1
|
Hu Y, Gu Y, Song Y, Zhao Y, Wang J, Ma J, Sui F. Differential expression and prognostic value of TLR4 in kidney renal clear cell carcinoma. Mol Cell Probes 2024; 75:101959. [PMID: 38579915 DOI: 10.1016/j.mcp.2024.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/07/2024]
Abstract
Human Toll-like receptor (TLR) family plays a crucial role in immunity and cancer progression. However, the specific role of human Toll-like receptor 4 (TLR4) in kidney renal clear cell carcinoma (KIRC) remains obscure. Thus, we used single-cell RNA sequencing (RNA-seq) and bulk RNA-seq data combined with in vitro studies to evaluate the expression and prognostic value of TLR4 in KIRC. In our study, we observed that TLR4 was over expressed in KIRC tissues compared to normal renal tissues. And the expression of TLR4 was higher in macrophages/monocytes than other cell types. Besides, there is a close association between TLR4 expression and immune cell infiltration (Neutrophils, Macrophages, T cells and B cells) in KIRC. Immunohistochemical staining also showed that TLR4 was overexpressed in inflammatory infiltration renal tissue compared with normal tissue. Meanwhile, high expression of TLR4 exhibited correlations with improved survival, lower tumor grade and stage. Interestingly, the protective significance of TLR4 only showed in female patients (HR = 0.37, P < 0.01), other than male patients (HR = 0.71, P = 0.08) with KIRC. Consistently, KIRC samples with lymph node metastasis showed lower expression of TLR4. Knockdown of TLR4 in 786-O cell line increased cell proliferation and clonogenic capacity. In summary, this study found TLR4 could inhibit the progression of kidney cancer and was associated with improved survival in KIRC. The overexpression of TLR4 in macrophages and the close association between TLR4 and immune cell infiltration also underline the critical role of TLR4 in building the immune microenvironment for kidney cancer. These results may offer insights into the mechanism and immune microenvironment of kidney cancer.
Collapse
Affiliation(s)
- Yaguang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China
| | - Yanan Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China; Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China
| | - Yichen Song
- Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China
| | - Yuelei Zhao
- Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China
| | - Jiachen Wang
- Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China
| | - Junchi Ma
- School of Information Engineering, Chang'an University, Xi'an, China.
| | - Fang Sui
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
2
|
Sui F, Wang G, Liu J, Yuan M, Chen P, Yao Y, Zhang S, Ji M, Hou P. Targeting NG2 relieves the resistance of BRAF-mutant thyroid cancer cells to BRAF inhibitors. Cell Mol Life Sci 2024; 81:238. [PMID: 38795180 PMCID: PMC11127897 DOI: 10.1007/s00018-024-05280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/27/2024]
Abstract
BRAFV600E represents a constitutively active onco-kinase and stands as the most prevalent genetic alteration in thyroid cancer. However, the clinical efficacy of small-molecule inhibitors targeting BRAFV600E is often limited by acquired resistance. Here, we find that nerve/glial antigen 2 (NG2), also known as chondroitin sulfate proteoglycan 4 (CSPG4), is up-regulated in thyroid cancers, and its expression is increased with tumor progression in a BRAFV600E-driven thyroid cancer mouse model. Functional studies show that NG2 knockout almost does not affect tumor growth, but significantly improves the response of BRAF-mutant thyroid cancer cells to BRAF inhibitor PLX4720. Mechanistically, the blockade of ERK-dependent feedback by BRAF inhibitor can activate receptor tyrosine kinase (RTK) signaling, causing the resistance to this inhibitor. NG2 knockout attenuates the PLX4720-mediated feedback activation of several RTKs, improving the sensitivity of BRAF-mutant thyroid cancer cells to this inhibitor. Based on this finding, we propose and demonstrate an alternative strategy for targeting NG2 to effectively treat BRAF-mutant thyroid cancers by combining multiple kinase inhibitor (MKI) Sorafenib or Lenvatinib with PLX4720. Thus, this study uncovers a new mechanism in which NG2 contributes to the resistance of BRAF-mutant thyroid cancer cells to BRAF inhibitor, and provides a promising therapeutic option for BRAF-mutant thyroid cancers.
Collapse
Affiliation(s)
- Fang Sui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China
| | - Guanjie Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China
| | - Juan Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China
| | - Mengmeng Yuan
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China
| | - Pu Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China
| | - Yao Yao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China
| | - Shaoqiang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China.
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710061, P.R. China.
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.
| |
Collapse
|
3
|
Malik F, Furtado LV, Eldomery MK, Shi Z, Koo SC. Pediatric NCOA3-rearranged low-grade fibroblastic tumor with nuclear beta-catenin immunoreactivity. Genes Chromosomes Cancer 2024; 63:e23223. [PMID: 38340030 DOI: 10.1002/gcc.23223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Affiliation(s)
- Faizan Malik
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Larissa V Furtado
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Mohammad K Eldomery
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zonggao Shi
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Selene C Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
4
|
Xing J, Gu Y, Song Y, Liu Q, Chen Q, Han P, Shen Z, Li H, Zhang S, Bai Y, Ma J, Sui F. MYO5A overexpression promotes invasion and correlates with low lymphocyte infiltration in head and neck squamous carcinoma. BMC Cancer 2023; 23:1267. [PMID: 38129784 PMCID: PMC10740236 DOI: 10.1186/s12885-023-11759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Head and neck squamous carcinoma (HNSC) poses a significant public health challenge due to its substantial morbidity. Nevertheless, despite advances in current treatments, the prognosis for HNSC remains unsatisfactory. To address this, single-cell RNA sequencing (RNA-seq) and bulk RNA-seq data combined with in vitro studies were conducted to examine the role of MYO5A (Myosin VA) in HNSC. Our investigation revealed an overexpression of MYO5A in HNSC that promotes HNSC migration in vitro. Remarkably, knockdown of MYO5A suppressed vimentin expression. Furthermore, analyzing the TCGA database evidenced that MYO5A is a risk factor for human papillomavirus positive (HPV+) HNSC (HR = 0.81, P < 0.001). In high MYO5A expression HNSC, there was a low count of tumor infiltrating lymphocytes (TIL), including activated CD4+ T cells, CD8+ T cells, and B cells. Of note, CD4+ T cells and B cells were positively associated with improved HPV+ HNSC outcomes. Correlation analysis demonstrated a decreased level of immunostimulators in high MYO5A-expressing HNSC. Collectively, these findings suggest that MYO5A may promote HNSC migration through vimentin and involve itself in the process of immune infiltration in HNSC, advancing the understanding of the mechanisms and treatment of HNSC.
