1
|
Lai Y, Wang X, Ma J, Du C, Wang Y, Wang Y, Yuan W, Zhao M. Knockdown of EIF2AK2-OAS1 axis reduces ATP production inducing AMPK phosphorylation to inhibit the malignant behavior of gastric cancer cells. J Bioenerg Biomembr 2024; 56:433-449. [PMID: 38825632 DOI: 10.1007/s10863-024-10023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/24/2024] [Indexed: 06/04/2024]
Abstract
Energy metabolism has always been a hot topic in cancer progression and targeted therapy, and exploring the role of genes in energy metabolic pathways in cancer cells has become key to address this issue. Eukaryotic translation initiation factor 2α kinase 2 (EIF2AK2) plays regulatory roles in cancer and disorders of energy metabolism. Indeed, the role of EIF2AK2 in energy metabolism has been underestimated. The aim of this study is to reveal the expression specificity of EIF2AK2 in gastric cancer (GC) progression and metastasis, and to demonstrate the role of EIF2AK2 in energy metabolism, cytoskeleton, proliferation, death and metastasis pathways in GC cells. Mechanistically, EIF2AK2 overexpression promoted cytoskeleton remodeling and ATP production, mediated cell proliferation and metastasis, upregulated OAS1 expression, decreases p-AMPK expression and inhibited apoptosis in GC cells. Conversely, knockdown of EIF2AK2 resulted in the opposite effect. However, overexpression of OAS1 mediated the upregulation of mitochondrial membrane potential and promoted ATP production and NAD+/NADH ratio, but knockdown of OAS1 inhibited the above effects. In addition, knockdown of OAS1 had no effect on EIF2AK2 expression, but inhibited AMPK and upregulated p-AMPK expression. In conclusion, our study identified EIF2AK2 and OAS1 as previously undescribed regulators of energy metabolism in GC cells. We hypothesized that EIF2AK2-OAS1 axis may regulate energy metabolism and inhibit cellular malignant behavior in cancer cells by affecting ATP production to induce AMPK phosphorylation, suggesting EIF2AK2 as a potential therapeutic target for cancer cell progression.
Collapse
Affiliation(s)
- Yafang Lai
- Department of gastroenterology, Ordos Central Hospital, 23 Yijinhuoluo West Street, Dongsheng District, Ordos, Inner Mongolia, 017000, China
| | - Xiaofei Wang
- Department of Pathology, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei, 063000, China
| | - Jingrong Ma
- Department of gastroenterology, Ordos Central Hospital, 23 Yijinhuoluo West Street, Dongsheng District, Ordos, Inner Mongolia, 017000, China
| | - Chaoqun Du
- Department of gastroenterology, Ordos Central Hospital, 23 Yijinhuoluo West Street, Dongsheng District, Ordos, Inner Mongolia, 017000, China
| | - Yuyu Wang
- Department of gastroenterology, Ordos Central Hospital, 23 Yijinhuoluo West Street, Dongsheng District, Ordos, Inner Mongolia, 017000, China
| | - Yaxin Wang
- Department of gastroenterology, Ordos Central Hospital, 23 Yijinhuoluo West Street, Dongsheng District, Ordos, Inner Mongolia, 017000, China
| | - Wenzhao Yuan
- Department of gastroenterology, Ordos Central Hospital, 23 Yijinhuoluo West Street, Dongsheng District, Ordos, Inner Mongolia, 017000, China.
| | - Mingwei Zhao
- Department of gastroenterology, Ordos Central Hospital, 23 Yijinhuoluo West Street, Dongsheng District, Ordos, Inner Mongolia, 017000, China.
