicity by engaging integrin β6β1 to promote p38 mitogen-activated protein kinase activation and the release of mitochondrial Smac and HtrA2 to cytosol, thereby counteracting the inhibition of XIAP and facilitating apoptosis. In summary, CCN1 critically mediates DOX-induced cardiotoxicity. Disrupting CCN1/β6β1 engagement abolishes DOX-associated cardiomyopathy in mice.
Collapse
|
18
|
Cai Z, Lv H, Cao W, Zhou C, Liu Q, Li H, Zhou F. Targeting strategies of adenovirus‑mediated gene therapy and virotherapy for prostate cancer (Review). Mol Med Rep 2017; 16:6443-6458. [PMID: 28901490 PMCID: PMC5865813 DOI: 10.3892/mmr.2017.7487] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 07/11/2017] [Indexed: 02/05/2023] Open
Abstract
Prostate cancer (PCa) poses a high risk to older men and it is the second most common type of male malignant tumor in western developed countries. Additionally, there is a lack of effective therapies for PCa at advanced stages. Novel treatment strategies such as adenovirus-mediated gene therapy and virotherapy involve the expression of a specific therapeutic gene to induce death in cancer cells, however, wild-type adenoviruses are also able to infect normal human cells, which leads to undesirable toxicity. Various PCa-targeting strategies in adenovirus-mediated therapy have been developed to improve tumor-targeting effects and human safety. The present review summarizes the relevant knowledge regarding available adenoviruses and PCa-targeting strategies. In addition, future directions in this area are also discussed. In conclusion, although they remain in the early stages of basic research, adenovirus-mediated gene therapy and virotherapy are expected to become important therapies for tumors in the future due to their potential targeting strategies.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Haidi Lv
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Wenjuan Cao
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Chuan Zhou
- Department of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiangzhao Liu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Hui Li
- Department of Neurosurgery, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Fenghai Zhou
- Department of Urology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| |
Collapse
|
19
|
DiCarlo JE, Deeconda A, Tsang SH. Viral Vectors, Engineered Cells and the CRISPR Revolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1016:3-27. [PMID: 29130151 DOI: 10.1007/978-3-319-63904-8_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past few decades the ability to edit human cells has revolutionized modern biology and medicine. With advances in genome editing methodologies, gene delivery and cell-based therapeutics targeted at treatment of genetic disease have become a reality that will become more and more essential in clinical practice. Modifying specific mutations in eukaryotic cells using CRISPR-Cas systems derived from prokaryotic immune systems has allowed for precision in correcting various disease mutations. Furthermore, delivery of genetic payloads by employing viral tropism has become a crucial and effective mechanism for delivering genes and gene editing systems into cells. Lastly, cells modified ex vivo have tremendous potential and have shown effective in studying and treating a myriad of diseases. This chapter seeks to highlight and review important progress in the realm of the editing of human cells using CRISPR-Cas systems, the use of viruses as vectors for gene therapy, and the application of engineered cells to study and treat disease.
Collapse
Affiliation(s)
- James E DiCarlo
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA. .,Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians, Columbia University, New York, NY, USA. .,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.
| | - Anurag Deeconda
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Ophthalmology, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
20
|
Li YJ, Liu G, Xia L, Xiao X, Liu JC, Menezes ME, Das SK, Emdad L, Sarkar D, Fisher PB, Archer MC, Zacksenhaus E, Ben-David Y. Suppression of Her2/Neu mammary tumor development in mda-7/IL-24 transgenic mice. Oncotarget 2016; 6:36943-54. [PMID: 26460950 PMCID: PMC4741907 DOI: 10.18632/oncotarget.6046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 12/21/2022] Open
Abstract
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) encodes a tumor suppressor gene implicated in the growth of various tumor types including breast cancer. We previously demonstrated that recombinant adenovirus-mediated mda-7/IL-24 expression in the mammary glands of carcinogen-treated (methylnitrosourea, MNU) rats suppressed mammary tumor development. Since most MNU-induced tumors in rats contain activating mutations in Ha-ras, which arenot frequently detected in humans, we presently examined the effect of MDA-7/IL-24 on Her2/Neu-induced mammary tumors, in which the RAS pathway is induced. We generated tet-inducible MDA-7/IL-24 transgenic mice and crossed them with Her2/Neu transgenic mice. Triple compound transgenic mice treated with doxycycline exhibited a strong inhibition of tumor development, demonstrating tumor suppressor activity by MDA-7/IL-24 in immune-competent mice. MDA-7/IL-24 induction also inhibited growth of tumors generated following injection of Her2/Neu tumor cells isolated from triple compound transgenic mice that had not been treated with doxycycline, into the mammary fat pads of isogenic FVB mice. Despite initial growth suppression, tumors in triple compound transgenic mice lost mda-7/IL-24 expression and grew, albeit after longer latency, indicating that continuous presence of this cytokine within tumor microenvironment is crucial to sustain tumor inhibitory activity. Mechanistically, MDA-7/IL-24 exerted its tumor suppression effect on HER2+ breast cancer cells, at least in part, through PERP, a member of PMP-22 family with growth arrest and apoptosis-inducing capacity. Overall, our results establish mda-7/IL-24 as a suppressor of mammary tumor development and provide a rationale for using this cytokine in the prevention/treatment of human breast cancer.
