1
|
Wu Y, Zhang Y, Xu F, Zhang Z, Wang Y. Expression and Prognosis of Differential Gene Troponin T1 Between Right and Left Colon Cancers. Appl Immunohistochem Mol Morphol 2024; 32:336-344. [PMID: 38695548 DOI: 10.1097/pai.0000000000001200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2023] [Accepted: 03/26/2024] [Indexed: 08/07/2024]
Abstract
Colorectal cancer (CRC) is one of the most common digestive tract tumors in humans. At present, many scholars believe that the primary site of the tumor has a direct and profound impact on its curative effect. There are significant differences in the expression of many genes, tumor microenvironment, and prognosis between the left and right colon. However, there is a lack of detailed studies on whether the differentially expressed genes in the left and right colon significantly impact the prognosis of patients with CRC. Troponin T1 ( TNNT1 ) is an important gene that affects the prognosis difference between left and right colon cancer screening from "The Cancer Genome Atlas" database. By analyzing the differential gene expression data and clinical data of the left and right hemicolons in the database, the online prognostic database was used to screen the key molecules that significantly affect the tumor immune microenvironment and patient prognosis and to predict their functions and pathways. Quantitative reverse transcription-polymerase chain reaction was used to verify the expression difference of TNNT1 in CRC cell lines SW480 and HCT116, and normal human colorectal epithelial cell line FHC. The relationship between TNNT1 expression in 88 pairs of CRC samples and clinical information and pathologic parameters of patients with CRC was analyzed to judge the impact of TNNT1 expression on patient survival. Database analysis showed that TNNT1 was significantly overexpressed in CRC, and TNNT1 was one of the main differential genes between left colon cancer (LCC) and right colon cancer (RCC). The expression of TNNT1 was significantly increased in RCC, which could lead to poor prognosis of patients. Quantitative reverse transcription-polymerase chain reaction indicated that the expression of TNNT1 was significantly up-regulated in CRC cell lines SW480 and HCT116. Eighty-eight immunohistochemistry (IHC) of CRC tissues and adjacent tissues suggested that the expression of TNNT1 in CRC was significantly higher than that in normal adjacent tissues. By analyzing the clinical information and pathologic indicators matched with these clinical samples, we found that high TNNT1 expression in the primary tumor location (right colon) and high N stage (N2, N3) were unfavorable factors affecting the prognosis of patients with CRC. Multivariate Cox regression analysis suggested that high expression of TNNT1 may be an independent risk factor for the prognosis of patients with CRC. As one of the main differential genes between LCC and RCC, TNNT1 is representative to some extent. Its high expression may be one of the reasons why the prognosis of patients with RCC is worse than that of patients with LCC.
Collapse
Affiliation(s)
- Yue Wu
- Department of General Surgery
| | | | | | - Ziyan Zhang
- Department of Medical Insurance Office, Jiaozuo Second People's Hospital, The First Affiliated Hospital of Henan Polytechnic University, Jiaozuo, Henan, China
| | | |
Collapse
|
2
|
Gupta RK, Bhushan R, Kumar S, Prasad SB. In silico analysis unveiling potential biomarkers in gallbladder carcinogenesis. Sci Rep 2024; 14:14570. [PMID: 38914609 PMCID: PMC11196699 DOI: 10.1038/s41598-024-61762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2024] [Accepted: 05/09/2024] [Indexed: 06/26/2024] Open
Abstract
Gallbladder cancer (GBC) is a rare but very aggressive most common digestive tract cancer with a high mortality rate due to delayed diagnosis at the advanced stage. Moreover, GBC progression shows asymptomatic characteristics making it impossible to detect at an early stage. In these circumstances, conventional therapy like surgery, chemotherapy, and radiotherapy becomes refractive. However, few studies reported some molecular markers like KRAS (Kirsten Rat Sarcoma) mutation, upregulation of HER2/neu, EGFR (Epidermal Growth Factor Receptor), and microRNAs in GBC. However, the absence of some specific early diagnostic and prognostic markers is the biggest hurdle for the therapy of GBC to date. The present study has been designed to identify some specific molecular markers for precise diagnosis, and prognosis, for successful treatment of the GBC. By In Silico a network-centric analysis of two microarray datasets; (GSE202479) and (GSE13222) from the Gene Expression Omnibus (GEO) database, shows 50 differentially expressed genes (DEGs) associated with GBC. Further network analysis revealed that 12 genes are highly interconnected based on the highest MCODE (Molecular Complex Detection) value, among all three genes; TRIP13 (Thyroid Receptor Interacting Protein), NEK2 (Never in Mitosis gene-A related Kinase 2), and TPX2 (Targeting Protein for Xklp2) having highest network interaction with transcription factors and miRNA suggesting critically associated with GBC. Further survival analysis data corroborate the association of these genes; TRIP13, NEK2, and TPX2 with GBC. Thus, TRIP13, NEK2, and TPX2 genes are significantly correlated with a greater risk of mortality, transforming them from mere biomarkers of the GBC for early detections and may emerge as prognostic markers for treatment.
