1
|
Guo H, Wei J, Zhang Y, Wang L, Wan J, Wang W, Gao L, Li J, Sun T, Ma L. Protein ubiquitination in ovarian cancer immunotherapy: The progress and therapeutic strategy. Genes Dis 2024; 11:101158. [PMID: 39253578 PMCID: PMC11382211 DOI: 10.1016/j.gendis.2023.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/04/2023] [Accepted: 10/10/2023] [Indexed: 09/11/2024] Open
Abstract
Ovarian cancer is a common cancer for females, and the incidence and mortality rates are on the rise. Many treatment strategies have been developed for ovarian cancer, including chemotherapy and immunotherapy, but they are often ineffective and prone to drug resistance. Protein ubiquitination is an important class of post-translation modifications that have been found to be associated with various human diseases and cancer development. Recent studies have revealed that protein ubiquitination is involved in the progression of ovarian cancer and plays an important role in the tumor immune process. Moreover, the combination of ubiquitinase/deubiquitinase inhibitors and cancer immunotherapy approaches can effectively reduce treatment resistance and improve treatment efficacy, which provides new ideas for cancer treatment. Herein, we review the role of protein ubiquitination in relation to ovarian cancer immunotherapy and recent advances in the use of ubiquitinase/deubiquitinase inhibitors in combination with cancer immunotherapy.
Collapse
Affiliation(s)
- Huiling Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyan Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ling Gao
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450052, China
| | - Jiajing Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ting Sun
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Clinical Laboratory of Henan Province, Zhengzhou, Henan 450052, China
| |
Collapse
|
2
|
Behera A, Sachan D, Barik GK, Reddy ABM. Role of MARCH E3 ubiquitin ligases in cancer development. Cancer Metastasis Rev 2024:10.1007/s10555-024-10201-x. [PMID: 39037545 DOI: 10.1007/s10555-024-10201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Membrane-associated RING-CH (MARCH) E3 ubiquitin ligases, a family of RING-type E3 ubiquitin ligases, have garnered increased attention for their indispensable roles in immune regulation, inflammation, mitochondrial dynamics, and lipid metabolism. The MARCH E3 ligase family consists of eleven distinct members, and the dysregulation of many of these members has been documented in several human malignancies. Over the past two decades, extensive research has revealed that MARCH E3 ligases play pivotal roles in cancer progression by ubiquitinating key oncogenes and tumor suppressors and orchestrating various signaling pathways. Some MARCH E3s act as oncogenes, while others act as tumor suppressors, and the majority of MARCH E3s play both oncogenic and tumor suppressive roles in a context-dependent manner. Notably, there is special emphasis on the sole mitochondrial MARCH E3 ligase MARCH5, which regulates mitochondrial homeostasis within cancer cells. In this review, we delve into the diverse functions of MARCH E3 ligases across different cancer types, shedding light on the underlying molecular mechanisms mediating their effects, their regulatory effects on cancer and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Abhayananda Behera
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Deepanshi Sachan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ganesh Kumar Barik
- Cancer Biology Division, National Centre for Cell Science, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra, 411007, India
| | | |
Collapse
|
3
|
Zhuang J, Zhang L, Zhang S, Zhang Z, Xie T, Zhao W, Liu Y. Membrane-associated RING-CH 7 inhibits stem-like capacities of bladder cancer cells by interacting with nucleotide-binding oligomerization domain containing 1. Cell Biosci 2024; 14:32. [PMID: 38462600 PMCID: PMC10926635 DOI: 10.1186/s13578-024-01210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Cancer stem-like capacities are major factors contributing to unfavorable prognosis. However, the associated molecular mechanisms underlying cancer stem-like cells (CSCs) maintain remain unclear. This study aimed to investigate the role of the ubiquitin E3 ligase membrane-associated RING-CH 7 (MARCH7) in bladder cancer cell CSCs. METHODS Male BALB/c nude mice aged 4-5 weeks were utilized to generate bladder xenograft model. The expression levels of MARCHs were checked in online databases and our collected bladder tumors by quantitative real-time PCR (q-PCR) and immunohistochemistry (IHC). Next, we evaluated the stem-like capacities of bladder cancer cells with knockdown or overexpression of MARCH7 by assessing their spheroid-forming ability and spheroid size. Additionally, we conducted proliferation, colony formation, and transwell assays to validate the effects of MARCH7 on bladder cancer CSCs. The detailed molecular mechanism of MARCH7/NOD1 was validated by immunoprecipitation, dual luciferase, and in vitro ubiquitination assays. Co-immunoprecipitation experiments revealed that nucleotide-binding oligomerization domain-containing 1 (NOD1) is a substrate of MARCH7. RESULTS We found that MARCH7 interacts with NOD1, leading to the ubiquitin-proteasome degradation of NOD1. Furthermore, our data suggest that NOD1 significantly enhances stem-like capacities such as proliferation and invasion abilities. The overexpressed MARCH7 counteracts the effects of NOD1 on bladder cancer CSCs in both in vivo and in vitro models. CONCLUSION Our findings indicate that MARCH7 functions as a tumor suppressor and inhibits the stem-like capacities of bladder tumor cells by promoting the ubiquitin-proteasome degradation of NOD1. Targeting the MARCH7/NOD1 pathway could be a promising therapeutic strategy for bladder cancer patients.
Collapse
Affiliation(s)
- Junlong Zhuang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
- Institute of Urology, Nanjing University, Nanjing, China
| | - Lingli Zhang
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Siyuan Zhang
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China
| | - Zhongqing Zhang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Tianlei Xie
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Wei Zhao
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, China.
