1
|
Feng G, Wang P, Zhang H, Cheng S, Xing Y, Wang Y. MEX3A induces the development of thyroid cancer via targeting CREB1. Cell Biol Int 2023; 47:1843-1853. [PMID: 37529875 DOI: 10.1002/cbin.12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Thyroid cancer is a prevalent form of endocrine cancer, and its global incidence has been steadily increasing. MEX3A is a protein that is known to be highly expressed in various human malignant tumors, including thyroid cancer, and it has been linked to patient prognosis. However, the molecular mechanisms underlying MEX3A's tumorigenic capabilities in thyroid cancer are not fully understood. In this study, we aimed to investigate the role of MEX3A in thyroid cancer. We confirmed that MEX3A was overexpressed in both thyroid cancer tissues and cell lines. Additionally, we found a positive correlation between high levels of MEX3A and the AJCC stage. To further understand the functional significance of MEX3A in thyroid cancer, we depleted MEX3A expression in B-CPAP and TPC-1 cells. Interestingly, we observed a significant reduction in thyroid cancer cell proliferation and migration, as well as ameliorated cell apoptosis and arrested tumor growth upon MEX3A depletion. These findings strongly suggested that MEX3A played a critical role in the development of thyroid cancer. Furthermore, our study uncovered an important interaction between MEX3A and CREB1 (cAMP response element-binding protein 1). The interaction between MEX3A and CREB1 appeared to contribute to the tumor-promoting effects of MEX3A in thyroid cancer by directly targeting CREB1. Silencing CREB1 was observed to alleviate the malignant phenotypes promoted by MEX3A in thyroid cancer cells. Together, this study highlighted the importance of the MEX3A-CREB1 interaction in thyroid cancer development and suggested the therapeutic potential of targeting MEX3A for the treatment of this disease.
Collapse
Affiliation(s)
- Guoxun Feng
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Penghui Wang
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Hongyi Zhang
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Shi Cheng
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Ying Xing
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Yuan Wang
- Department of General Surgery, Peking University People Hospital, Beijing, China
| |
Collapse
|
2
|
Morra F, Merolla F, Zito Marino F, Catalano R, Franco R, Chieffi P, Celetti A. The tumour suppressor CCDC6 is involved in ROS tolerance and neoplastic transformation by evading ferroptosis. Heliyon 2021; 7:e08399. [PMID: 34841108 PMCID: PMC8605351 DOI: 10.1016/j.heliyon.2021.e08399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/11/2021] [Accepted: 11/11/2021] [Indexed: 10/26/2022] Open
Abstract
Coiled-coil domain containing 6 (CCDC6) is a tumour suppressor gene involved in apoptosis and DNA damage response. CCDC6 is known to be functionally impaired upon gene fusions, somatic mutations, and altered protein turnover in several tumours. Testicular germ cell tumours are among the most common malignancies in young males. Despite the high cure rate, achieved through chemotherapy and/or surgery, drug resistance can still occur. In a human cellular model of testis Embryonal Carcinoma, the deficiency of CCDC6 was associated with defects in DNA repair via homologous recombination and sensitivity to PARP1/2 inhibitors. Same data were obtained in a panel of murine testicular cell lines, including Sertoli, Spermatogonia and Spermatocytes. In these cells, upon oxidative damage exposure, the absence of CCDC6 conferred tolerance to reactive oxygen species affecting regulated cell death pathways by apoptosis and ferroptosis. At molecular level, the loss of CCDC6 was associated with an enhancement of the xCT/SLC7A11 cystine antiporter expression which, by promoting the accumulation of ROS, interfered with the activation of ferroptosis pathway. In conclusion, our data suggest that the CCDC6 downregulation could aid the testis germ cells to be part of a pro-survival pathway that helps to evade the toxic effects of endogenous oxidants contributing to testicular neoplastic growth. Novel therapeutic options will be discussed.
Collapse
Affiliation(s)
- Francesco Morra
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | | | - Rosaria Catalano
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Renato Franco
- Pathology Unit, University of Campania "L. Vanvitelli", Naples, Italy
| | - Paolo Chieffi
- Department of Psychology, University of Campania "L. Vanvitelli", Naples, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| |
Collapse
|
3
|
Napolitano V, Russo D, Morra F, Merolla F, Varricchio S, Ilardi G, Di Crescenzo RM, Martino F, Mascolo M, Celetti A, Tamagnone L, Staibano S. Neuropilin-1 Expression Associates with Poor Prognosis in HNSCC and Elicits EGFR Activation upon CDDP-Induced Cytotoxic Stress. Cancers (Basel) 2021; 13:3822. [PMID: 34359721 PMCID: PMC8345038 DOI: 10.3390/cancers13153822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) includes a group of aggressive malignancies characterized by the overexpression of the epidermal growth factor receptor (EGFR) in 90% of cases. Neuropilin-1 (NRP-1) acts as an EGFR co-receptor, enhancing, upon ligand stimulation, EGFR signaling in several cellular models. However, NRP-1 remains poorly characterized in HNSCC. By utilizing in vitro cellular models of HNSCC, we report that NRP-1 is involved in the regulation of EGFR signaling. In fact, NRP-1 can lead to cisplatin-induced EGFR phosphorylation, an escape mechanism activated by cancer cells upon cytotoxic stress. Furthermore, we evaluated Neuropilin-1 staining in tissue samples of an HNSCC case series (n = 218), unraveling a prognostic value for the Neuropilin-1 tissue expression. These data suggest a potential role for NRP-1 in HNSCC cancer progression, expanding the repertoire of signaling in which NRP-1 is involved and eliciting the need for further investigations on NRP-1 as a suitable target for HNSCC novel therapeutic approaches.