Collapse
Affiliation(s)
- You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Guodong Liu
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Lei Xia
- Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Xiao Xiao
- Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Jeff C Liu
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Michael C Archer
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Yaacov Ben-David
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Division of Biology, The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
21
|
Menezes ME, Das SK, Minn I, Emdad L, Wang XY, Sarkar D, Pomper MG, Fisher PB. Detecting Tumor Metastases: The Road to Therapy Starts Here. Adv Cancer Res 2016; 132:1-44. [PMID: 27613128 DOI: 10.1016/bs.acr.2016.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metastasis is the complex process by which primary tumor cells migrate and establish secondary tumors in an adjacent or distant location in the body. Early detection of metastatic disease and effective therapeutic options for targeting these detected metastases remain impediments to effectively treating patients with advanced cancers. If metastatic lesions are identified early, patients might maximally benefit from effective early therapeutic interventions. Further, monitoring patients whose primary tumors are effectively treated for potential metastatic disease onset is also highly valuable. Finally, patients with metastatic disease can be monitored for efficacy of specific therapeutic interventions through effective metastatic detection techniques. Thus, being able to detect and visualize metastatic lesions is key and provides potential to greatly improve overall patient outcomes. In order to achieve these objectives, researchers have endeavored to mechanistically define the steps involved in the metastatic process as well as ways to effectively detect metastatic progression. We presently overview various preclinical and clinical in vitro and in vivo assays developed to more efficiently detect tumor metastases, which provides the foundation for developing more effective therapies for this invariably fatal component of the cancerous process.
Collapse
Affiliation(s)
- M E Menezes
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - S K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - I Minn
- The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - L Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - X-Y Wang
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - D Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - M G Pomper
- The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - P B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
22
|
Abstract
Prostate cancer is a leading cause of cancer-related death and morbidity in men in the Western world. Tumor progression is dependent on functioning androgen receptor signaling, and initial administration of antiandrogens and hormone therapy (androgen-deprivation therapy) prevent growth and spread. Tumors frequently develop escape mechanisms to androgen-deprivation therapy and progress to castration-resistant late-stage metastatic disease that, in turn, inevitably leads to resistance to all current therapeutics, including chemotherapy. In spite of the recent development of more effective inhibitors of androgen–androgen receptor signaling such as enzalutamide and abiraterone, patient survival benefits are still limited. Oncolytic adenoviruses have proven efficacy in prostate cancer cells and cause regression of tumors in preclinical models of numerous drug-resistant cancers. Data from clinical trials demonstrate that adenoviral mutants have limited toxicity to normal tissues and are safe when administered to patients with various solid cancers, including prostate cancer. While efficacy in response to adenovirus administration alone is marginal, findings from early-phase trials targeting local-ized and metastatic prostate cancer suggest improved efficacy in combination with cytotoxic drugs and radiation therapy. Here, we review recent progress in the development of multimodal oncolytic adenoviruses as biological therapeutics to improve on tumor elimination in prostate cancer patients. These optimized mutants target cancer cells by several mechanisms including viral lysis and by expression of cytotoxic transgenes and immune-stimulatory factors that activate the host immune system to destroy both infected and noninfected prostate cancer cells. Additional modifications of the viral capsid proteins may support future systemic delivery of oncolytic adenoviruses.