Collapse
Affiliation(s)
- Juanli Xing
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, 710061, Shaanxi, China
| | - Yanan Gu
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, 710061, Shaanxi, China
| | - Yichen Song
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, People's Republic of China
| | - Qi Liu
- Department of ophthalmology and otorhinolaryngology, the first hospital in Weinan, No. 35, Shengli Street, Linwei District, Weinan City, 714000, Shaanxi Province, China
| | - Qian Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, 710061, Shaanxi, China
| | - Peng Han
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, 710061, Shaanxi, China
| | - Zhen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, 710061, Shaanxi, China
| | - Huajing Li
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, 710061, Shaanxi, China
| | - Shaoqiang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, 710061, Shaanxi, China
| | - Yanxia Bai
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, 710061, Shaanxi, China
| | - Junchi Ma
- School of Information Engineering, Chang'an University, Xi'an, 710061, China.
| | - Fang Sui
- Department of Otorhinolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yan-ta West Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
5
|
Dang S, Zhang R, Tian S, Hou P, Li G, Ji M. MicroRNA‑218 inhibits the malignant phenotypes of glioma by modulating the TNC/AKT/AP‑1/TGFβ1 feedback signaling loop. Int J Mol Med 2021; 48:205. [PMID: 34558654 PMCID: PMC8480380 DOI: 10.3892/ijmm.2021.5038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/30/2021] [Indexed: 01/22/2023] Open
Abstract
Gliomas are the most malignant and common tumors of the human brain, and the prognosis of glioma patients is extremely poor MicroRNAs (miRNAs or miRs) play critical roles in different types of cancer by performing post-transcriptional regulation of gene expression Although miR-218 has been demonstrated to be decreased in gliomas, its role in gliomas remains largely unknown miR-218 expression was analyzed in gliomas and normal brain tissues (control subjects) using a dataset from The Cancer Genome Atlas A series of in vitro and in vivo studies were performed to determine the biological roles of miR-218 in glioma cells Potential targets of miR-218 were identified using a dual-luciferase reporter system Western blot and dual-luciferase reporter system experiments were performed to evaluate the regulatory effect of miR-218 on the tenascin C (TNC)/AKT/activator protein 1 (AP-1)/transforming growth factor β1 (TGFβ1) pathway It was demonstrated that miR-218 was significantly downregulated in gliomas compared with control subjects, and played potent tumor suppressor roles in glioma cells by inhibiting cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice, as well as inducing cell cycle arrest and apoptosis Mechanistically, miR-218 inhibited malignant phenotypes of glioma cells by binding to the 3′-untranslated region of its target TNC and subsequently suppressing its expression As a result, miR-218 could reduce AKT phosphorylation and subsequently inhibit transcriptional activity of AP-1 by reducing JNK phosphorylation, downregulating the expression of TGFβ1, while TGFβ1 was able to, in turn, activate the TNC/AKT/AP-1 signaling axis Our data revealed a previously unknown tumor suppressor role of miR-218 by blocking the TNC/AKT/AP-1/TGFβ1-positive feedback loop in glioma
Collapse
Affiliation(s)
- Siwen Dang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Zhang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sijia Tian
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Gang Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
6
|
Diao L, Li Y, Mei Q, Han W, Hu J. Retracted: AIB1 induces epithelial-mesenchymal transition in gastric cancer via the PI3K/AKT signaling. J Cell Biochem 2021; 122:926-933. [PMID: 31692102 DOI: 10.1002/jcb.29530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Amplified in breast cancer 1 (AIB1) is overexpression in various cancers and promotes tumor cell proliferation, survival, and invasiveness. However, the role of AIB1 in the regulation of gastric cancer (GC) cell epithelial-mesenchymal transition (EMT) is still largely unclear. In the present study, immunohistochemistry showed that AIB1 was upregulated in our cohort of patients with GC and correlated with poor survival. Knockdown of AIB1 reduced the invasive ability of GC cells, downregulated the expression of epithelial cell marker E-cadherin, and upregulated mesenchymal cell marker vimentin. AIB1 overexpression elicited the opposite effect. PI-103, the inhibitor of the PI3K/AKT signaling, partially reversed AIB1 overexpression mediated a decrease in E-cadherin and an increase in vimentin. The present data demonstrated that AIB1 augmented the EMT via activation of PI3K/AKT signaling. In conclusion, our results suggested a novel role of AIB1 in GC invasion and EMT and raised the possibility of using this molecule as an indicator for GC treatment.
Collapse
Affiliation(s)
- Lei Diao
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yang Li
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiao Mei
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Han
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Hu
- Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Identification of a germline CSPG4 variation in a family with neurofibromatosis type 1-like phenotype. Cell Death Dis 2021; 12:765. [PMID: 34344877 PMCID: PMC8333038 DOI: 10.1038/s41419-021-04056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/28/2022]
Abstract
Neurofibromatosis type 1 (NF1), an autosomal dominant and multisystem disorder, is generally considered to be caused by NF1 inactivation. However, there are also numerous studies showing that Neurofibromatosis type 1-like phenotype can be caused by the abnormalities in the other genes. Through targeted parallel sequencing, whole-exome sequencing, de novo genomic sequencing, and RNA isoform sequencing, we identified a germline V2097M variation in CSPG4 gene probably increased susceptibility to a NF1-like phenotype family. Besides, a series of in vitro functional studies revealed that this variant promoted cell proliferation by activating the MAPK/ERK signaling pathway via hindering ectodomain cleavage of CSPG4. Our data demonstrate that a germline variation in the CSPG4 gene might be a high risk to cause NF1-like phenotype. To our knowledge, this is the first report of mutations in the CSPG4 gene in human diseases.
Collapse
|
8
|
SRC-3, a Steroid Receptor Coactivator: Implication in Cancer. Int J Mol Sci 2021; 22:ijms22094760. [PMID: 33946224 PMCID: PMC8124743 DOI: 10.3390/ijms22094760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Steroid receptor coactivator-3 (SRC-3), also known as amplified in breast cancer 1 (AIB1), is a member of the SRC family. SRC-3 regulates not only the transcriptional activity of nuclear receptors but also many other transcription factors. Besides the essential role of SRC-3 in physiological functions, it also acts as an oncogene to promote multiple aspects of cancer. This review updates the important progress of SRC-3 in carcinogenesis and summarizes its mode of action, which provides clues for cancer therapy.