Collapse
Affiliation(s)
- Virginia Napolitano
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (V.N.); (L.T.)
| | - Daniela Russo
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Francesco Morra
- Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore”, CNR, 80131 Napoli, Italy; (F.M.); (A.C.)
| | - Francesco Merolla
- Dipartimento di Medicina e Scienze della Salute “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy
| | - Silvia Varricchio
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Gennaro Ilardi
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Rosa Maria Di Crescenzo
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Francesco Martino
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Massimo Mascolo
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| | - Angela Celetti
- Istituto di Endocrinologia e Oncologia Sperimentale “Gaetano Salvatore”, CNR, 80131 Napoli, Italy; (F.M.); (A.C.)
| | - Luca Tamagnone
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (V.N.); (L.T.)
- Fondazione Policlinico “A. Gemelli”, IRCCS, 00168 Roma, Italy
| | - Stefania Staibano
- Dipartimento di Scienze Biomediche Avanzate, Unità di Anatomia Patologica, Università degli Studi di Napoli “Federico II”, 80131 Napoli, Italy; (D.R.); (S.V.); (G.I.); (R.M.D.C.); (F.M.); (M.M.); (S.S.)
| |
Collapse
|
4
|
Detection of CAF-1/p60 in peripheral blood as a potential biomarker of HNSCC tumors. Oral Oncol 2021; 120:105367. [PMID: 34237585 DOI: 10.1016/j.oraloncology.2021.105367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/16/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
To date, a very small number of serum biomarkers have been identified for clinical use in squamous carcinomas of the head and neck region. Chromatin Assembly Factor-1 (CAF-1) heterotrimeric complex subunit CAF1/p60 expression levels have been reported to be of prognostic value in Oral Squamous Cell Carcinoma (OSCC), as well as in other human solid tumors. Here our aim was to detect and quantify CAF1/p60 in the peripheral blood of Head and Neck Squamous Cell Carcinoma (HNSCC) patients, and to investigate the possible associations between serum concentration of CAF-1/p60 and HNSCC tumors. A total of 63 HNSCC patients (51 OSCC, 8 OPSCC, 3 laryngeal SCC, and 1 rhinopharynx SCC) and 30 healthy controls were enrolled. The serum levels of CAF-1/p60 were measured by ELISA assay before and after surgery. Serum CAF-1/p60 concentration resulted significantly higher in cancer patients, compared with healthy controls, in pre-surgery samples (P < 0.05). Serum levels of CAF-1/p60 significantly decreased in serum samples taken after surgery (P < 0.05). Our results demonstrated that CAF-1/p60 may be detected in serum, suggesting a role for CAF-1/p60 as potential soluble biomarkers in HNSCC tumors.
Collapse
|
5
|
Ge J, Yu W, Li J, Ma H, Wang P, Zhou Y, Wang Y, Zhang J, Shi G. USP16 regulates castration-resistant prostate cancer cell proliferation by deubiquitinating and stablizing c-Myc. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:59. [PMID: 33546726 PMCID: PMC7866668 DOI: 10.1186/s13046-021-01843-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
Background c-Myc, a well-established oncogene, plays an important role in the initiation and progression of various cancers, including prostate cancer. However, its mechanism in cancer cell remains largely unknown and whether there exist a deubiquitinase targeting c-Myc also remains elusive. Methods Bioinformatic analysis and shRNA screening methods were used to identify potential deubiquitinases that correlate with c-Myc gene signature. Cell proliferation and viability were measured by Cell-Counting-Kit 8 and colony formation assays. A mouse xenograft model of PC3 cells was established to confirm the function of USP16 in vivo. The interaction between USP16 and c-Myc protein was assessed by co-immunoprecipitation and protein co-localization assays. Immunohistochemistry staining was performed to detect the expression of USP16, Ki67, and c-Myc in xenograft tissues and clinical tumour tissues. Furthermore, the correlation between USP16 and c-Myc was confirmed by RNA sequencing. Results Functional analyses identified USP16, known as a deubiquitinase, was strongly correlated with the c-Myc gene signature. Depletion of USP16 was shown to significantly suppress the growth of PCa cells both in vitro and in vivo. Co-immunoprecipitation and ubiquitination assays confirmed that USP16 served as a novel deubiquitinase of c-Myc and overexpression of c-Myc significantly rescued the effects of USP16 disruption. Immunohistochemistry staining and RNA-seq tactics were further used to confirm the positive correlation between USP16 and c-Myc expression. Expression of USP16 in human PCa tissues was higher than that seen in normal prostate tissues and its high expression was found associated with poor prognosis. Conclusions USP16 serves as a novel deubiquitinase of c-Myc. Downregulation of USP16 markedly suppressed PCa cell growth both in vitro and in vivo. USP16 regulates PCa cell proliferation by deubiquitinating and stabilizing c-Myc, making it a potential therapeutic candidate for the treatment of PCa. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01843-8.