Collapse
Affiliation(s)
- Katrina Sweeney
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| |
Collapse
|
23
|
Rosewell Shaw A, Suzuki M. Recent advances in oncolytic adenovirus therapies for cancer. Curr Opin Virol 2016; 21:9-15. [PMID: 27379906 DOI: 10.1016/j.coviro.2016.06.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 06/14/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
Abstract
Oncolytic adenoviruses (Onc.Ads) selectively replicate in and lyse cancer cells and are therefore commonly used vectors in clinical trials for cancer gene therapy. Building upon the well-characterized adenoviral natural tropism, genetic modification of Onc.Ad can enhance/regulate their transduction and replication within specific cancer cell types. However, Onc.Ad-mediated tumor cell lysis cannot fully eliminate tumors. The hostile tumor microenvironment provides many barriers to efficient oncolytic virotherapy, as tumors develop structure and immune-evasion mechanisms in order to grow and ultimately spread. For these reasons, Onc.Ads modified to deliver structural or immune modulatory molecules (Armed Onc.Ads) have been developed to overcome the physical and immunological barriers of solid tumors. The combination of oncolysis with tumor microenvironment modulation/destruction may provide a promising platform for Ad-based cancer gene therapy.
Collapse
Affiliation(s)
- Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
24
|
Menezes ME, Shen XN, Das SK, Emdad L, Guo C, Yuan F, Li YJ, Archer MC, Zacksenhaus E, Windle JJ, Subler MA, Ben-David Y, Sarkar D, Wang XY, Fisher PB. MDA-7/IL-24 functions as a tumor suppressor gene in vivo in transgenic mouse models of breast cancer. Oncotarget 2015; 6:36928-42. [PMID: 26474456 PMCID: PMC4741906 DOI: 10.18632/oncotarget.6047] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Melanoma differentiation associated gene-7/Interleukin-24 (MDA-7/IL-24) is a novel member of the IL-10 gene family that selectively induces apoptosis and toxic autophagy in a broad spectrum of human cancers, including breast cancer, without harming normal cells or tissues. The ability to investigate the critical events underlying cancer initiation and progression, as well as the capacity to test the efficacy of novel therapeutics, has been significantly advanced by the development of genetically engineered mice (GEMs) that accurately recapitulate specific human cancers. We utilized three transgenic mouse models to better comprehend the in vivo role of MDA-7/IL-24 in breast cancer. Using the MMTV-PyMT spontaneous mammary tumor model, we confirmed that exogenously introducing MDA-7/IL-24 using a Cancer Terminator Virus caused a reduction in tumor burden and also produced an antitumor "bystander" effect. Next we performed xenograft studies in a newly created MMTV-MDA-7 transgenic model that over-expresses MDA-7/IL-24 in the mammary glands during pregnancy and lactation, and found that MDA-7/IL-24 overexpression delayed tumor growth following orthotopic injection of a murine PDX tumor cell line (mPDX) derived from a tumor formed in an MMTV-PyMT mouse. We also crossed the MMTV-MDA-7 line to MMTV-Erbb2 transgenic mice and found that MDA-7/IL-24 overexpression delayed the onset of mammary tumor development in this model of spontaneous mammary tumorigenesis as well. Finally, we assessed the role of MDA-7/IL-24 in immune regulation, which can potentially contribute to tumor suppression in vivo. Our findings provide further direct in vivo evidence for the role of MDA-7/IL-24 in tumor suppression in breast cancer in immune-competent transgenic mice.
Collapse
Affiliation(s)
- Mitchell E. Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xue-Ning Shen
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K. Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Chunqing Guo
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Fang Yuan
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - You-Jun Li
- Department of Anatomy, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | - Michael C. Archer
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Nutritional Sciences, University of Toronto, Ontario, Canada
| | - Eldad Zacksenhaus
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Toronto General Research Institute - University Health Network, Toronto, Ontario, Canada
| | - Jolene J. Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Mark A. Subler
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Yaacov Ben-David
- Departments of Medical Biophysics, University of Toronto, Ontario, Canada
- Division of Biology, the Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, China
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
25
|
Sarkar S, Pradhan A, Das SK, Emdad L, Sarkar D, Pellecchia M, Fisher PB. Novel therapy of prostate cancer employing a combination of viral-based immunotherapy and a small molecule BH3 mimetic. Oncoimmunology 2015; 5:e1078059. [PMID: 27141334 DOI: 10.1080/2162402x.2015.1078059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/22/2015] [Indexed: 10/23/2022] Open
Abstract
Cancer-selective viral replication and delivery of a therapeutic immunomodulating, cancer-selective killing cytokine (mda-7/IL-24) by means of a new Cancer Terminator Virus (CTV) combined with a small molecule BH3 mimetic holds promise for treating both primary and metastatic hormone refractory prostate cancer (CaP).
Collapse
Affiliation(s)
- Siddik Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University , Richmond, VA, USA
| | - Anjan Pradhan
- Department of Human and Molecular Genetics, Virginia Commonwealth University , Richmond, VA, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA, USA; VCU Massey Cancer Center, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|