Collapse
|
9
|
Gao L, Yang T, Zhang S, Liang Y, Shi P, Ren H, Hou P, Chen M. EHF enhances malignancy by modulating AKT and MAPK/ERK signaling in non‑small cell lung cancer cells. Oncol Rep 2021; 45:102. [PMID: 33907840 PMCID: PMC8072815 DOI: 10.3892/or.2021.8053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 09/18/2020] [Indexed: 11/06/2022] Open
Abstract
Overexpression of ETS‑homologous factor (EHF) in non‑small cell lung cancer (NSCLC) is associated with poor patient prognosis. To explore the mechanism of the effect of EHF in NSCLC, EHF expression was examined in NSCLC and its role in cell proliferation, invasion, cell cycle, and apoptosis of NSCLC cells was evaluated by overexpressing EHF and/or knocking down EHF expression in NSCLC cells in vitro and in cancer cell grafted mice in vivo. The results revealed that the knockdown of EHF expression in NSCLC with siRNA significantly inhibited cell proliferation and invasion, arrested the cell cycle at the G0/G1 phase, and induced apoptosis, whereas overexpression of EHF in NSCLC promoted cell proliferation, tumor growth, and cancer cell migration in vitro. The in vivo experiments demonstrated that siRNA‑mediated downregulation of EHF expression in NSCLC cells significantly suppressed tumor growth in xenografted nude mice as compared to cancer progression in the mice grafted with NSCLC cells transfected with non‑specific control siRNA. The biochemical analyses revealed that EHF promoted NSCLC growth by regulating the transcription of Erb‑B2 receptor tyrosine kinase 2/3 (ERBB2, ERBB3) and mesenchymal‑epithelial transition (MET) factor tyrosine kinase receptors and modulating the AKT and ERK signaling pathways in the NSCLC cells. The present findings indicated that EHF could be used as a prognostic marker for NSCLC, and tyrosine kinase receptors of ERBB2, ERBB3 and MET could be drug targets for NSCLC treatment.
Collapse
Affiliation(s)
- Lei Gao
- Department of Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tian Yang
- Shanxi Provincial Research Center for The Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Shuo Zhang
- Shanxi Provincial Research Center for The Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Yiqian Liang
- Shanxi Provincial Research Center for The Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Puyu Shi
- Shanxi Provincial Research Center for The Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Hui Ren
- Shanxi Provincial Research Center for The Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi 710061, P.R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Mingwei Chen
- Shanxi Provincial Research Center for The Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
10
|
Liu Z, Liu J, Liu R, Xue M, Zhang W, Zhao X, Zhu J, Xia P. Downregulated ZNF132 predicts unfavorable outcomes in breast Cancer via Hypermethylation modification. BMC Cancer 2021; 21:367. [PMID: 33827486 PMCID: PMC8028803 DOI: 10.1186/s12885-021-08112-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/28/2021] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND An important mechanism that promoter methylation-mediated gene silencing for gene inactivation is identified in human tumorigenesis. Methylated genes have been found in breast cancer (BC) and beneficial biomarkers for early diagnosis. Prognostic assessment of breast cancer remain little known. Zinc finger protein 132 (ZNF132) is downregulated by promoter methylation in prostate cancer and esophageal squamous cell carcinoma. However, no study provides information on the status of ZNF132, analyzes diagnosis and prognostic significance of ZNF132 in BC. METHODS In the present study, the expression of ZNF132 mRNA and protein level was determined based on the Cancer Genome Atlas (TCGA) RNA-Seq database and clinical samples analysis and multiple cancer cell lines verification. P rognostic significance of ZNF132 in BC was assessed using the Kaplan-Meier plotter. Molecular mechanisms exploration of ZNF132 in BC was performed using the multiple bioinformatic tools. Hypermethylated status of ZNF132 in BC cell lines was confirmed via Methylation specific polymerase chain reaction (MSP) analysis. RESULTS The expression of ZNF132 both the mRNA and protein levels was downregulated in BC tissues. These results were obtained based on TCGA database and clinical sample analysis. Survival analysis from the Kaplan-Meier plotter revealed that the lower level of ZNF132 was associated with a shorter Relapse Free Survival (RFS) time. Receiver operating characteristic curve (ROC) of 0.887 confirmed ZNF132 had powerful sensitivity and specificity to distinguish between BC and adjacent normal tissues. Bioinformatic analysis showed that 6% ((58/960)) alterations of ZNF132 were identified from cBioPortal. ZNF132 participated in multiple biological pathways based on the Gene Set Enrichment Analysis (GSEA) database including the regulation of cell cycle and glycolysis. Finally, MSP analysis demonstrated that ZNF132 was hypermethylated in a panel of breast cancer cell lines and 5-aza-2'-deoxycytidine (5-Aza-dC) treatment restored ZNF132 expression in partial cell lines. CONCLUSIONS Results revealed that hypermethylation of ZNF132 contributed to its downregulated expression and could be identified as a new diagnostic and prognostic marker in BC.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710061, Shaanxi, China
| | - Jiaxin Liu
- Department of Gerontological Surgery, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710061, Shaanxi, China
| | - Ruimiao Liu
- Department of Clinical Laboratory, Peoples Hospital of Xi'an (Fourth Hospital of Xi'an), Xi'an, 710004, Shaanxi, China
| | - Man Xue
- Department of General Surgery, Tongchuan Mining Bureau Central Hospital, Tongchuan, 727000, Shaanxi, China
| | - Weifan Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710061, Shaanxi, China
| | - Xinhui Zhao
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710061, Shaanxi, China
| | - Jiang Zhu
- Department of Breast Disease, Shaanxi Provincial Cancer Hospital, Xi'an, 710061, Shaanxi, China
| | - Peng Xia
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
11
|
Jahangiri R, Mosaffa F, Emami Razavi A, Teimoori-Toolabi L, Jamialahmadi K. PAX2 promoter methylation and AIB1 overexpression promote tamoxifen resistance in breast carcinoma patients. J Oncol Pharm Pract 2021; 28:310-325. [PMID: 33509057 DOI: 10.1177/1078155221989404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Disease recurrence is an important obstacle in estrogen receptor positive (ER+) tamoxifen treated breast carcinoma patients. Tamoxifen resistance-related molecular mechanisms are not fully understood. Alteration in DNA methylation which contributes to transcriptional regulation of cancer-related genes plays a crucial role in tamoxifen response. In the present study, the contribution of promoter methylation and mRNA expression of PAX2 and AIB1 in the development of breast carcinoma and tamoxifen refractory was assessed. METHODS Methylation specific-high resolution melting (MS-HRM) analysis and Real-time quantitative PCR (RT-qPCR) experiment were performed to analyze the promoter methylation and mRNA expression levels of PAX2 and AIB1 genes in 102 breast tumors and adjacent normal breast specimens. RESULTS We indicated that PAX2 expression is decreased in breast tissues due to hypermethylation in its promoter region. Compared to the adjacent normal tissues, the tumors exhibited significantly lower relative mRNA levels of PAX2 and increased expression of AIB1. Aberrant promoter methylation of PAX2 and overexpression of AIB1 was observed in tamoxifen resistance patients compared to the sensitive ones. Cox regression analysis exhibited that the increased promoter methylation status of PAX2 and overexpression of AIB1 remained as unfavorable identifiers which influence patients' survival independently. CONCLUSIONS Our results revealed that the aberration in PAX2 promoter methylation and AIB1 overexpression are associated with the tamoxifen response in breast carcinoma patients. Further research is needed to demonstrate the potential of using PAX2 and AIB1 expression and their methylation-mediated regulation as predictive or prognostic biomarkers or as a new target therapy for better disease management.