- Clinical Laboratory, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Yantao Liu
- Department of Pharmacy, West China Second University Hospital, Sichuan University, Chengdu, China
- Evidence-Based Pharmacy Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Functional roles of long noncoding RNA MALAT1 in gynecologic cancers. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:48-65. [PMID: 36042115 DOI: 10.1007/s12094-022-02914-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/25/2022] [Indexed: 02/06/2023]
Abstract
Gynecologic cancers are reproductive disorders characterized by pelvic pain and infertility. The identification of new predictive markers and therapeutic targets for the treatment of gynecologic cancers is urgently necessary. One of the recent successes in gynecologic cancers research is identifying the role of signaling pathways in the pathogenesis of the disease. Recent experiments showed long noncoding RNAs (lncRNA) can be novel therapeutic approaches for the diagnosis and treatment of gynecologic cancers. LncRNA are transcribed RNA molecules that play pivotal roles in multiple biological processes by regulating the different steps of gene expression. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) is a well-known lncRNA that plays functional roles in gene expression, RNA processing, and epigenetic regulation. High expression of MALAT1 is closely related to numerous human diseases. It is generally believed that MALAT1 expression is associated with cancer cell growth, autophagy, invasion, and metastasis. MALAT1 by targeting multiple signaling pathways and microRNAs (miRNAs) could contribute to the pathogenesis of gynecologic cancers. In this review, we will summarize functional roles of MALAT1 in the most common gynecologic cancers, including endometrium, breast, ovary, and cervix.
Collapse
|
5
|
Association of MARCH7 with tumor progression and T-cell infiltration in esophageal cancer. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:67. [PMID: 36583798 DOI: 10.1007/s12032-022-01938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/19/2022] [Indexed: 12/31/2022]
Abstract
MARCH7 is an E3 ubiquitin ligase known to regulate neuronal development,T-cell proliferation, and cell and tissue differentiation. But, the altered expression of MARCH7 has been observed in various malignancies. Herein, the cellular localization and role of MARCH7 have been elucidated in esophageal squamous cell carcinoma (ESCC), the information regarding which is currently limited. To check the expression of MARCH7 and its correlation with immune cells infiltration in ESCC, immunohistochemical analysis was performed. RNAi approach was used to investigate the role of MARCH7 in esophageal cancer cells. Interestingly, we found a significantly higher expression of MARCH7 protein in 84% of ESCC tissues than in distant matched non-malignant tissues (p ≤ 0.001). In addition to this, immunohistochemistry results have shown a negative correlation between MARCH7 protein expression and tumor-infiltrating immune cells such as CD8 + T cells (r = - 0.633, p = 0.001) and PD1 + T cells (r = - 0.560, p = 0.005). Furthermore, MARCH7 silencing inhibited the ESCC cell growth and reduced the clonogenic and invasion/migration potential of ESCC cells. MARCH7 silencing also significantly increased E-cadherin protein levels in ESCC cells relative to those in negative control cells (p < 0.05). Thus, MARCH7 is oncogenic and might have a possible role in esophageal carcinogenesis. Moreover, E-cadherin may be a downstream target of MARCH7 in ESCC.
Collapse
|
6
|
Qu J, Lin Z. Autophagy Regulation by Crosstalk between miRNAs and Ubiquitination System. Int J Mol Sci 2021; 22:ijms222111912. [PMID: 34769343 PMCID: PMC8585084 DOI: 10.3390/ijms222111912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding single-stranded RNA molecules encoded by endogenous genes with ~22 nucleotides which are involved in the regulation of post-transcriptional gene expression. Ubiquitination and deubiquitination are common post-translational modifications in eukaryotic cells and important pathways in regulating protein degradation and signal transduction, in which E3 ubiquitin ligases and deubiquitinases (DUBs) play a decisive role. MiRNA and ubiquitination are involved in the regulation of most biological processes, including autophagy. Furthermore, in recent years, the direct interaction between miRNA and E3 ubiquitin ligases or deubiquitinases has attracted much attention, and the cross-talk between miRNA and ubiquitination system has been proved to play key regulatory roles in a variety of diseases. In this review, we summarized the advances in autophagy regulation by crosstalk between miRNA and E3 ubiquitin ligases or deubiquitinases.
Collapse
|
7
|
Kisaï K, Koji S. Prognostic role of USP7 expression in cancer patients: A systematic review and meta-analysis. Pathol Res Pract 2021; 227:153621. [PMID: 34562828 DOI: 10.1016/j.prp.2021.153621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Numerous studies have examined the prognostic value of ubiquitin-specific protease 7 (USP7) in cancer, but the results remain controversial. Differences in assessment assays (mRNA/protein) used could be a potential confounding factor. Thus, we extracted studies that measured the protein expression and performed a meta-analysis to assess the prognostic role of USP7 expression in cancer and to identify clinicopathological features associated with USP7 expression. METHODS PubMed, Scopus, Web of Science Core Collection, Wiley Online Library, and Google Scholar were searched from inception to July 2020. Pooled hazard ratios were calculated to evaluate the association between USP7 expression and overall survival (OS). In addition, pooled odds ratios were calculated to identify clinicopathological features associated with USP7 expression. RESULTS Eight studies in China were included in our meta-analysis, which had a total of 1192 patients and assessed five types of cancer. The pooled results revealed that a high expression of USP7 was associated with poor OS, especially in epithelial ovarian cancer (EOC). Moreover, USP7 expression was increased in patients with tumour-node-metastasis (TNM) stages III-IV, poor pathological grade, and positive lymph node metastasis. For patients with EOC, a high USP7 expression positively correlated with lymph node metastasis. CONCLUSION A high USP7 expression may promote cancer progression and predict unfavourable prognosis of cancer patients, especially those with EOC. Our findings suggest that USP7 inhibitors might be promising therapeutics for cancer patients with such characteristics.