| |
Collapse
|
2
|
Therapeutic targeting of the PI4K2A/PKR lysosome network is critical for misfolded protein clearance and survival in cancer cells. Oncogene 2019; 39:801-813. [PMID: 31554935 PMCID: PMC6976521 DOI: 10.1038/s41388-019-1010-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/20/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
Abstract
The role of RNA-dependent protein kinase R (PKR) and its association with misfolded protein expression in cancer cells are unclear. Herein we report that PKR regulates misfolded protein clearance by preventing it release through exosomes and promoting lysosomal degradation of misfolded prion proteins in cancer cells. We demonstrated that PKR contributes to the lysosome function and regulates misfolded prion protein clearance. We hypothesized that PKR-associated lysosome function is critical for cancer but not normal cell survival, representing an effective approach for highly targeted cancer therapy. In screening a compound library, we identified two PKR-associated compounds 1 and 2 (Pac 1 and 2) did not affect normal cells but selectively induced cell death in cancer cells depending on their PKR expression status. Pac 1 significantly inhibited the growth of human lung and breast xenograft tumors in mice with no toxicity. Pac 1 binds to PI4K2A and disrupts the PKR/PI4K2A-associated lysosome complex, contributing to destabilization of cancer cell lysosomes and triggering cell death. We observed that PKR and PI4K2A play significant prognostic roles in breast cancer patients. These results demonstrate that targeting of a PI4K2A/PKR lysosome complex may be an effective approach for cancer therapy.
Collapse
|
3
|
Loss of GFAT1 promotes epithelial-to-mesenchymal transition and predicts unfavorable prognosis in gastric cancer. Oncotarget 2018; 7:38427-39. [PMID: 27509259 PMCID: PMC5122401 DOI: 10.18632/oncotarget.9538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/08/2016] [Indexed: 12/23/2022] Open
Abstract
Gastric cancer remains the third leading cause of cancer-related mortality worldwide, and invasion and metastasis of gastric cancer represent the major reason for its poor prognosis. Glutamine: fructose-6-phosphate amidotransferase 1 (GFAT1) is the first and rate-limiting enzyme of hexosamine biosynthesis pathway (HBP). Nevertheless, the role of GFAT1 in gastric cancer is little investigated. In this study, we found that the expression of GFAT1 was decreased in gastric cancer. Low expression of GFAT1 was positively associated with vessel invasion, late T stage, lymph node metastasis, distant metastasis, advanced TNM stage and poor prognosis in patients with gastric cancer. Furthermore, in vitro and in vivo studies revealed that down-regulation of GFAT1 promoted epithelial-to-mesenchymal transition (EMT) and invasive activities in gastric cancer cells through inducing the expression of TGF-β1. The GFAT1 expression also significantly correlated with EMT-related factors in gastric cancer patients. Together, these findings indicate that GFAT1 functions as a novel suppressor of EMT and tumor metastasis in gastric cancer.
Collapse
|
4
|
Cheng J, Shuai X, Gao J, Cai M, Wang G, Tao K. Prognostic significance of AMPK in human malignancies: A meta-analysis. Oncotarget 2018; 7:75739-75748. [PMID: 27716618 PMCID: PMC5342774 DOI: 10.18632/oncotarget.12405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
Background AMPK is a well-investigated kinase mediating cellular metabolism and stress responses. However, its indicative role in survival prognosis remains ill-defined. Therefore we performed this meta-analysis in order to clarify the prognostic impact of AMPK expression in human malignancies. Methods Literatures were retrieved via searching databases of PubMed, Web of Science, Embase and Cochrane Library. Studies comparing the prognostic significance between different AMPK levels among human malignancies were included into the pooled analysis. The statistical procedures were conducted by Review Manager 5.3 and the effect size was displayed by model of odds ratio. Subgroup analyses were additionally implemented to disclose the potential confounding elements. The outcome stability was examined by sensitivity analysis, and both Begg's test and Egger's test were utilized to detect the publication bias across the included studies. Results 21 retrospective cohorts were eventually obtained with a total sample-size of 9987 participants. Patients with higher AMPK expression had better outcomes of 3-year overall survival (P<0.0001), 5-year overall survival (P<0.0001), 10-year overall survival (P<0.0001), 3-year disease free survival (P<0.0001), 5-year disease free survival (P=0.002) and 10-year disease free survival (P=0.0004). Moreover, the majority of subgroup results also verified the favorably prognostic significance of AMPK over-expression. The outcome stability was confirmed by sensitivity analysis. Results of Begg's (P=0.76) and Egger's test (P=0.09) suggested that there was no publication bias within the included trials. Conclusions Higher expression of AMPK significantly indicates better prognosis in human malignancies.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Shuai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinbo Gao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Hao C, Shao R, Raju U, Fang B, Swisher SG, Pataer A. Accumulation of RNA-dependent protein kinase (PKR) in the nuclei of lung cancer cells mediates radiation resistance. Oncotarget 2018; 7:38235-38242. [PMID: 27203671 PMCID: PMC5122385 DOI: 10.18632/oncotarget.9428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/28/2016] [Indexed: 12/02/2022] Open
Abstract
We have previously demonstrated that radiation induced cell death in PKR (−/−) deficient mouse embryo fibroblasts (MEFs) but not in PKR (+/+) wild type MEFs. Our study indicated that PKR can also be involved in survival pathways following radiation therapy through activation of the AKT survival pathways in these MEFs is mediated in part through PKR. The role of PKR on radiation sensitivity in cancer cells has not been evaluated. In this study, we demonstrated that radiation treatment causes nuclear translocation of PKR in human lung cancer cells. The transduction of lung cancer cells with a dominant negative adenoviral PKR vector blocks nuclear translocation of PKR and leads to the reversal of radiation resistance. Plasmid transduction of lung cancer cells with nuclear targeted wild type PKR vectors also increased radiation resistance. This effect is selectively abrogated by plasmid transduction of dominant negative PKR vectors which restore radiation sensitivity. These findings suggest a novel role for PKR in lung cancer cells as a mediator of radiation resistance possibly through translocation of the protein product to the nucleus.