Collapse
Affiliation(s)
- Rosa Jahangiri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Synergistic activation of mutant TERT promoter by Sp1 and GABPA in BRAF V600E-driven human cancers. NPJ Precis Oncol 2021; 5:3. [PMID: 33483600 PMCID: PMC7822828 DOI: 10.1038/s41698-020-00140-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 12/01/2020] [Indexed: 01/30/2023] Open
Abstract
The activating TERT promoter mutations and BRAFV600E mutation are well-established oncogenic alterations in human cancers. Coexistence of BRAFV600E and TERT promoter mutations is frequently found in multiple cancer types, and is strongly associated with poor patient prognosis. Although the BRAFV600E-elicited activation of ERK has been demonstrated to contribute to TERT reactivation by maintaining an active chromatin state, it still remains to be addressed how activated ERK is selectively recruited to mutant TERT promoter. Here, we report that transcription factor GABPA mediates the regulation of BRAFV600E/MAPK signaling on TERT reactivation by selectively recruiting activated ERK to mutant TERT promoter, where activated ERK can phosphorylate Sp1, thereby resulting in HDAC1 dissociation and an active chromatin state. Meanwhile, phosphorylated Sp1 further enhances the binding of GABPA to mutant TERT promoter. Taken together, our data indicate that GABPA and Sp1 synergistically activate mutant TERT promoter, contributing to tumorigenesis and cancer progression, particularly in the BRAFV600E-driven human cancers. Thus, our findings identify a direct mechanism that bridges two frequent oncogenic alterations together in TERT reactivation.
Collapse
|
13
|
Ma L, Liu W, Xu A, Ji Q, Ma Y, Tai Y, Wang Y, Shen C, Liu Y, Wang T, Han J, Zhao C. Activator of thyroid and retinoid receptor increases sorafenib resistance in hepatocellular carcinoma by facilitating the Warburg effect. Cancer Sci 2020; 111:2028-2040. [PMID: 32279388 PMCID: PMC7293092 DOI: 10.1111/cas.14412] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 01/02/2023] Open
Abstract
Sorafenib resistance is a major challenge in the therapy for advanced hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms of HCC resistance to sorafenib remain unclear. Activator of thyroid and retinoid receptor (ACTR, also known as SRC‐3), overexpressed in HCC patients, plays an important oncogenic role in HCC; however, the link between ACTR and sorafenib resistance in HCC is unknown. Our study demonstrated that ACTR was one of the most upregulated genes in sorafenib‐resistant HCC xenografts. ACTR increases sorafenib resistance through regulation of the Warburg effect. ACTR promotes glycolysis through upregulation of glucose uptake, ATP and lactate production, and reduction of the extracellular acidification and the oxygen consumption rates. Glycolysis regulated by ACTR is vital for the susceptibility of HCC to sorafenib in vitro and in vivo. Mechanistically, ACTR knockout or knockdown decreases the expression of glycolytic enzymes. In HCC patients, ACTR expression is positively correlated with glycolytic gene expression and is associated with poorer outcome. Furthermore, ACTR interacts with the central regulator of the Warburg effect, c‐Myc, and promotes its recruitment to glycolytic gene promoters. Our findings provide new clues regarding the role of ACTR as a prospective sensitizing target for sorafenib therapy in HCC.
Collapse
Affiliation(s)
- Luyuan Ma
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenpeng Liu
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - An Xu
- Department of Oncology, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Quanbo Ji
- Department of Thoracic Surgery, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Yongfu Ma
- Department of Thoracic Surgery, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Yanhong Tai
- Department of Oncology, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Yadong Wang
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuan Shen
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tao Wang
- Department of Oncology, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Juqiang Han
- Department of Liver Disease, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Caiyan Zhao
- Department of Infectious Diseases, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Wei J, Yang Q, Shi J, Shi B, Ji M, Hou P. Increased expression of NAF1 contributes to malignant phenotypes of glioma cells through promoting protein synthesis and associates with poor patient survival. Oncogenesis 2019; 8:25. [PMID: 30936423 PMCID: PMC6443650 DOI: 10.1038/s41389-019-0134-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/07/2019] [Accepted: 03/13/2019] [Indexed: 12/01/2022] Open
Abstract
The H/ACA ribonucleoprotein (RNP) complex noncore subunit NAF1 is an indispensable factor during H/ACA RNP maturation, and one of the widely known functions of H/ACA RNP is modulating ribosome biosynthesis. However, the specific biological role and exact mechanism of NAF1 in human cancers including glioma remain largely unclear. In this study, we found that NAF1 was highly expressed in gliomas relative to normal brain tissues, and demonstrated that increased expression of NAF1 was strongly correlated with poor patient survival. Further studies revealed that NAF1 was transcriptionally regulated by c-Myc, NRF2, and telomerase reverse transcriptase (TERT), which are the key molecules associated with malignant progression of gliomas. Moreover, we demonstrated that NAF1 was a functional oncogene in glioma cells through promoting cell growth in vitro and in vivo, survival, migration, and invasion. Mechanistically, NAF1 acted as a rate-limiting controller of cell growth and invasiveness through enhancing 40S subunit assembly and protein synthesis including c-Myc, NRF2, TERT, POLR1A, and POLR2A. These molecules in turn enhanced the transcription and translation of NAF1, thereby forming positive feedback loops between them to promote malignant phenotypes of glioma cells. In addition, our data also showed that NAF1 depletion could trigger ribosome stress, not only impairing ribosomal biosynthesis but also reactivating p53 signaling via blocking MDM2. Taken together, we demonstrated that NAF1 promotes the tumorigenesis and progression of glioma through modulating ribosome assembly and protein synthesis, and predicted that NAF1 may be a potential therapeutic target and valuable prognostic biomarker in gliomas.