Collapse
Affiliation(s)
- Kenta Kisaï
- College of Creative Studies, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Shinsaku Koji
- College of Creative Studies, Niigata University, 8050 Ikarashi-nino-cho, Nishi-ku, Niigata 950-2181, Japan.
| |
Collapse
|
8
|
Mahajan S, Sharma GK, Bora K, Pattnaik B. Identification of novel interactions between host and non-structural protein 2C of foot-and-mouth disease virus. J Gen Virol 2021; 102. [PMID: 33729124 DOI: 10.1099/jgv.0.001577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The 2C protein of foot-and-mouth disease virus (FMDV) is reported to play a critical role in the virus replication complex and modulating the host's immune response. However, the underlying molecular intricacies of subversion of cellular machinery remains poorly understood, thus emphasizing the need to study 2C-host interactions. In this study, we identified the host proteins interacting with the 2C using yeast-two hybrid (Y2H) approach, which is one of the most recognized, high-throughput tools to study protein-protein interactions. The FMDV-2C bait was characterized for auto-activation, toxicity, and expression and was found to be suitable for mating with cDNA library. On preliminary screening a total of 32 interacting host proteins were identified which were reduced to 22 on subsequent confirmation with alternative yeast based assays. Amongst these, NMI/2C interaction has been reported earlier by Wang et al. (2012) and remaining 21 are novel interactions. The Reactome analysis has revealed the role of the identified host proteins in cellular pathways exploited by 2C during FMDV replication. We also confirmed interaction of MARCH7, an E3 ubiquitin ligase with 2C using mammalian two-hybrid system and co-immunoprecipitation. This study leads to the identification of novel 2C interacting host proteins which enhance our understanding of 2C-host interface and may provide checkpoints for development of potential therapeutics against FMDV.
Collapse
Affiliation(s)
- Sonalika Mahajan
- Present address: Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243122, India.,ICAR-Project Directorate on Foot and Mouth Disease, Mukteswar, Uttarakhand, 263138, India
| | - Gaurav Kumar Sharma
- Present address: Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, 243122, India.,ICAR-Project Directorate on Foot and Mouth Disease, Mukteswar, Uttarakhand, 263138, India
| | - Kavita Bora
- ICAR-Project Directorate on Foot and Mouth Disease, Mukteswar, Uttarakhand, 263138, India
| | - Bramhadev Pattnaik
- ICAR-Project Directorate on Foot and Mouth Disease, Mukteswar, Uttarakhand, 263138, India
| |
Collapse
|
9
|
Singh S, Bano A, Saraya A, Das P, Sharma R. iTRAQ-based analysis for the identification of MARCH8 targets in human esophageal squamous cell carcinoma. J Proteomics 2021; 236:104125. [PMID: 33540066 DOI: 10.1016/j.jprot.2021.104125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
MARCH8 is an E3 ligase, primarily involved in immune-modulation. Recently, we reported its aberrant expression in human esophageal squamous cell carcinoma. However, exact mechanisms by which it regulates cancer have been poorly understood. We applied high-throughput quantitative proteomics approach to identify downstream protein targets of MARCH8. Silencing of endogenous MARCH8 in ESCC cells followed by LC-MS/MS analysis led to identification of 1,029 unique proteins showing altered expression post MARCH8 knockdown. Several previously reported MARCH8 target proteins viz. TFR1, syntaxin-4, e-cadherin and CD44 were found to be upregulated. Furthermore, new putative targets of MARCH8, including β2M, were identified in the present study. We demonstrated that MARCH8 interacts with and ubiquitinates CDH1 and β2M. Inhibiting proteasome activity with MG132 prevented CDH1 and β2M degradation, indicating that MARCH8 might be targeting CDH1 and β2M for proteasomal degradation. Further, loss of β2M and CDH1 expression significantly and inversely correlated with MARCH8 expression in ESCC tissues (r = -0.737 and - 0.651, respectively; p < 0.01). In conclusion, our present study has led to identification of new targets of MARCH8 and suggests the role of MARCH8 in regulating CDH1 and β2M turnover in esophageal cancer cells. SIGNIFICANCE: The use of quantitative proteomics carried out has led to the recognition of new targets of MARCH8. The present study gives a broad understanding of the molecular remodeling arising in the ESCC after MARCH8 knockdown. The study also solidifies the idea that role of MARCH8 is not just limited to immunomodulation as silencing of MARCH8 affects various other processes such as protein processing and localization. This study might help in understanding the regulation of MARCH8 in ESCCs and the mechanism by which MARCH8 might be facilitating cancer cells to evade immune surveillance.
Collapse
Affiliation(s)
- Shivam Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16(C), Dwarka, New Delhi 110078, India
| | - Arjumand Bano
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16(C), Dwarka, New Delhi 110078, India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16(C), Dwarka, New Delhi 110078, India.
| |
Collapse
|
10
|
Bányai L, Trexler M, Kerekes K, Csuka O, Patthy L. Use of signals of positive and negative selection to distinguish cancer genes and passenger genes. eLife 2021; 10:e59629. [PMID: 33427197 PMCID: PMC7877913 DOI: 10.7554/elife.59629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022] Open
Abstract
A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.