Collapse
Affiliation(s)
- Chuncheng Hao
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Current Address: Department of Oncology Radiotherapy, the Cancer Hospital of Harbin Medical University, Harbin, China
| | - Ruping Shao
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Uma Raju
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bingliang Fang
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Stephen G Swisher
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Apar Pataer
- Departments of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
6
|
AMPK expression patterns are significantly associated with poor prognosis in breast cancer patients. Ann Diagn Pathol 2017; 29:62-67. [PMID: 28807345 DOI: 10.1016/j.anndiagpath.2017.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/25/2022]
Abstract
Many investigators have examined the functions of AMP-activated protein kinase (AMPK) in cancer biology and its anti-neoplastic features in cancer models. The goal of this research is to assess the association of the immunohistochemical expression of AMPK in human mammary tumours with the clinical data of breast cancer patients. 449 cases of previously diagnosed breast cancer, and 27 tissue samples of fibroadenomas and normal breast were utilized for detection of AMPK expression using tissue microarrays and immunohistochemistry. Brownish nuclear and cytoplasmic staining were present in epithelial cells and stromal cells in 333 (74.16%) and 348 (77.5%) cancer cases respectively indicating AMPK expression. Twenty two (81.48%) control cases showed AMPK immunoexpression in both epithelial and stromal cells. Significant statistical association has been found between advanced stages of breast cancer and increased intensity of AMPK immunostaining only in epithelial cells (p-value=0.0001). Histotypes have been correlated with AMPK immunostaining in epithelial cells only (p-value=0.029). Low AMPK immunostaining scores were more dominant in DCIS, ductal and mixed type's ductal and mucinous histotypes, while high intense staining was more common in the lobular type. Furthermore, breast tumour cases with lymph node metastases showed significant AMPK expression in both epithelial and stromal cells (p-value=0.0001 and p-value=0.026). Low scores of AMPK immunostaining were common in breast cancer cases with positive vascular invasion (p-value=0.007) and disease recurrence (p-value=0.008). No significant differences in survival behavior distributions were observed for the different categories of AMPK immunostaining in epithelial and stromal cells. In conclusion, our results showed decreased AMPK expression in breast cancer in comparison with the control group. AMPK expression was significantly correlated with some clinicopathological factors like advanced stage, lymph node involvement, vascular invasion and disease recurrence which give indications for poor clinical outcomes. Immunohistochemical staining of AMPK protein is a valuable method which could predict cases of breast cancer with poor prognosis.