Collapse
Affiliation(s)
- Jing Wei
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi Yang
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Shi
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bingyin Shi
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Peng Hou
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
15
|
Dynamic expression of ZNF382 and its tumor-suppressor role in hepatitis B virus-related hepatocellular carcinogenesis. Oncogene 2019; 38:4804-4819. [PMID: 30804458 DOI: 10.1038/s41388-019-0759-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/24/2018] [Accepted: 02/10/2019] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is the primary cause of hepatocellular carcinoma (HCC). Zinc-finger protein 382 (ZNF382), which belongs to zinc-finger protein family, has been documented to be downregulated in certain types of cancer. However, its role in HCC remains largely unknown. In this study, we demonstrated that ZNF382 expression was significantly elevated in HBV-infected liver cirrhosis tissues relative to HBV-negative normal liver tissues at protein levels, but not at mRNA levels, and was positively correlated with the levels of HBV DNA and hepatitis B virus X protein (HBx). Further studies revealed that ZNF382 was a target of miR-6867, and HBx promoted the translation of ZNF382 during HBV chronic infection through Erk-mediated miR-6867 inhibition. In addition, our data showed that ZNF382 was frequently downregulated by promoter methylation in HBV-related HCCs relative to HBV-infected liver cirrhosis tissues, and decreased expression of ZNF382 was strongly correlated with poor survival in early-stage HCC patients. Functional studies demonstrated that ZNF382 was a potent tumor suppressor in HCC cells through inhibiting cell proliferation, colony formation, migration, invasion, and tumorigenic potential in nude mice, and inducing cell apoptosis. Mechanistically, ZNF382 exerted its tumor-suppressor functions in HCC through transcriptionally repressing its downstream targets such as Fos proto-oncogene (FOS), Jun proto-oncogene (JUN), disheveled segment polarity protein 2 (DVL2), and frizzled class receptor 1 (FZD1), thereby impairing the activities of activating protein 1 (AP-1) and Wnt/β-catenin pathways and activating p53 signaling. Altogether, our data show that ZNF382 acts as a tumor suppressor, and is co-regulated by HBx and epigenetic mechanism in HBV-related hepatocellular carcinogenesis.
Collapse
|
16
|
Zhang Y, Zhang Z, Ma J, Pu J, Hou P, Yang Q. High-accuracy Detection of Preoperative Thyroid Nodules Using Combination of BRAF V600E Mutation and TMPRSS4 mRNA Level. Arch Med Res 2018; 49:365-372. [PMID: 30518486 DOI: 10.1016/j.arcmed.2018.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Papillary thyroid cancer (PTC) is the most common epithelial thyroid tumor, accounting for more than 80% of all thyroid cancers. Though the fine needle aspiration biopsy (FNAB) represents as the golden standard for the diagnostics of thyroid nodules, there is a ∼25% risk of indeterminate cytological features. TMPRSS4 is a newly found transmembrane serine protease which was overexpressed in papillary thyroid cancer (PTC). AIMS The aim of this study was to determine its potential as a diagnostic marker to improve the diagnostic accuracy of thyroid cancer. METHODS We used pyrosequencing and quantitative real-time PCR (qRT-PCT) approaches to examine BRAFV600E mutation and TMPRSS4 mRNA level in FNAB specimens of thyroid nodules. The detection and analysis were respectively applied to training group with 91, and test group with 88 samples. RESULTS We demonstrated that PTC patients had an increased TMPRSS4 mRNA level as compared with benign subjects. The diagnostic sensitivity, specificity, and accuracy of TMPRSS4 were 93.33, 100, and 96.70%, respectively. Notably, compared with BRAFV600E mutation testing alone, combining with TMPRSS4 mRNA level significantly increased the diagnostic sensitivity and accuracy. CONCLUSIONS Our findings indicated BRAFV600E mutation combination with TMPRSS4 mRNA analysis can dramatically improve the sensitivity and accuracy of preoperative diagnosis of thyroid nodules.
Collapse
Affiliation(s)
- Yanfang Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China; Department of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, P.R. China
| | - Zhaoxia Zhang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jingjing Ma
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Jun Pu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Qi Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|
17
|
SIRT7 promotes thyroid tumorigenesis through phosphorylation and activation of Akt and p70S6K1 via DBC1/SIRT1 axis. Oncogene 2018; 38:345-359. [PMID: 30093629 DOI: 10.1038/s41388-018-0434-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/02/2018] [Accepted: 07/17/2018] [Indexed: 01/22/2023]
Abstract
SIRT7 is an NAD+-dependent histone/non-histone deacetylase, which is highly expressed in different types of cancer including thyroid cancer; however, its biological function in thyroid cancer is still undiscovered. In this study, we found that SIRT7 expression was elevated in papillary thyroid cancers (PTCs), and demonstrated that SIRT7 knockdown dramatically inhibited the proliferation, colony formation, migration and invasion of thyroid cancer cells, and induced thyroid cancer cell cycle arrest and apoptosis. Conversely, SIRT7 re-expression markedly enhanced thyroid cancer cell growth, invasiveness and tumorigenic potential in nude mice. Further studies revealed that SIRT7 exerted an oncogenic function in thyroid tumorigenesis by phosphorylation of Akt and p70S6K1. Mechanistically, SIRT7 binds to the promoter of deleted in breast cancer-1 (DBC1), an endogenous inhibitor of SIRT1, and represses its transcription via deacetylation of H3K18Ac. This results in enhanced interactions between SIRT1 and Akt or p70S6K1, thereby promoting deacetylation and subsequent phosphorylation of Akt and p70S6K1 through a SIRT1-dependent manner. Altogether, our results show that DBC1 is a downstream target of SIRT7, and first uncover that SIRT7 promotes thyroid tumorigenesis through phosphorylation and activation of Akt and p70S6K1 via the modulation of DBC1/SIRT1 axis.