Collapse
Affiliation(s)
- László Bányai
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Maria Trexler
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Krisztina Kerekes
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| | - Orsolya Csuka
- Department of Pathogenetics, National Institute of OncologyBudapestHungary
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
11
|
Nguyen VHL, Hough R, Bernaudo S, Peng C. Wnt/β-catenin signalling in ovarian cancer: Insights into its hyperactivation and function in tumorigenesis. J Ovarian Res 2019; 12:122. [PMID: 31829231 PMCID: PMC6905042 DOI: 10.1186/s13048-019-0596-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest female malignancy. The Wnt/β-catenin pathway plays critical roles in regulating embryonic development and physiological processes. This pathway is tightly regulated to ensure its proper activity. In the absence of Wnt ligands, β-catenin is degraded by a destruction complex. When the pathway is stimulated by a Wnt ligand, β-catenin dissociates from the destruction complex and translocates into the nucleus where it interacts with TCF/LEF transcription factors to regulate target gene expression. Aberrant activation of this pathway, which leads to the hyperactivity of β-catenin, has been reported in ovarian cancer. Specifically, mutations of CTNNB1, AXIN, or APC, have been observed in the endometrioid and mucinous subtypes of EOC. In addition, upregulation of the ligands, abnormal activation of the receptors or intracellular mediators, disruption of the β-catenin destruction complex, inhibition of the association of β-catenin/E-cadherin on the cell membrane, and aberrant promotion of the β-catenin/TCF transcriptional activity, have all been reported in EOC, especially in the high grade serous subtype. Furthermore, several non-coding RNAs have been shown to regulate EOC development, in part, through the modulation of Wnt/β-catenin signalling. The Wnt/β-catenin pathway has been reported to promote cancer stem cell self-renewal, metastasis, and chemoresistance in all subtypes of EOC. Emerging evidence also suggests that the pathway induces ovarian tumor angiogenesis and immune evasion. Taken together, these studies demonstrate that the Wnt/β-catenin pathway plays critical roles in EOC development and is a strong candidate for the development of targeted therapies.
Collapse
Affiliation(s)
| | - Rebecca Hough
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, Ontario, Canada. .,Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada.
| |
Collapse
|
12
|
Abudurexiti M, Xie H, Jia Z, Zhu Y, Zhu Y, Shi G, Zhang H, Dai B, Wan F, Shen Y, Ye D. Development and External Validation of a Novel 12-Gene Signature for Prediction of Overall Survival in Muscle-Invasive Bladder Cancer. Front Oncol 2019; 9:856. [PMID: 31552180 PMCID: PMC6743371 DOI: 10.3389/fonc.2019.00856] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Purpose: We aimed to develop and validate a novel gene signature from published data and improve the prediction of survival in muscle-invasive bladder cancer (MIBC). Methods: We searched the published gene signatures associated with the overall survival (OS) of MIBC and compiled all 274 genes to develop a novel gene signature. RNAseq data of TCGA (the Cancer Genome Atlas) bladder cohort were downloaded. All genes were included in a univariate Cox hazard ratio model. We then used a reduced multivariate Cox regression model, which included only genes achieving P < 0.05 in the univariate model. A total of 172 patients at Fudan University Shanghai Cancer Center (FUSCC) and 61 patients from GEO datasets were used as an external validation set. Results: A total of 327 patients in the TCGA cohort were enrolled. We identified 274 genes from eight published papers on the OS of MIBC. Using the TCGA database, we identified 12 genes that correlated with OS (P < 0.05 in both univariate and multivariate analyses). By integrating these genes with the RT-qPCR data in our validation dataset and GEO datasets, we confirmed that the power for predicting OS of the 12-gene panel (AUC of 0.741 and 0.727, respectively) was higher than just clinical data (including gender, age, T stage, grade, and N stage) alone in the TCGA and FUSCC cohort (AUC of 0.667 and 0.631, respectively). Additionally, upon combining the clinical data and 12-gene panel together, the AUC increased to 0.768, 0.757, and 0.88 in the TCGA, FUSCC and GSE13507 cohorts, respectively. Conclusions: Applying published gene signatures and TCGA data, we successfully built and externally validated a novel 12-gene signature for the survival of MIBC.
Collapse
Affiliation(s)
- MierXiati Abudurexiti
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huyang Xie
- Department of Urology, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhongwei Jia
- Department of Medical Oncology, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, China
| | - Yiping Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yao Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yijun Shen
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Liu L, Hu J, Yu T, You S, Zhang Y, Hu L. miR-27b-3p/MARCH7 regulates invasion and metastasis of endometrial cancer cells through Snail-mediated pathway. Acta Biochim Biophys Sin (Shanghai) 2019; 51:492-500. [PMID: 31006800 DOI: 10.1093/abbs/gmz030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 01/22/2023] Open
Abstract
Ubiquitin E3 ligase membrane-associated RING-CH-type finger 7 (MARCH7), also known as axotrophin, was originally identified in mouse embryonic stem cells. MARCH7 is involved in T-cell proliferation, neuronal development, and the immune system. However, its role in endometrial cancer (EC) remains unclear. This study aimed to investigate the role of MARCH7 in EC. Quantitative polymerase chain reaction, immunohistochemistry, and western blot analysis were used to examine the expression of MARCH7, E-cadherin, Snail, and Vimentin in EC cell lines or clinical specimens. The role of MARCH7 in maintaining EC cell malignant phenotype was determined by transwell assay and using xenograft tumor model. Dual-luciferase reporter gene assay was performed to determine whether MARCH7 is an authentic target of miR-27b-3p. Our data showed that the expression level of MARCH7 in EC tissues was higher than that in normal endometrium tissues. The level of MARCH7 was positively associated with that of Snail and Vimentin, clinical stage, and histological grade, while negatively associated with that of E-cadherin. Knockdown of MARCH7 inhibited the invasion and metastasis of EC cells in vitro and in vivo. The opposite effect was observed after overexpressing MARCH7. MARCH7 promoted invasion and metastasis of EC cells via the Snail-mediated pathway. Furthermore, MARCH7 was demonstrated to be an authentic target of miR-27b-3p, and miR-27b-3p decreased the stimulus effect induced by MARCH7. These data indicate that MARCH7 may be an oncogenic factor and a therapeutic target for EC. miR-27b-3p/MARCH7 may also regulate EC cell invasion and metastasis via the Snail-mediated pathway.