Collapse
|
7
|
Huang X, Li X, Xie X, Ye F, Chen B, Song C, Tang H, Xie X. High expressions of LDHA and AMPK as prognostic biomarkers for breast cancer. Breast 2016; 30:39-46. [PMID: 27598996 DOI: 10.1016/j.breast.2016.08.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/19/2016] [Accepted: 08/21/2016] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES The purpose of this study was to investigate the potential correlation between lactate dehydrogenase A (LDHA) and AMP-activated protein kinase (AMPK) and their clinicopathologic significance in breast cancer. MATERIALS AND METHODS Western blot and qRT-PCR were used to detect the expression levels of LDHA and AMPK in eight breast cancer lines and eight breast cancer tissues. In addition, LDHA and AMPK were detected by immunohistochemistry (IHC) using breast cancer tissue microarrays (TMAs) of 112 patients. The association between LDHA and AMPK expression levels was statistically analyzed. So were the prognostic roles and clinicopathologic significances in breast cancer. RESULTS The expression levels of LDHA and AMPK were relatively higher in triple-negative breast cancer (TNBC) cell lines than in non-triple-negative breast cancer (NTNBC) cell lines. LDHA and AMPK were also further up-regulated in TNBC tissues than in NTNBC tissues. Correlation analysis showed a positive correlation between LDHA and AMPK expression levels. Expression of LDHA and AMPK were significantly correlated with TNM stage, distant metastasis, Ki67 status and survival outcomes of patients. Patients with both positive expression of LDHA and AMPK showed shorter overall survival (OS) and disease-free survival (DFS). CONCLUSIONS These findings improve our understanding of the expression pattern of LDHA and AMPK in breast cancer and clarify the role of LDHA and AMPK as promising prognostic biomarkers for breast cancer.
Collapse
Affiliation(s)
- Xiaojia Huang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xing Li
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xinhua Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Feng Ye
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Bo Chen
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Cailu Song
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Hailin Tang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Xiaoming Xie
- Department of Breast Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
8
|
Zhao S, Wu J, Tang Q, Zheng F, Yang L, Chen Y, Li L, Hann SS. Chinese herbal medicine Xiaoji decoction inhibited growth of lung cancer cells through AMPKα-mediated inhibition of Sp1 and DNA methyltransferase 1. JOURNAL OF ETHNOPHARMACOLOGY 2016; 181:172-181. [PMID: 26850724 DOI: 10.1016/j.jep.2016.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiaoji decoction (XJD), which was considered as a Chinese herbal prescription, has been used for cancer treatment, especially lung cancer, for decades to improve quality of life and prolong the patient survival. However, the molecular mechanisms underlying the therapeutic potential have not been well elucidated. MATERIALS AND METHODS The cell viability was examined by MTT assays. The phosphorylation and expression of AMP-activated protein kinase alpha (AMPKα), DNA methyltransferase 1 (DNMT1) and transcription factor Sp1 proteins were assessed by Western Blot. Exogenous expression of Sp1 and DNMT1 were performed by transient transfection methods. The effects of XJD on the growth of xenograft tumors were evaluated by in vivo bioluminescence imaging. RESULTS We showed that XJD inhibited growth of human non small cell lung cancer (NSCLC) cells in vitro. We also found that XJD increased phosphorylation of AMPKα and inhibited protein expression of DNTM1, the latter was not observed in the presence of the inhibitor of AMPK (compound C). Overexpression of DNTM1 reversed the effect of XJD on cell growth. In addition, XJD decreased Sp1 protein expression, which was eliminated by compound C. Conversely, exogenous expressed Sp1 abrogated XJD-inhibited DNTM1 protein expression. Interestingly, exogenous expression of DNMT1 feedback antagonized the XJD-induced phosphorylation of AMPKα. In in vivo studies, we found that XJD inhibited tumor growth in xenograft nude mice model, which was accompanied by induction of phosphorylation of AMPKα and suppression of DNMT1 protein from xenograft tumors. CONCLUSION Our results show that XJD inhibits NSCLC cell growth via AMPKα-mediated inhibition of transcription of Sp1, followed by the reduction of DNMT1 expression both in vitro and in vivo. The negative feedback regulation loop of AMPKα further demonstrates the critical role of DNMT1 in mediating the overall effects of XJD in this process. This study unveils novel molecular mechanism by which XJD controls NSCLC cell growth.
Collapse
Affiliation(s)
- ShunYu Zhao
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Jingjing Wu
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Qing Tang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Fang Zheng
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - LiJun Yang
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - YuQin Chen
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Liuning Li
- Department of Medical Oncology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China
| | - Swei Sunny Hann
- Laboratory of Tumor Biology, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical Collage, University of Guangzhou Traditional Chinese Medicine, Guangzhou, Guangdong Province 510120, China.
| |
Collapse
|