Collapse
|
18
|
Li Y, Yang Q, Guan H, Shi B, Ji M, Hou P. ZNF677 Suppresses Akt Phosphorylation and Tumorigenesis in Thyroid Cancer. Cancer Res 2018; 78:5216-5228. [PMID: 29997231 DOI: 10.1158/0008-5472.can-18-0003] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/29/2018] [Accepted: 07/05/2018] [Indexed: 11/16/2022]
Abstract
The zinc finger protein 677 (ZNF677) belongs to the zinc finger protein family, which possesses transcription factor activity by binding sequence-specific DNA. Previous studies have reported its downregulated by promoter methylation in non-small cell lung cancer. However, its biological role and exact mechanism in human cancers, including thyroid cancer, remain unknown. In this study, we demonstrate that ZNF677 is frequently downregulated by promoter methylation in primary papillary thyroid cancers (PTC) and show that decreased expression of ZNF677 is significantly associated with poor patient survival. Ectopic expression of ZNF677 in thyroid cancer cells dramatically inhibited cell proliferation, colony formation, migration, invasion, and tumorigenic potential in nude mice and induced cell-cycle arrest and apoptosis. Conversely, knockdown of ZNF677 promoted thyroid cancer cell proliferation and colony formation. ZNF677 exerted its tumor suppressor functions in thyroid cancer cells through transcriptional repression of two targets CDKN3 and HSPB1 (or HSP27), thereby inhibiting phosphorylation and activation of Akt via distinct mechanisms. Taken together, our data show that ZNF677 functions as a tumor suppressor and is frequently silenced via promoter methylation in thyroid cancer.Significance: These findings report a tumor suppressive role of the zinc-finger protein ZNF677 in primary papillary thyroid cancer through inhibition of Akt phosphorylation. Cancer Res; 78(18); 5216-28. ©2018 AACR.
Collapse
Affiliation(s)
- Yujun Li
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Qi Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Haixia Guan
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P.R. China
| |
Collapse
|
19
|
Sui F, Sun W, Su X, Chen P, Hou P, Shi B, Yang Q. Gender-related differences in the association between concomitant amplification of AIB1 and HER2 and clinical outcomes in glioma patients. Pathol Res Pract 2018; 214:1253-1259. [PMID: 30153912 DOI: 10.1016/j.prp.2018.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/13/2018] [Accepted: 06/25/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Previous studies demonstrated that AIB1 or HER2 copy number gain (CNG), respectively, were independent predictors for poor prognosis of glioma patients, especially in females. We hypothesize that there are some connections between the two genes and sex-specific characteristics, thus this study aimed to analyze gender-related differences in the prognosis of glioma patients. METHODS Using Real-Time Quantitative Reverse Transcription PCR (RT-qPCR) method, we examined AIB1 and HER2 CNG in gliomas samples (n = 114), and inspected the correlation of various genotypes with patients outcomes. RESULTS Concomitant AIB1 and HER2 amplification were closely related to shorter survival time and radiotherapy resistance in female gliomas patients (P < 0.01), which also served as an independent risk factor. No significant prognostic value was found with AIB1 and HER2 CNG in male patients. However, linear regression analysis showed a positive relationship between the copy number of AIB1 and HER2 (P < 0.01) in male patients, rather than female patients. CONCLUSION In this study, we reveal a gender difference in the prognostic value of concomitant AIB1 and HER2 CNG in glioma patients which were barely noticed before. These observations indicated that genetic alterations synergistic with essential respects of sex determination influence glioma biology and patients outcomes.
Collapse
Affiliation(s)
- Fang Sui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Wanjing Sun
- Department of Pharmacy, Dezhou People's Hospital, Dezhou 253014, PR China
| | - Xi Su
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Pu Chen
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Qi Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
20
|
Da C, Wu K, Yue C, Bai P, Wang R, Wang G, Zhao M, Lv Y, Hou P. N-cadherin promotes thyroid tumorigenesis through modulating major signaling pathways. Oncotarget 2018; 8:8131-8142. [PMID: 28042956 PMCID: PMC5352388 DOI: 10.18632/oncotarget.14101] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/18/2016] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a crucial step in disease progression, plays a key role in tumor metastasis. N-cadherin, a well-known EMT marker, acts as a major oncogene in diverse cancers, whereas its functions in thyroid cancer remains largely unclear. This study was designed to explore the biological roles and related molecular mechanism of N-cadherin in thyroid tumorigenesis. Quantitative RT-PCR (qRT-PCR) and immunohistochemistry assays were used to evaluate N-cadherin expression. A series of in vitro studies such as cell proliferation, colony formation, cell cycle, apoptosis, migration and invasion assays were performed to determine the effect of N-cadherin on malignant behavior of thyroid cancer cells. Our results showed that N-cadherin was significantly upregulated in papillary thyroid cancers (PTCs) as compared with non-cancerous thyroid tissues. N-cadherin knockdown markedly inhibited cell proliferation, colony formation, cell migration and invasion, and induced cell cycle arrest and apoptosis. On the other hand, ectopic expression of N-cadherin promoted thyroid cancer cell growth and invasiveness. Mechanically, our data demonstrated that tumor-promoting role of N-cadherin in thyroid cancer was closely related to the activities of the MAPK/Erk, the phosphatidylinositol-3-kinase (PI3K)/Akt and p16/Rb signaling pathways in addition to affecting the EMT process. Altogether, our findings suggest that N-cadherin promotes thyroid tumorigenesis by modulating the activities of major signaling pathways and EMT process, and may represent a potential therapeutic target for this cancer.