Collapse
Affiliation(s)
- Ling Liu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Tinghe Yu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shuang You
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yulin Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Zhu H, Diao S, Lim V, Hu L, Hu J. FAM83D inhibits autophagy and promotes proliferation and invasion of ovarian cancer cells via PI3K/AKT/mTOR pathway. Acta Biochim Biophys Sin (Shanghai) 2019; 51:509-516. [PMID: 30939187 DOI: 10.1093/abbs/gmz028] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is one of the most lethal malignant tumors in women. The family with sequence similarity 83, member D (FAM83D) plays an important role in several cancers, but its function and underlying mechanism in ovarian cancer remain unknown. To investigate the role of FAM83D in ovarian cancer, the expression of FAM83D was determined by immunohistochemistry in tissue microarray slide. Cellular proliferation and invasion were detected by 5-Ethynyl-2'-deoxyuridine assays and transwell invasion assays. The correlations between FAM83D and autophagy were detected by western blot analysis and confocal microscopy. Western blot analysis was used to identify the protein expression of FAM83D, phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR) and Sequestosome 1 (P62). Tumorigenesis in nude mice was used to explore the function of FAM83D in vivo. We found high expression level of FAM83D in ovarian cancer tissues as compared to the normal ovarian tissues. Knockdown of FAM83D in SKOV3 cells enhanced autophagy and inhibited the proliferation and invasion in vitro, whereas ectopic expression of FAM83D in A2780 cells exerted an opposite effect. Mechanistically, overexpression of FAM83D activated the PI3K/AKT/mTOR pathway, and Torin1 could suppress FAM83D-induced cell proliferation and invasion. In vivo, overexpression FAM83D promoted tumor growth. Overall, FAM83D promoted ovarian cancer cell invasion and proliferation, while inhibited autophagy via the PI3K/AKT/mTOR signaling pathway. Our results suggest that FAM83D may be a candidate oncogene in ovarian cancer, which provides a fresh perspective of FAM83D in ovarian cancer.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shuai Diao
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Vincent Lim
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lina Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Qu X, Zhao B, Hu M, Ji Z, Xu J, Xia W, Qu Y. Downregulation of TBC1 Domain Family Member 24 (BC1D24) Inhibits Breast Carcinoma Growth via IGF1R/PI3K/AKT Pathway. Med Sci Monit 2018; 24:3987-3996. [PMID: 29893377 PMCID: PMC6029514 DOI: 10.12659/msm.906736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND TBC1 domain family member 24 (TBC1D24) pathogenic mutations affect its binding to ARF6 and then result in severe impairment of neuronal development. However, there are no reports about the expression and function of TBC1D24 in cancer. The aim of the present study was to evaluate the effect of proliferation, migration, and invasion after silencing TBC1D24 expression in breast cancer MCF-7 cells, and to elucidate the potential mechanism of TBC1D24 in breast cancer. MATERIAL AND METHODS The expression of TBC1D24 in breast cancer tissues and the adjacent non-tumor tissues was determined by S-P immunohistochemistry. The malignant behavior, including proliferation, migration, and invasion ability, was determined after silencing TBC1D24 in breast cancer MCF-7 cells. The expression of IGF1R was determined after silencing TBC1D24. The expression of TBC1D24 and IGF1R was detected after transfecting miR-30a mimics or inhibitors. The effect of TBC1D24 on MCF-7 cells growth in vivo was evaluated by a tumor xenograft study. RESULTS TBC1D24 expression was elevated and was associated with poor outcome in breast carcinoma. TBC1D24 high expression was significantly correlated with unfavorable OS and RFS for breast cancer patients (p<0.05). Silencing TBC1D24 inhibited the proliferation, migration, and invasion ability of MCF-7 cells. TBC1D24 and IGF1R expression were decreased when transfected with miR-30a mimics. However, TBC1D24 and IGF1R expression were increased when transfected with miR-30a inhibitors (p<0.05). Knockdown of TBC1D24 inhibited the expression of IGF1R, PI3K, and p-AKT (p<0.05). Knockdown of TBC1D24 abolished tumorigenicity of MCF-7 cells. The average volume and weight of tumors was lower after silencing TBC1D24 expression (P<0.05). CONCLUSIONS Silencing TBC1D24 inhibited MCF-7 cells growth in vitro and in vivo. TBC1D24 promoted breast carcinoma growth through the IGF1R/PI3K/AKT pathway. TBC1D24 is a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Xiusheng Qu
- Department of Radiotherapy and Chemotherapy, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Bin Zhao
- Department of Anus and Intestine Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Min Hu
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Zhiwu Ji
- Department of Anus and Intestine Surgery, Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Jian Xu
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Weibin Xia
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| | - Yikun Qu
- Department of General Surgery, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang, China (mainland)
| |
Collapse
|
16
|
Hu J, Meng Y, Zeng J, Zeng B, Jiang X. Ubiquitin E3 Ligase MARCH7 promotes proliferation and invasion of cervical cancer cells through VAV2-RAC1-CDC42 pathway. Oncol Lett 2018; 16:2312-2318. [PMID: 30008934 PMCID: PMC6036418 DOI: 10.3892/ol.2018.8908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Ubiquitin E3 Ligase MARCH7 is involved in T cell proliferation and neuronal development. In our previous study, we demonstrated MARCH7 promoted malignant behavior of ovarian cancer via the nuclear factor (NF)-κB and Wnt/β-catenin signaling pathway. However, the expression and function of MARCH7 in cervical cancer remains unknown. The present study aimed to unravel the expression and function of MARCH7 in cervical cancer to elucidate its potential role in the diagnosis and pathogenesis of cervical cancer. Results indicated that the expression of MARCH7 was abnormally high in cervical cancer tissues than normal cervical tissues. However, silencing the expression of MARCH7 in HeLa cells resulted in decreased cell proliferation and invasion. Mechanistic investigations revealed that MARCH7 interacted with VAV2. Silencing the expression of MARCH7 in HeLa cells inhibited the VAV2-RAC1-CDC42 signaling pathway. Overall, the results of the present study identified MARCH7 as a candidate oncogene in cervical cancer, and a potential target for cervical cancer therapy.