Collapse
Affiliation(s)
- Jianchao Ge
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Wandong Yu
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Junhong Li
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Hangbin Ma
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Pengyu Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Yinghao Zhou
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Yang Wang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China
| | - Jun Zhang
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China.
| | - Guowei Shi
- Department of Urology, The Fifth People's Hospital of Shanghai, Fudan University, No. 801, Heqing Road,Minhang District, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
6
|
Lee JE, Park CM, Kim JH. USP7 deubiquitinates and stabilizes EZH2 in prostate cancer cells. Genet Mol Biol 2020; 43:e20190338. [PMID: 32453339 PMCID: PMC7252518 DOI: 10.1590/1678-4685-gmb-2019-0338] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/11/2020] [Indexed: 12/20/2022] Open
Abstract
Regulation of target proteins by the ubiquitin-proteasome system (UPS) is common in a wide range of cellular events, including transcriptional regulation, cell cycle progression, differentiation, and tumorigenesis. Ubiquitin-specific protease 7 (USP7) has been implicated in tumor development and metastasis in various malignancies through the regulation of target protein stability. In this study, we found that the enhancer of zeste homolog 2 (EZH2), which catalyzes the methylation at lysine 27 of histone H3, is a target of USP7 and is stabilized by USP7-mediated deubiquitination. In prostate cancer cells, the transcriptional repression function of EZH2 was inhibited by USP7-knockdown. Furthermore, ectopic introduction of EZH2 restored the cell migration, invasion, and sphere-forming potential of prostate cancer cells, which had been decreased by USP7-knockdown. Moreover, combined treatment with the USP7-specific inhibitor P5091 and EZH2 inhibitors, such as GSK126, EPZ6438, and DZNep, induced synergistic inhibitory effects on cell migration, invasion, and sphere-forming potential in prostate cancer cells. Collectively, our findings revealed that the promotion of the malignancy-associated characteristics of prostate cancer cells by USP7 was in part due to EZH2 stabilization. Thus, we suggest that simultaneous treatment with a USP7 inhibitor and an EZH2 inhibitor could be a rational strategy for treating EZH2-dependent cancers.
Collapse
Affiliation(s)
- Jae Eun Lee
- Inha University, Department of Biological Sciences, Incheon 22212,
South Korea
| | - Chan Mi Park
- Inha University, Department of Biological Sciences, Incheon 22212,
South Korea
| | - Jung Hwa Kim
- Inha University, Department of Biological Sciences, Incheon 22212,
South Korea
| |
Collapse
|
7
|
Li J, Li H, Zhu W, Zhou B, Ying J, Wu J, Zhang H, Sun H, Gao S. Deubiquitinase inhibitor degrasyn suppresses metastasis by targeting USP5-WT1-E-cadherin signalling pathway in pancreatic ductal adenocarcinoma. J Cell Mol Med 2020; 24:1370-1382. [PMID: 31845546 PMCID: PMC6991651 DOI: 10.1111/jcmm.14813] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/05/2019] [Accepted: 10/26/2019] [Indexed: 12/18/2022] Open
Abstract
Wilm's tumour-1 (WT1) is overexpressed in pancreatic ductal adenocarcinoma (PDAC) and enhances metastasis. Deubiquitination stabilizes target proteins, and inhibiting deubiquitination facilitates the degradation of target proteins. However, whether inhibiting deubiquitination of WT1 facilitates its degradation and presents anti-cancer ability in PDAC is unknown. Here, we found that deubiquitinase inhibitor degrasyn rapidly induced the degradation of endogenous and exogenous WT1 through enhancing ubiquitination of WT1 followed by the up-regulation of E-cadherin. Knockdown of WT1 by short hairpin RNAs (shRNAs) inhibited metastasis and overexpression of WT1 partially prevented degrasyn-induced anti-metastasis activity, suggesting that degrasyn presents anti-metastasis activity partially through degrading WT1 protein. We further identified that USP5 deubiquitinated WT1 and stabilized its expression. The higher expressions of USP5 and WT1 are associated with tumour metastasis. More importantly, degrasyn inhibited the activity of USP5 and overexpression of USP5 partially prevented degrasyn-induced degradation of WT1 protein, suggesting that degrasyn degraded WT1 protein through inhibiting the activity of USP5. Finally, degrasyn reduced the tumorigenicity in a xenograft mouse model and reduced the metastasis in vivo. Our results indicate that degrasyn presents strong anti-cancer activity through USP5-WT1-E-cadherin signalling in PDAC. Therefore, degrasyn holds promise as cancer therapeutic agent in PDAC with high expressions of USP5 and WT1.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cadherins/antagonists & inhibitors
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/secondary
- Cell Proliferation
- Cyanoacrylates/pharmacology
- Deubiquitinating Enzymes/antagonists & inhibitors
- Endopeptidases/chemistry
- Endopeptidases/genetics
- Endopeptidases/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Mice
- Mice, Nude
- Neoplasm Invasiveness
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Prognosis
- Pyridines/pharmacology
- Tumor Cells, Cultured
- WT1 Proteins/antagonists & inhibitors
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
- Xenograft Model Antitumor Assays
- Pancreatic Neoplasms
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Haiying Li