Collapse
Affiliation(s)
- Chenxing Da
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China.,Department of Endocrinology, Shanxi Provincial Crops Hospital of Chinese People's Armed Police Force, Xi'an 710054, P.R. China
| | - Kexia Wu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Chenli Yue
- Department of Endocrinology, Shanxi Provincial Crops Hospital of Chinese People's Armed Police Force, Xi'an 710054, P.R. China
| | - Peisong Bai
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Rong Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Guanjie Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Man Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Yanyan Lv
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China.,Department of Endocrinology, Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
21
|
Li Y, Li L, Chen M, Yu X, Gu Z, Qiu H, Qin G, Long Q, Fu X, Liu T, Li W, Huang W, Shi D, Kang T, Luo M, Wu X, Deng W. MAD2L2 inhibits colorectal cancer growth by promoting NCOA3 ubiquitination and degradation. Mol Oncol 2018; 12:391-405. [PMID: 29360267 PMCID: PMC5830628 DOI: 10.1002/1878-0261.12173] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/25/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023] Open
Abstract
Nuclear receptor coactivator 3 (NCOA3) is a transcriptional coactivator that has elevated expression in multiple tumor types, including colorectal cancer (CRC). However, the molecular mechanisms that regulate the tumorigenic functions of NCOA3 in CRC remain largely unknown. In this study, we aimed to discover and identify the novel regulatory proteins of NCOA3 and explore their mechanisms of action. Immunoprecipitation (IP) coupled with mass spectrometry (IP-MS) analysis was used to detect, identify, and verify the proteins that interacted with NCOA3 in CRC cells. The biological functions of the candidate proteins and the underlying molecular mechanism were investigated in CRC cells and mouse model in vitro and in vivo. The clinical significance of NCOA3 and its interaction partner protein in CRC patients was also studied. We identified mitotic arrest deficient 2-like protein 2 (MAD2L2, also known as MAD2B or REV7), with two signal peptide sequences of LIPLK and EVYPVGIFQK, to be an interaction partner of NCOA3. Overexpression of MAD2L2 suppressed the proliferation, migration, and clonogenicity of CRC cells by inducing the degradation of NCOA3. The mechanism study showed that increased MAD2L2 expression in CRC cells activated p38, which was required for the phosphorylation of NCOA3 that led to its ubiquitination and degradation by the proteasome. Moreover, we found that MAD2L2 predicted favorable prognosis in CRC patients. We have discovered a novel role of MAD2L2 in the regulation of NCOA3 degradation and proposed that MAD2L2 serves as a tumor suppressor in CRC.
Collapse
Affiliation(s)
- Yixin Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Liren Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Miao Chen
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Xinfa Yu
- Shunde Hospital of Southern Medical UniversityFoshanChina
| | - Zhuoyu Gu
- Department of PharmacologyMedical CollegeJinan UniversityGuangzhouChina
| | - Huijuan Qiu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Ge Qin
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Qian Long
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Xiaoyan Fu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Tianze Liu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Wenbin Li
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Wenlin Huang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
- State Key Laboratory of Targeted Drug for Tumors of Guangdong ProvinceGuangzhou Double Bioproduct Inc.GuangzhouChina
| | - Dingbo Shi
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Tiebang Kang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Meihua Luo
- Shunde Hospital of Southern Medical UniversityFoshanChina
| | - Xiaojun Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| | - Wuguo Deng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center of Cancer MedicineGuangzhouChina
| |
Collapse
|
22
|
Increased expression of EHF contributes to thyroid tumorigenesis through transcriptionally regulating HER2 and HER3. Oncotarget 2018; 7:57978-57990. [PMID: 27517321 PMCID: PMC5295405 DOI: 10.18632/oncotarget.11154] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/27/2016] [Indexed: 12/19/2022] Open
Abstract
E26 transformation-specific (ETS) transcription factor EHF plays a tumor suppressor role in prostate cancer and esophageal squamous cell carcinoma (ESCC), whereas it is overexpressed and may act as an oncogene in ovarian and mammary cancers. However, its biological role in thyroid cancer remains totally unknown. The aim of this study was to explore the biological functions of EHF and its potential as a therapeutic target in thyroid cancer. Using quantitative RT-PCR (qRT-PCR) assay, we evaluated mRNA expression of EHF in a cohort of primary papillary thyroid cancers (PTCs) and matched non-cancerous thyroid tissues. The functions of knockdown and ectopic expression of EHF in thyroid cancer cells were determine by a series of in vitro and in vivo experiments. Moreover, dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays were performed to identify its downstream targets. Our data showed that EHF expression was significantly increased in PTCs compared with matched non-cancerous thyroid tissues. EHF knockdown significantly inhibited thyroid cancer cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice and induced cell cycle arrested and apoptosis by modulating the PI3K/Akt and MAPK/Erk signaling pathways. On the other hand, ectopic expression of EHF in thyroid cancer cells notably promoted cell growth and invasiveness. Importantly, EHF was identified as a new transcription factor for HER2 and HER3, contributing to thyroid tumorigenesis. Altogether, our findings suggest that EHF is a novel functional oncogene in thyroid cancer by transcriptionally regulating HER2 and HER3, and may represent a potential therapeutic target for this cancer.
Collapse
|
23
|
Liu W, Sui F, Liu J, Wang M, Tian S, Ji M, Shi B, Hou P. PAX3 is a novel tumor suppressor by regulating the activities of major signaling pathways and transcription factor FOXO3a in thyroid cancer. Oncotarget 2018; 7:54744-54757. [PMID: 27458157 PMCID: PMC5342378 DOI: 10.18632/oncotarget.10753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/09/2016] [Indexed: 11/25/2022] Open
Abstract
Paired box 3 (PAX3) is expressed early during embryonic development in spatially restricted domains in the nervous system and in some mesodermally-derived structure. In recent years, it is found to be overexpressed in different types of cancer tissues and cell lines including glioblastomas, neuroblastomas, melanomas, rhabdomyosarcomas, Ewing sarcomas and gastric cancers, suggesting that it may function as an oncogene in these cancers. However, its role in thyroid cancer remains totally unclear. The aim of this study was to explore the functions and related molecular mechanism of PAX3 in thyroid tumorigenesis. Using quantitative RT-PCR (qRT-PCR) and Methylation-specific PCR (MSP) assays, we demonstrated that PAX3 was frequently down-regulated by promoter methylation in both primary thyroid cancer tissues and thyroid cancer cell lines. In addition, our data showed that ectopic expression of PAX3 dramatically inhibited thyroid cancer cell proliferation, colony formation, migration and invasion, induced cell cycle arrest and apoptosis and retarded tumorigenic potential in nude mice. Mechanically, PAX3 exerted its tumor suppressor function by inhibiting the activity of major signaling pathways including the phosphatidylinositol-3-kinase (PI3K)/Akt and MAPK/Erk pathways, and enhancing expression and activity of transcription factor FOXO3a. Altogether, our findings provided insight into the role of PAX3 as a novel functional tumor suppressor in thyroid cancer through modulating the activities of PI3K/Akt and MAPK signaling pathways and transcription factor FOXO3a, and demonstrated that epigenetic alterations such as promoter methylation should be a major mechanism of PAX3 inactivation in this cancer.