Collapse
Affiliation(s)
- Jianguo Hu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Ying Meng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jianhua Zeng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Biao Zeng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xingwei Jiang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing 400010, P.R. China
| |
Collapse
|
17
|
Yang Y, Zhou Y, Xiong X, Huang M, Ying X, Wang M. ALG3 Is Activated by Heat Shock Factor 2 and Promotes Breast Cancer Growth. Med Sci Monit 2018; 24:3479-3487. [PMID: 29799832 PMCID: PMC5996847 DOI: 10.12659/msm.907461] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Previous research found that ALG3 is associated with cervical cancer, but the role of ALG3 in breast cancer was still unknown. MATERIAL AND METHODS The expression of ALG3 in breast carcinoma tissues was determined by immunochemistry. The ability of cellular proliferation, migration, and invasion was determined by CCK-8 assay, wound healing migration assay, and cell invasion assays, respectively. The binding between HSF2 and promoter of ALG3 was determined by ChIP assay. RESULTS There was an increased expression of ALG3 in breast cancer tissues compared to normal breast tissues (p<0.05). High expression of ALG3 was significantly correlated with poor OS (p<0.05). ALG3 expression was significantly increased in cancer samples with advanced stages (stage III/IV) compared with those in the early stages of disease (stage I/II) (p<0.05). The staining intensity of ALG3 was significantly correlated to the tumor grade (grades 2-3 versus 1, p<0.05). Silencing ALG3 or HSF2 inhibited the proliferation, migration, and invasion abilities of MCF-7 cells. Silencing ALG3 retarded the growth of MCF-7 cells in vivo. CONCLUSIONS Silencing ALG3 inhibited MCF-7 cells growth in vitro and in vivo. HSF2 activated ALG3 and promoted the growth of breast carcinoma.
Collapse
Affiliation(s)
- Yongde Yang
- Department of Breast Diseases, Chongqing Three Gorges Central Hospital, Chongqing, China (mainland)
| | - Yanlin Zhou
- Department of Breast Diseases, Chongqing Three Gorges Central Hospital, Chongqing, China (mainland)
| | - Xin Xiong
- Department of Breast Diseases, Chongqing Three Gorges Central Hospital, Chongqing, China (mainland)
| | - Man Huang
- Department of Breast Diseases, Chongqing Three Gorges Central Hospital, Chongqing, China (mainland)
| | - Xueyan Ying
- Department of Breast Diseases, Chongqing Three Gorges Central Hospital, Chongqing, China (mainland)
| | - Mengyuan Wang
- Department of Breast Diseases, Chongqing Three Gorges Central Hospital, Chongqing, China (mainland)
| |
Collapse
|
18
|
Zeng B, Zhou M, Wu H, Xiong Z. SPP1 promotes ovarian cancer progression via Integrin β1/FAK/AKT signaling pathway. Onco Targets Ther 2018; 11:1333-1343. [PMID: 29559792 PMCID: PMC5856063 DOI: 10.2147/ott.s154215] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Ovarian cancer is one of the most lethal malignant tumors in women. Secreted phosphoprotein 1 (SPP1) plays an important role in some cancer types. Therefore, the role of SPP1 in ovarian cancer was determined and the potential mechanism was elucidated. MATERIALS AND METHODS The expression of SPP1 in ovarian cancer was determined by immunohistochemistry in ovarian cancer tissues and normal ovarian tissues. Cellular proliferation, migration, and invasion were determined by cell counting kit-8 assay, wound healing assay, and Matrigel invasion assay in SKOV3 and A2780 cells. The protein expression of SPP1, integrin subunit β1 (Integrin β1), focal adhesion kinase (FAK), and phosphorylation protein kinase B (p-AKT) was detected by Western blotting in SKOV3 cells after silencing SPP1. The expression of SPP1 was determined in SKOV3 cells after transfecting with miR-181a mimics or inhibitors. The growth of SKOV3 cells in vivo was determined in a nude mouse model of ovarian cancer after silencing SPP1. RESULTS The expression of SPP1 was higher in epithelial ovarian cancer tissues than in normal ovarian tissues. Silencing SPP1 decreased the cell proliferation, migration, and invasion. Ectopic expression of SPP1 increased the cell proliferation, migration, and invasion. Silencing SPP1 prevented ovarian cancer growth in mice. Silencing SPP1 inhibited Integrin β1/FAK/AKT pathway. In agreement, ectopically expressed SPP1 activated Integrin β1/FAK/AKT pathway. Also, SPP1 was regulated by miR-181a. CONCLUSION SPP1 is a biomarker for the prognosis of ovarian cancer. It is also oncogenic and a potential target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Biao Zeng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Min Zhou
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
19
|
Zhao K, Yang Y, Zhang G, Wang C, Wang D, Wu M, Mei Y. Regulation of the Mdm2-p53 pathway by the ubiquitin E3 ligase MARCH7. EMBO Rep 2018; 19:305-319. [PMID: 29295817 PMCID: PMC5797962 DOI: 10.15252/embr.201744465] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 12/01/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
The tumor suppressor p53 plays a prominent role in the protection against cancer. The activity of p53 is mainly controlled by the ubiquitin E3 ligase Mdm2, which targets p53 for proteasomal degradation. However, the regulation of Mdm2 remains not well understood. Here, we show that MARCH7, a RING domain-containing ubiquitin E3 ligase, physically interacts with Mdm2 and is essential for maintaining the stability of Mdm2. MARCH7 catalyzes Lys63-linked polyubiquitination of Mdm2, which impedes Mdm2 autoubiquitination and degradation, thereby leading to the stabilization of Mdm2. MARCH7 also promotes Mdm2-dependent polyubiquitination and degradation of p53. Furthermore, MARCH7 is able to regulate cell proliferation, DNA damage-induced apoptosis, and tumorigenesis via a p53-dependent mechanism. These findings uncover a novel mechanism for the regulation of Mdm2 and reveal MARCH7 as an important regulator of the Mdm2-p53 pathway.