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Weijian Zhu
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Bin Zhou
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Jianchao Ying
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Jiansheng Wu
- Department of Gastroenterologythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Huxiang Zhang
- Pathology Departmentthe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgerythe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| | - Shenmeng Gao
- Laboratory of Internal Medicinethe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang ProvinceChina
| |
Collapse
|
8
|
Vasquez JL, Lai Y, Annamalai T, Jiang Z, Zhang M, Lei R, Zhang Z, Liu Y, Tse-Dinh YC, Agoulnik IU. Inhibition of base excision repair by natamycin suppresses prostate cancer cell proliferation. Biochimie 2020; 168:241-250. [PMID: 31756402 PMCID: PMC6926147 DOI: 10.1016/j.biochi.2019.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022]
Abstract
Prostate cancer (PCa) progression is characterized by increased expression and transcriptional activity of the androgen receptor (AR). In the advanced stages of prostate cancer, AR significantly upregulates the expression of genes involved in DNA repair. Upregulation of expression for base excision repair (BER) related genes is associated with poor patient survival. Thus, inhibition of the BER pathway may prove to be an effective therapy for prostate cancer. Using a high throughput BER capacity screening assay, we sought to identify BER inhibitors that can synergize with castration therapy. An FDA-approved drug library was screened to identify inhibitors of BER using a fluorescence-based assay suitable for HTS. A gel-based secondary assay confirmed the reduction of BER capacity by compounds identified in the primary screen. Five compounds were then selected for further testing in the independently derived, androgen-dependent prostate cancer cell lines, LNCaP and LAPC4, and in the nonmalignant prostate derived cell lines PNT1A and RWPE1. Further analysis led to the identification of a lead compound, natamycin, as an effective inhibitor of key BER enzymes DNA polymerase β (pol β) and DNA Ligase I (LIG I). Natamycin significantly inhibited proliferation of PCa cells in an androgen depleted environment at 1 μM concentration, however, growth inhibition did not occur with nonmalignant prostate cell lines, suggesting that BER inhibition may improve efficacy of the castration therapies.
Collapse
Affiliation(s)
- Judy L Vasquez
- Department of Human and Molecular Genetics, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Thirunavukkarasu Annamalai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA
| | - Zhongliang Jiang
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, 33199, USA
| | - Manqi Zhang
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, 33199, USA
| | - Ruipeng Lei
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, 33199, USA
| | - Zunzhen Zhang
- Department of Occupational and Environmental Health, Sichuan University West China School of Public Health, Chengdu, Sichuan, China
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA; Biochemistry Ph.D. Program, Florida International University, Miami, FL, 33199, USA.
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA; Biochemistry Ph.D. Program, Florida International University, Miami, FL, 33199, USA.
| | - Irina U Agoulnik
- Department of Human and Molecular Genetics, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA; Department of Chemistry and Biochemistry, Florida International University, Miami, FL, 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, 33199, USA; Biochemistry Ph.D. Program, Florida International University, Miami, FL, 33199, USA; Department of Cellular and Molecular Biology, Baylor College of Medicine, USA.
| |
Collapse
|
9
|
Cerrato A, Morra F, Di Domenico I, Celetti A. NSCLC Mutated Isoforms of CCDC6 Affect the Intracellular Distribution of the Wild Type Protein Promoting Cisplatinum Resistance and PARP Inhibitors Sensitivity in Lung Cancer Cells. Cancers (Basel) 2019; 12:cancers12010044. [PMID: 31877762 PMCID: PMC7016757 DOI: 10.3390/cancers12010044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
CCDC6 is implicated in cell cycle checkpoints and DNA damage repair by homologous recombination (HR). In NSCLC, CCDC6 is barely expressed in about 30% of patients and CCDC6 gene rearrangements with RET and ROS kinases are detected in about 1% of patients. Recently, CCDC6 point-mutations naming E227K, S351Y, N394Y, and T462A have been identified in primary NSCLC. In this work, we analyze the effects exerted by the CCDC6 mutated isoforms on lung cancer cells. By pull-down experiments and immunofluorescence, we evaluated the biochemical and morphological effects of CCDC6 lung-mutants on the CCDC6 wild type protein. By using two HR-reporter assays, we analyzed the effect of CCDC6 lung-mutants in perturbing CCDC6 physiology in the HR process. Finally, by cell-titer assay, we evaluated the response to the treatment with different drugs in lung cancer cells expressing CCDC6 mutants. This work shows that the CCDC6 mutated and truncated isoforms, identified so far in NSCLC, affected the intracellular distribution of the wild type protein and impaired the CCDC6 function in the HR process, ultimately inducing cisplatinum resistance and PARP-inhibitors sensitivity in lung cancer cells. The identification of selected molecular alterations involving CCDC6 gene product might define predictive biomarkers for personalized treatment in NSCLC.