Collapse
Affiliation(s)
- Wei Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Fang Sui
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Jiazhe Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Meichen Wang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Sijia Tian
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P.R. China
| |
Collapse
|
24
|
Liu R, Qu Y, Chen L, Pu J, Ma S, Zhang X, Yang Q, Shi B, Hou P, Ji M. Genomic copy number gains of ErbB family members predict poor clinical outcomes in glioma patients. Oncotarget 2017; 8:92275-92288. [PMID: 29190914 PMCID: PMC5696180 DOI: 10.18632/oncotarget.21228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/17/2017] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to investigate copy number of ErbB family members (including EGFR, HER2, HER3 and HER4) in a cohort of gliomas and benign meningiomas (control subjects), and explore the associations of their copy number with clinicopathological characteristics and clinical outcomes of glioma patients. Using real-time quantitative PCR assay, we demonstrated that copy number of EGFR, HER2, HER3 and HER4 in glioma patients was significantly increased compared to control subjects. Moreover, our data also showed that the risk of cancer-related death was positively associated with copy number gain (CNG) of EGFR, HER3 and HER4, but not HER2. CNG of EGFR and HER2 was positively related to radiotherapy, while CNG of HER3 and HER4 was negatively related to chemotherapy. Importantly, EGFR CNG significantly shortened median survival times of glioma patients regardless of gender, tumor grade and therapeutic regimens. Stratified analysis showed that CNG of HER2-4 almost did not influence the survival of male patients, patients with high-grade tumors and patients receiving chemotherapy, but dramatically shortened median survival times of female patients, those with low-grade tumors and those receiving radiotherapy. Collectively, our data not only demonstrate that the members of ErbB family are frequently amplified in gliomas, but also suggest that these common genetic events may be prognostic factors for poor clinical outcomes in glioma patients.
Collapse
Affiliation(s)
- Rui Liu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P. R. China.,Department of Radio-Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P. R. China
| | - Yiping Qu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P. R. China
| | - Lihong Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Jun Pu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P. R. China
| | - Sharui Ma
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P. R. China
| | - Xiaozhi Zhang
- Department of Radio-Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P. R. China
| | - Qi Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P. R. China
| | - Bingyin Shi
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P. R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an 710061, P. R. China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Meiju Ji
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
25
|
TERT promoter mutations and long telomere length predict poor survival and radiotherapy resistance in gliomas. Oncotarget 2017; 7:8712-25. [PMID: 26556853 PMCID: PMC4890999 DOI: 10.18632/oncotarget.6007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022] Open
Abstract
Increasing evidences have implicated somatic gain-of-function mutations at the telomerase reverse transcriptase (TERT) promoter as one of the major mechanisms that promote transcriptional activation of TERT and subsequently maintain telomere length in human cancers including glioma. To investigate the prognostic value of these mutations and telomere length, individually and their coexistence, in gliomas, we analyzed two somatic mutations C228T and C250T in the TERT promoter, relative telomere length (RTL), IDH1 mutation and MGMT methylation in 389 glioma patients, and explored their associations with patient characteristics and clinical outcomes. Our data showed that C228T and C250T mutations were found in 17.0% (66 of 389) and 11.8% (46 of 389) of gliomas, respectively, and these two mutations were mutually exclusive in this cancer. Moreover, they were significantly associated with WHO grade. We also found that the RTL was significant longer in gliomas than in meningiomas and normal brain tissues (Median, 0.89 vs. 0.44 and 0.50; P < 0.001), and demonstrated that the RTL was strongly correlated with tumor recurrence. Importantly, TERT promoter mutations or long RTL caused a significantly poorer survival than TERT wild-type or short RTL. Coexisting TERT promoter mutations and long RTL were more commonly associated with poor patient survival than they were individually. Notably, the patients with TERT promoter mutations particularly C228T or long RTL were resistant to radiotherapy. Collectively, TERT promoter mutations and long RTL are not only prognostic factors for poor clinical outcomes, but also the predictors of radiotherapy resistance in gliomas.
Collapse
|
26
|
Increased expression of EHF via gene amplification contributes to the activation of HER family signaling and associates with poor survival in gastric cancer. Cell Death Dis 2016; 7:e2442. [PMID: 27787520 PMCID: PMC5134001 DOI: 10.1038/cddis.2016.346] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/04/2016] [Accepted: 09/26/2016] [Indexed: 01/29/2023]
Abstract
The biological function of E26 transformation-specific (ETS) transcription factor EHF/ESE-3 in human cancers remains largely unknown, particularly gastric cancer. The aim of this study was to explore the role of EHF in tumorigenesis and its potential as a therapeutic target in gastric cancer. By using quantitative RT-PCR (qRT-PCR), immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) assays, we investigated the expression and copy number of EHF in a cohort of gastric cancers and control subjects. Specific EHF siRNAs was used to determine the biologic impacts and mechanisms of altered EHF expression in vitro and in vivo. Dual-luciferase reporter, chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA) assays were performed to identify its downstream targets. Our results demonstrated that EHF was significantly upregulated and frequently amplified in gastric cancer tissues as compared with control subjects. Moreover, EHF amplification was positively correlated with its overexpression and significantly associated with poor clinical outcomes of gastric cancer patients. We also found that EHF knockdown notably inhibited gastric cancer cell proliferation, colony formation, migration, invasion and tumorigenic potential in nude mice and induced cell cycle arrest and apoptosis. Importantly, we identified EHF as a new HER2 transcription factor and the modulator of HER3 and HER4 in gastric cancer. Collectively, our findings suggest that EHF is a novel functional oncogene in gastric cancer by regulating the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and may represent a potential prognostic marker and therapeutic target for this cancer.
Collapse
|