Collapse
Affiliation(s)
- Kailiang Zhao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, China
| | - Yang Yang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, China
| | - Guang Zhang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, China
| | - Chenfeng Wang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, China
| | - Decai Wang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, China
| | - Mian Wu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, China
| | - Yide Mei
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science & Technology of China, Hefei, Anhui, China
- Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China
| |
Collapse
|
20
|
Singh S, Saraya A, Das P, Sharma R. Increased expression of MARCH8, an E3 ubiquitin ligase, is associated with growth of esophageal tumor. Cancer Cell Int 2017; 17:116. [PMID: 29213217 PMCID: PMC5715508 DOI: 10.1186/s12935-017-0490-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/29/2017] [Indexed: 11/24/2022] Open
Abstract
Background Herein, for the first time, we report aberrant expression of membrane-associated RING-CH8 (MARCH8) in human esophageal squamous cell carcinoma. MARCH8 is a member of the recently discovered MARCH family of really interesting new genes (RING) E3 ligases. Though initial studies primarily focused on its immunomodulatory role, the newly discovered targets of this E3 ligase point towards its possible role in other biological processes such as embryogenesis and inhibition of apoptosis. However, its relevance in cancers is yet to be elucidated. Methods We carried out quantitative real time PCR and immunohistochemistry to examine the levels of MARCH8 mRNA and protein in esophageal squamous cell carcinoma tissues. The role of MARCH8 in esophageal cancer cells was evaluated by cell proliferation, clonogenic and migration/invasion assays and flow cytometry with MARCH8 gene knockdown. Results Significantly increased expression of MARCH8 mRNA was found in esophageal squamous cell carcinoma as compared to distant matched non-malignant tissues (p = 0.024, AUC = 0.654). Immunohistochemical analysis revealed overexpression of MARCH8 protein in 86% of esophageal squamous cell carcinoma tissues (p < 0.001, AUC = 0.908). Interestingly, intense nuclear staining of MARCH8 protein was detected in cancer cells in addition to its cytoplasmic expression. Knockdown of MARCH8 resulted in decreased proliferation, migration, invasion and clonogenic potential of esophageal cancer cells. In addition to this, silencing of MARCH8 induced apoptosis in esophageal cancer cells which was measured by cell cycle distribution assay which showed increase in sub G0 and G2/M populations (cell death) and decrease in S-phase population. To further check the type of apoptosis induced by MARCH8 silencing, annexin assay was performed which showed significant increase in the number of cells in early apoptotic phase. Conclusions Overall, increased expression of MARCH8 gene in preneoplastic and neoplastic esophageal tissues and its knockdown effect on cancer cell properties demonstrated herein points towards the potential role of this protein in esophageal tumorigenesis.
Collapse
Affiliation(s)
- Shivam Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16(C), Dwarka, Delhi, 110078 India
| | - Anoop Saraya
- Department of Gastroenterology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029 India
| | - Rinu Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector-16(C), Dwarka, Delhi, 110078 India
| |
Collapse
|
21
|
Abstract
TMED2 is involved in morphogenesis of the mouse embryo and placenta. We found that expression of TMED2 was higher in epithelial ovarian cancer tissues than normal ovarian tissues. Silencing TMED2 decreased cell proliferation, migration, and invasion. Ectopic expression of TMED2 increased cell proliferation, migration and invasion. Silencing TMED2 inhibited ovarian cancer growth in mice. Silencing TMED2 inhibited IGF2/IGF1R/PI3K/Akt pathway. In agreement, ectopically expressed TMED2 activated IGF2/IGF1R/PI3K/Akt pathway. Mechanistic study revealed that TMED2 directly binds to AKT2, thereby facilitating its phosphorylation. We also found that TMED2 increased IGF1R expression by competing for miR-30a. Thus, TMED2 is oncogenic and a potential target for epithelial ovarian cancer therapy.