Collapse
|
10
|
Hysek M, Jatta K, Stenman A, Darai-Ramqvist E, Zedenius J, Höög A, Juhlin CC. Signet ring cell variant of follicular thyroid carcinoma: Report of two cases with focus on morphological, expressional and genetic characteristics. Diagn Pathol 2019; 14:127. [PMID: 31699114 PMCID: PMC6839064 DOI: 10.1186/s13000-019-0904-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 12/23/2022] Open
Abstract
Background Follicular thyroid carcinoma (FTC) is a neoplasm that presents with a micro-follicular growth pattern and a neutrally stained cytoplasm. Seldom, FTCs display unusual morphological characteristics – but given the rarity of these histological subtypes, little is known regarding the underlying genetics and the coupling to patient outcome. Case presentation We present two extremely rare cases of minimally invasive FTC with signet ring cell morphology (SRC-FTC) and describe the cytological, microscopic, immunohistochemical and molecular features for both tumors. Both were male patients, age 71 and 51 respectively. The preoperative cytology for both cases could not pinpoint a clear-cut signet ring cell morphology, but a tendency towards nuclear marginalization was seen. The tumors were 38 mm and 22 mm respectively and displayed evident signet ring cell features in subsets of tumor cells as well as degenerative stromal changes. The tumor cells were positive for TTF1, PAX8 and thyroglobulin, and the proliferation indexes were 4% and 1,9% respectively. Both tumors displayed capsular invasion, but not lymphovascular invasion. The tumors were sequenced for mutations in the TERT promoter and 22 additional cancer-related genes, interestingly; one patient was shown to carry a deleterious intronic variant in PTEN, a tumor suppressor gene coupled to thyroid tumorigenesis and Cowden syndrome. Both patients are alive and well awaiting postoperative radioiodine treatment. Conclusions The SRC-FTCs described herein were small, TERT promoter wildtype tumors exhibiting low proliferation, thereby suggesting that these exceedingly rare lesions probably carry a favorable prognosis – although the scarce availability regarding descriptions of this tumor entity nevertheless might justify careful clinical monitoring and mandate investigations in larger case series.
Collapse
Affiliation(s)
- Martin Hysek
- Department of Oncology-Pathology, BioClinicum J6:20, Karolinska Institutet, 171 64, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Kenbugul Jatta
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Adam Stenman
- Department of Oncology-Pathology, BioClinicum J6:20, Karolinska Institutet, 171 64, Stockholm, Sweden.,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Darai-Ramqvist
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Jan Zedenius
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Breast, Endocrine Tumors and Sarcoma, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Höög
- Department of Oncology-Pathology, BioClinicum J6:20, Karolinska Institutet, 171 64, Stockholm, Sweden.,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - C Christofer Juhlin
- Department of Oncology-Pathology, BioClinicum J6:20, Karolinska Institutet, 171 64, Stockholm, Sweden. .,Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
11
|
Lv J, Zhang F, Zhai C, Wang G, Qu Y. Bag-1 Silence Sensitizes Non-Small Cell Lung Cancer Cells To Cisplatin Through Multiple Gene Pathways. Onco Targets Ther 2019; 12:8977-8989. [PMID: 31802907 PMCID: PMC6827518 DOI: 10.2147/ott.s218182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose B-cell lymphoma-2 (Bcl-2) associated athanogene 1 (Bag-1) is a multifunctional protein, and Bag -1 overexpression is associated with progression, metastasis, and drug resistance in lung cancer. This study assessed the effects of Bag-1 siRNA on sensitization of cisplatin on non-small cell lung cancer (NSCLC) cells. Material and methods NSCLC A549 cell line was transfected with Bag-1 or negative control siRNA and then treated with cisplatin for cell viability, CCK-8, LDH, and flow cytometry assays. The Ca2+ levels were analyzed using Fluo-3/AM fluorescence staining, and the protein levels were assessed using Western blot analysis. Results Bag-1 siRNA significantly knocked down Bag-1 expression and inhibited cell invasion versus the negative control siRNA, while Bag-1 silence sensitized cisplatin to induce A549 cells to apoptosis by induction of cell cycle G1 arrest. At protein level, Bag-1 silence reduced the expression ratio of Bcl-2 to Bcl-2 associated X protein (Bax), downregulated activity of the PI3K/AKT and mitogen-activated protein kinase (MAPK) pathways, and potently upregulated the calcium signaling-mediated pathway. Conclusion This study demonstrated that Bag-1 silencing sensitized A549 to cisplatin to enhance A549 cell apoptosis by modified multiple gene pathways. Further study will evaluate the usefulness of Bag-1 siRNA as a potential targeting therapy for NSCLC.
Collapse
Affiliation(s)
- Jiling Lv
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266071, Shandong, People's Republic of China.,Department of Respiratory Medicine, The First Hospital of Zibo, Zibo 255200, Shandong, People's Republic of China
| | - Fang Zhang
- Department of Radiotherapy, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 26400, Shandong, People's Republic of China
| | - Congying Zhai
- Department of Respiratory Medicine, The First Hospital of Zibo, Zibo 255200, Shandong, People's Republic of China
| | - Gejin Wang
- Department of Nursing, Zibo Vocational Institute, Zibo 255314, Shandong, People's Republic of China
| | - Yan Qu
- Department of Intensive Care Unit, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| |
Collapse
|
12
|
CAF-1 Subunits Levels Suggest Combined Treatments with PARP-Inhibitors and Ionizing Radiation in Advanced HNSCC. Cancers (Basel) 2019; 11:cancers11101582. [PMID: 31627329 PMCID: PMC6827109 DOI: 10.3390/cancers11101582] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/04/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Oral (OSCC) and oropharyngeal (OPSCC) squamous cell carcinomas show high morbidity and mortality rates. We aimed to investigate the role of the "Chromatin Assembly Factor-1" (CAF-1) p60 and p150 subunits, involved in DNA repair and replication, in OSCC and OPSCC progression and in response to Poly(ADP-ribose) polymerase (PARP)-inhibitors and exposure to ionizing radiation (IR). We immunostained tissue microarrays (TMAs), including 112 OSCC and 42 OPSCC, with anti-CAF-1/p60 and anti-CAF-1/p150 specific antibodies, correlating their expression with prognosis. Moreover, we assessed the sensitivity to PARP inhibitors and the double-strand breaks repair proficiency by cell viability and HR reporter assays, respectively, in HPV-positive and HPV-negative cell lines upon CAF-1/p60 and CAF-1/p150 depletion. The immunohistochemical analysis revealed a significant prognostic value of both tissue biomarkers combined expression in OSCC but not in OPSCC. In in vitro studies, the p60/150 CAF-1 subunits' depletion impaired the proficiency of Homologous Recombination DNA damage repair, inducing sensitivity to the PARP-inhibitors, able to sensitize both the cell lines to IR. These results indicate that regardless of the prognostic meaning of p60/p150 tissue expression, the pharmacological depletion of CAF-1 complex's function, combined to PARP-inhibitors and/or IR treatment, could represent a valid therapeutic strategy for squamous cell carcinomas of head and neck region.
Collapse
|
13
|
Morra F, Merolla F, D’Abbiero D, Ilardi G, Campione S, Monaco R, Guggino G, Ambrosio F, Staibano S, Cerrato A, Visconti R, Celetti A. Analysis of CCDC6 as a novel biomarker for the clinical use of PARP1 inhibitors in malignant pleural mesothelioma. Lung Cancer 2019; 135:56-65. [DOI: 10.1016/j.lungcan.2019.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/22/2019] [Accepted: 07/12/2019] [Indexed: 01/20/2023]
|
14
|
Identification of Novel Biomarkers of Homologous Recombination Defect in DNA Repair to Predict Sensitivity of Prostate Cancer Cells to PARP-Inhibitors. Int J Mol Sci 2019; 20:ijms20123100. [PMID: 31242618 PMCID: PMC6627216 DOI: 10.3390/ijms20123100] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/07/2019] [Accepted: 06/20/2019] [Indexed: 12/19/2022] Open
Abstract
One of the most common malignancies in men is prostate cancer, for which androgen deprivation is the standard therapy. However, prostate cancer cells become insensitive to anti-androgen treatment and proceed to a castration-resistant state with limited therapeutic options. Therefore, besides the androgen deprivation approach, novel biomarkers are urgently required for specific targeting in this deadly disease. Recently, germline or somatic mutations in the homologous recombination (HR) DNA repair genes have been identified in at least 20–25% of metastatic castration-resistant prostate cancers (mCRPC). Defects in genes involved in HR DNA repair can sensitize cancer cells to poly(ADP-ribose) polymerase (PARP) inhibitors, a class of drugs already approved by the Food and Drug Administration (FDA) for breast and ovarian cancer carrying germline mutations in BRCA1/2 genes. For advanced prostate cancer carrying Breast cancer1/2 (BRCA1/2) or ataxia telengiectasia mutated (ATM) mutations, preclinical studies and clinical trials support the use of PARP-inhibitors, which received breakthrough therapy designation by the FDA. Based on these assumptions, several trials including DNA damage response and repair (DDR) targeting have been launched and are ongoing for prostate cancer. Here, we review the state-of-the-art potential biomarkers that could be predictive of cancer cell synthetic lethality with PARP inhibitors. The identification of key molecules that are affected in prostate cancer could be assayed in future clinical studies to better stratify prostate cancer patients who might benefit from target therapy.
Collapse
|
15
|
Jia M, Shi Y, Li Z, Lu X, Wang J. MicroRNA-146b-5p as an oncomiR promotes papillary thyroid carcinoma development by targeting CCDC6. Cancer Lett 2018; 443:145-156. [PMID: 30503553 DOI: 10.1016/j.canlet.2018.11.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/21/2018] [Accepted: 11/24/2018] [Indexed: 12/19/2022]
Abstract
The microRNA-146b-5p (miR-146b-5p) is known to be involved in the development of papillary thyroid cancer (PTC); however, the underlying mechanism is unclear. Here we have investigated the biological functions and underlying molecular mechanisms of miR-146b-5p in PTC. The expression of miR-146b-5p was assessed in 92 pairs of PTC and adjacent normal tissues and showed correlation with the clinicopathological status such as the tumour size. Effects of miR-146b-5p and its direct target, coiled-coil domain containing 6 (CCDC6), on cell proliferation, migration, invasion, and cell cycle were evaluated through gain- and loss-of-function studies in vitro and in vivo. The expression of CCDC6 was further examined in 187 PTC cases and was found to be correlated with the clinicopathological status. Overexpression of miR-146b-5p was observed in PTC tissues that correlated with advanced PTC. miR-146b-5p promoted cell proliferation, migration, invasion, and cell cycle progression in vitro, whereas CCDC6 reversed this effect. miR-146b-5p promoted PTC growth in a subcutaneous mouse model in vivo, whereas overexpression of CCDC6 exerted the opposite effect. In conclusion, miR-146b-5p expression correlated with advanced PTC and promoted PTC development by targeting CCDC6 in vitro and in vivo; it could, therefore, serve as a promising target for PTC treatment.