Collapse
|
22
|
Xu Y, Xu L, Zheng J, Geng L, Zhao S. MiR-101 inhibits ovarian carcinogenesis by repressing the expression of brain-derived neurotrophic factor. FEBS Open Bio 2017; 7:1258-1266. [PMID: 28904856 PMCID: PMC5586337 DOI: 10.1002/2211-5463.12257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is one of the most lethal malignant gynecological tumors as a result of difficulties in early‐stage detection and a lack of effective treatments for patients with advanced or recurrent cancer. In the present study, we aimed to explore whether some of the microRNA (miRNA) content of serum might be related to ovarian cancer, as well as the role of these miRNAs and their intercellular transport via exosomes in ovarian cancer. We first detected the expression of six candidate miRNAs in ovarian cancer tissues and adjacent nontumor ovarian samples from 36 patients and confirmed the altered expression of four miRNAs. The level of these six candidate miRNAs was also examined in exosomes from patient serum samples. Only the level of miR‐101 was altered in both ovarian tissue samples and serum exosomes. After prediction using online bioinformatics tools and confirmation by dual‐luciferase assay and immunoblotting, we identified that miR‐101 can repress the expression of brain‐derived neurotrophic factor by targeting its 3′‐UTR. Using Transwell assays, we examined the effect of miR‐101 on migration and invasion capacity of ovarian cancer cells. The results indicated that the reduction of miR‐101 is mostly related to significant enhanced ovarian cancer cell migration. Thus, the results of the present study indicate that miR‐101 content in serum exosomes has potential as a marker for diagnosis of ovarian cancer and that miR‐101 mimics are potential therapeutic drugs for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ying Xu
- Department of Gynecology Qingdao Women's and Children's Hospital Qingdao University China.,Department of Gynaecology Zibo Maternity and Child Health Hospital China
| | - Lei Xu
- Department of Gynaecology Zibo Maternity and Child Health Hospital China
| | - Jianbin Zheng
- Department of Gynaecology Zibo Maternity and Child Health Hospital China
| | - Lei Geng
- Department of Gynaecology Zibo Maternity and Child Health Hospital China
| | - Shuping Zhao
- Department of Gynecology Qingdao Women's and Children's Hospital Qingdao University China
| |
Collapse
|
23
|
Han J, Li J, Ho JC, Chia GS, Kato H, Jha S, Yang H, Poellinger L, Lee KL. Hypoxia is a Key Driver of Alternative Splicing in Human Breast Cancer Cells. Sci Rep 2017. [PMID: 28642487 PMCID: PMC5481333 DOI: 10.1038/s41598-017-04333-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adaptation to hypoxia, a hallmark feature of many tumors, is an important driver of cancer cell survival, proliferation and the development of resistance to chemotherapy. Hypoxia-induced stabilization of hypoxia-inducible factors (HIFs) leads to transcriptional activation of a network of hypoxia target genes involved in angiogenesis, cell growth, glycolysis, DNA damage repair and apoptosis. Although the transcriptional targets of hypoxia have been characterized, the alternative splicing of transcripts that occurs during hypoxia and the roles they play in oncogenesis are much less understood. To identify and quantify hypoxia-induced alternative splicing events in human cancer cells, we performed whole transcriptome RNA-Seq in breast cancer cells that are known to provide robust transcriptional response to hypoxia. We found 2005 and 1684 alternative splicing events including intron retention, exon skipping and alternative first exon usage that were regulated by acute and chronic hypoxia where intron retention was the most dominant type of hypoxia-induced alternative splicing. Many of these genes are involved in cellular metabolism, transcriptional regulation, actin cytoskeleton organisation, cancer cell proliferation, migration and invasion, suggesting they may modulate or be involved in additional features of tumorigenic development that extend beyond the known functions of canonical full-length transcripts.
Collapse
Affiliation(s)
- Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Jolene Caifeng Ho
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Grace Sushin Chia
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Hiroyuki Kato
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Lorenz Poellinger
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Kian Leong Lee
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.
| |
Collapse
|
24
|
Zhang L, Wang H, Tian L, Li H. Expression of USP7 and MARCH7 Is Correlated with Poor Prognosis in Epithelial Ovarian Cancer. TOHOKU J EXP MED 2017; 239:165-75. [PMID: 27302477 DOI: 10.1620/tjem.239.165] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Epithelial ovarian cancer (EOC) is one of the worst malignancies in females with poor overall survival due to the rapid metastasis and the absence of ideal biomarkers. Ubiquitin-specific protease 7 (USP7), an important deubiquitinating enzyme, was reported to be upregulated in several cancers, including liver, prostate and colon cancers. Membrane associated RING-CH protein 7 (MARCH7) belongs to the member of the E3 ubiquitin ligases. In addition, MARCH7 regulates T cell proliferation and the neuronal development and participates in the membrane trafficking and protein degradation. Importantly, MARCH7 itself is ubiquitinated and acts as a potential substrate of USP7. However, the roles of USP7 and MARCH7 in EOC remain to be investigated. We collected 121 EOC patients and analyzed the expression levels of USP7 and MARCH7 in tumor tissues with immunohistochemical staining. We found that the high expression of the two proteins was correlated with lymph node metastasis in EOC patients. Univariate and multivariate analyses revealed that the patients with high expression of the two proteins showed poorer prognosis compared with other patients. Subsequently, using SKOV3 human ovarian adenocarcinoma cells, we showed that either USP7 or MARCH7 enhanced the proliferation and invasion abilities. Moreover, USP7 could regulate the expression levels of E-cadherin and β-catenin through the MARCH7 signaling pathway. Our findings indicate that USP7 and MARCH7 are involved in the progression of EOC. In conclusion, analyzing the expression of USP7 and MARCH7 has high prognostic value in predicting EOC prognosis.
Collapse
Affiliation(s)
- Li Zhang
- Yidu Central Hospital of Weifang
| | | | | | | |
Collapse
|