Collapse
Affiliation(s)
- Meng Jia
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Faculty of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Yang Shi
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Zhuyao Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiubo Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Faculty of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Jiaxiang Wang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China; Faculty of Medicine, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
16
|
Ayroldi E, Petrillo MG, Marchetti MC, Cannarile L, Ronchetti S, Ricci E, Cari L, Avenia N, Moretti S, Puxeddu E, Riccardi C. Long glucocorticoid-induced leucine zipper regulates human thyroid cancer cell proliferation. Cell Death Dis 2018; 9:305. [PMID: 29467389 PMCID: PMC5833869 DOI: 10.1038/s41419-018-0346-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/20/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023]
Abstract
Long glucocorticoid-induced leucine zipper (L-GILZ) has recently been implicated in cancer cell proliferation. Here, we investigated its role in human thyroid cancer cells. L-GILZ protein was highly expressed in well-differentiated cancer cells from thyroid cancer patients and differentiated thyroid cancer cell lines, but poorly expressed in anaplastic tumors. A fusion protein containing L-GILZ, when overexpressed in an L-GILZ-deficient 8505C cell line derived from undifferentiated human thyroid cancer tissue, inhibited cellular proliferation in vitro. In addition, when this protein was injected into nude mice, in which cells from line 8505C had been transplanted, xenograft growth was reduced. Since the mitogen-activated protein kinase (MAPK) pathway is frequently hyperactivated in thyroid cancer cells as a result of the BRAFV600E or Ras mutation, we sought to further investigate the role of L-GILZ in the MAPK pathway. To this end, we analyzed L-GILZ expression and function in cells treated with MAPK inhibitors. We used 8505C cells, which have the BRAFV600E mutation, or the CAL-62 cell line, which harbors a Ras mutation. The cells were treated with the BRAF-specific drug vemurafenib (PLX4032) or the MEK1/2 inhibitor, U0126, respectively. Treatment with these agents inhibited MAPK activation, reduced cell proliferation, and upregulated L-GILZ expression. L-GILZ silencing reversed the antiproliferative activity of the MAPK inhibitors, consistent with an antiproliferative role. Treatment with MAPK inhibitors led to the phosphorylation of the cAMP/response element-binding protein (CREB), and active CREB bound to the L-GILZ promoter, contributing to its transcription. We suggest that the CREB signaling pathway, frequently deregulated in thyroid tumors, is involved in L-GILZ upregulation and that L-GILZ regulates thyroid cancer cell proliferation, which may have potential in cancer treatment.
Collapse
Affiliation(s)
- Emira Ayroldi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy.
| | - Maria Grazia Petrillo
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy.,Signal Transduction Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Maria Cristina Marchetti
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Lorenza Cannarile
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Simona Ronchetti
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Erika Ricci
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Luigi Cari
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| | - Nicola Avenia
- Department of Surgical and Biomedical Sciences, Medical School, University of Perugia, Perugia, Italy
| | - Sonia Moretti
- Department of Medicine, Section of Endocrinology, Medical School, University of Perugia, Perugia, Italy
| | - Efisio Puxeddu
- Department of Medicine, Section of Endocrinology, Medical School, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Department of Medicine, Section of Pharmacology, Medical School, University of Perugia, Perugia, Italy
| |
Collapse
|
17
|
Cerrato A, Visconti R, Celetti A. The rationale for druggability of CCDC6-tyrosine kinase fusions in lung cancer. Mol Cancer 2018; 17:46. [PMID: 29455670 PMCID: PMC5817729 DOI: 10.1186/s12943-018-0799-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Gene fusions occur in up to 17% of solid tumours. Oncogenic kinases are often involved in such fusions. In lung cancer, almost 30% of patients carrying an activated oncogene show the fusion of a tyrosine kinase to an heterologous gene. Several genes are partner in the fusion with the three kinases ALK, ROS1 and RET in lung. The impaired function of the partner gene, in combination with the activation of the kinase, may alter the cell signaling and promote the cancer cell addiction to the oncogene. Moreover, the gene that is partner in the fusion to the kinase may affect the response to therapeutics and/or promote resistance in the cancer cells. Few genes are recurrent partners in tyrosine kinase fusions in lung cancer, including CCDC6, a recurrent partner in ROS1 and RET fusions, that can be selected as possible target for new strategies of combined therapy including TKi.
Collapse
Affiliation(s)
- Aniello Cerrato
- Institute for the Experimental Endocrinology and Oncology "Gaetano Salvatore", Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy.
| | - Roberta Visconti
- Institute for the Experimental Endocrinology and Oncology "Gaetano Salvatore", Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology "Gaetano Salvatore", Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
18
|
Cerrato A, Merolla F, Morra F, Celetti A. CCDC6: the identity of a protein known to be partner in fusion. Int J Cancer 2017; 142:1300-1308. [PMID: 29044514 DOI: 10.1002/ijc.31106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/07/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Coiled Coil Domain Containing 6 gene, CCDC6, was initially isolated as part of a tumorigenic DNA originated by the fusion of CCDC6 with the tyrosine kinase of RET receptor, following a paracentric inversion of chromosome 10. For a long time, CCDC6 has been considered as an accidental partner of the RET protooncogene, providing the promoter and the first 101 aa necessary for the constitutive activation of the oncogenic Tyrosine Kinase (TK) RET in thyroid cells. With the advent of more refined diagnostic tools and bioinformatic algorithms, an exponential growth in fusion genes discoveries has allowed the identification of CCDC6 as partner of genes other than RET in different tumor types. CCDC6 gene product has a proper role in sustaining the DNA damage checkpoints in response to DNA damage. The inactivation of CCDC6 secondary to chromosomal rearrangements or gene mutations could enhance tumor progression by impairing the apoptotic response upon the DNA damage exposure, contributing to the generation of radio- and chemoresistance. Preclinical studies indicate that the attenuation of CCDC6 in cancer, while conferring a resistance to cisplatinum, sensitizes the cancer cells to the small molecule inhibitors of Poly (ADP-ribose) polymerase (PARP1/2) with a synthetic lethal effect. Several CCDC6 mutations and gene rearrangements have been described so far in different types of cancer and CCDC6 may represent a possible predictive biomarker of tumor resistance to the conventional anticancer treatments. Nevertheless, the detection of a CCDC6 impairment in cancer patients may help to select, in future clinical trials, those patients who could benefit of PARP-inhibitors treatment alone or in combination with other treatments.
Collapse
Affiliation(s)
- Aniello Cerrato
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| | - Francesco Merolla
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Francesco Morra
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| | - Angela Celetti
- Institute for Experimental Endocrinology and Oncology, Research National Council, Naples, Italy
| |
Collapse
|
19
|
The between Now and Then of Lung Cancer Chemotherapy and Immunotherapy. Int J Mol Sci 2017; 18:ijms18071374. [PMID: 28653990 PMCID: PMC5535867 DOI: 10.3390/ijms18071374] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 12/25/2022] Open
Abstract
Lung cancer is the most common cancer worldwide. Disappointingly, despite great effort in encouraging screening or, at least, a close surveillance of high-risk individuals, most of lung cancers are diagnosed when already surgically unresectable because of local advancement or metastasis. In these cases, the treatment of choice is chemotherapy, alone or in combination with radiotherapy. Here, we will briefly review the most successful and recent advances in the identification of novel lung cancer genetic lesions and in the development of new drugs specifically targeting them. However, lung cancer is still the leading cause of cancer-related mortality also because, despite impressive initial responses, the patients often develop resistance to novel target therapies after a few months of treatment. Thus, it is literally vital to continue the search for new therapeutic options. So, here, on the basis of our recent findings on the role of the tumor suppressor CCDC6 protein in lung tumorigenesis, we will also discuss novel therapeutic approaches we envision for lung cancer.
Collapse
|
20
|
Leone V, Langella C, Esposito F, De Martino M, Decaussin-Petrucci M, Chiappetta G, Bianco A, Fusco A. miR-130b-3p Upregulation Contributes to the Development of Thyroid Adenomas Targeting CCDC6 Gene. Eur Thyroid J 2015; 4:213-21. [PMID: 26835423 PMCID: PMC4716415 DOI: 10.1159/000441355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/29/2015] [Indexed: 01/22/2023] Open
Abstract
We have previously studied the function of microRNAs (miRNAs) in thyroid cells using the differentiated rat thyroid PC Cl 3 cells that need thyrotropin (TSH) for their growth. The miRNA expression profile examination allowed the detection of a set of miRNAs downregulated and upregulated by TSH. Here, we first demonstrated that upregulation of miR-130b-3p occurs through a protein kinase A-cAMP-responsive element binding protein (CREB)-dependent mechanism. Then, we analyzed its expression in human thyroid follicular adenomas, where a constitutive CREB activation is frequently present. miR-130b-3p results in upregulation with a high fold-change in most thyroid follicular adenomas. Then, we identified CCDC6, coding for a protein that interacts with CREB1 leading to the transcriptional repression of CREB1 target genes, as a target of this miRNA. The targeting of CCDC6 by miR-130b-3p likely accounts for the mechanism by which its upregulation contributes to the development of thyroid adenomas increasing CREB1 activity.
Collapse
Affiliation(s)
- Vincenza Leone
- Istituto di Endocrinologia ed Oncologia Sperimentale-CNR, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, Naples, Italy
| | - Concetta Langella
- Istituto di Endocrinologia ed Oncologia Sperimentale-CNR, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, Naples, Italy
| | - Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale-CNR, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, Naples, Italy
| | - Marco De Martino
- Istituto di Endocrinologia ed Oncologia Sperimentale-CNR, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, Naples, Italy
| | | | - Gennaro Chiappetta
- Istituto Nazionale per lo Studio e la Cura dei Tumori ‘Fondazione Giovanni Pascale’, IRCCS, Naples, Italy
| | - Antonio Bianco
- Dipartimento di Sanità Pubblica, Università di Napoli Federico II, Naples, Italy
| | - Alfredo Fusco
- Istituto di Endocrinologia ed Oncologia Sperimentale-CNR, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Scuola di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli ‘Federico II’, Naples, Italy
- Instituto Nacional de Cancer (INCA), Rio de Janeiro, Brazil
- *Alfredo Fusco, Istituto di Endocrinologia ed Oncologia Sperimentale-CNR, Via Pansini 5, IT-80131 Naples (Italy), E-Mail
| |
Collapse
|