Collapse
Affiliation(s)
- Raviranjan Kumar Gupta
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar (MGCUB), Motihari, 845401, India
| | - Ravi Bhushan
- Department of Zoology, Munsi Singh College, Motihari, 845401, India
| | - Saket Kumar
- Department of Surgical Gastroenterology, Indira Gandhi Institute of Medical Sciences (IGIMS), Sheikhpura, Patna, India
| | - Shyam Babu Prasad
- Department of Zoology, School of Life Sciences, Mahatma Gandhi Central University Bihar (MGCUB), Motihari, 845401, India.
| |
Collapse
|
3
|
Li Y, Qu J, Sun Y, Chang C. Troponin T1 Promotes the Proliferation of Ovarian Cancer by Regulating Cell Cycle and Apoptosis. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3405. [PMID: 36811103 PMCID: PMC9938930 DOI: 10.30498/ijb.2022.344921.3405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/30/2022] [Accepted: 11/16/2022] [Indexed: 02/24/2023]
Abstract
Background Troponin T1 (TNNT1) is implicated in human carcinogenesis. However, the role of TNNT1 in ovarian cancer (OC) remains unclear. Objectives To investigate the effect of TNNT1 on the progression of ovarian cancer. Materials and Methods The level of TNNT1 was evaluated in OC patients based on The Cancer Genome Atlas (TCGA). Knockdown or overexpression of TNNT1 using siRNA targeting TNNT1 or plasmid carrying TNNT1 was performed in the ovarian cancer SKOV3 cell, respectively. RT-qPCR was performed to detect mRNA expression. Western blotting was used to examine protein expression. Cell Counting Kit-8, colony formation, cell cycle, and transwell assays were performed to analyze the role of TNNT1 on the proliferation and migration of ovarian cancer. Besides, xenograft model was carried out to evaluate the in vivo effect of TNNT1 on OC progression. Results Based on available bioinformatics data in TCGA, we found that TNNT1 was overexpressed in ovarian cancer samples comparing to normal samples. Knocking down TNNT1 repressed the migration as well as the proliferation of SKOV3 cells, while overexpression of TNNT1 exhibited opposite effect. In addition, down-regulation of TNNT1 hampered the xenografted tumor growth of SKOV3 cells. Up-regulation of TNNT1 in SKOV3 cells induced the expression of Cyclin E1 and Cyclin D1, promoted cell cycle progression, and also suppressed the activity of Cas-3/Cas-7. Conclusions In conclusion, TNNT1 overexpression promotes SKOV3 cell growth and tumorigenesis by inhibiting cell apoptosis and accelerating cell-cycle progression. TNNT1 might be a potent biomarker for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yuling Li
- Department of Gynecology, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Jinfeng Qu
- Department of Gynecology, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Yaping Sun
- Department of Gynecology, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Chunxiao Chang
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| |
Collapse
|
4
|
Dixit R, Pandey M, Rajput M, Shukla VK. Unravelling of the comparative Transcriptomic Profile of Gallbladder Cancer using mRNA sequencing. Mol Biol Rep 2022; 49:6395-6403. [PMID: 35469389 DOI: 10.1007/s11033-022-07448-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Gallbladder cancer (GBC) represents a wide geographical diversity as well as heterogeneity in clinical and genomic landscape. There seems to be little progress in the development of diagnostic biomarkers, targeted therapies or individualized approaches to GBC management. In this study, we investigated the whole transcriptome profile of GBC patients using RNA sequencing and identified key genes and pathways associated with gallbladder cancer using bioinformatics. METHODOLOGY A total of 10 cases of GBC were collected and sequenced. The raw reads of the gallbladder sample was compared with the gallbladder normal control (SRA Database ID: ERX288537: HPA RNA-seq normal tissues gallbladder). Using Gene ontology analysis the differentially expressed genes were categorized into the biological pathway, cellular component, and molecular function. Pathway enrichment analyses, protein-protein interaction, transcription factor and miRNA interaction that regulate the expression of hub genes were conducted using bioinformatics tool. RESULTS A total of 954 differentially expressed mRNA transcripts were identified, including overexpression of REG4, TMEM238, S100A2, LYPD2, and KRT17, as well as underexpressed genes like CCKAR, IGSF10, CHRM2, CRISP3, and FGF19. Enrichment analysis showed the metabolic pathways to be the top five cancer pathways in gallbladder carcinogenesis besides PI3k-Akt signalling pathway, cAMP signalling pathway, miRNAs in cancer, and cell adhesion profile of GBC. CONCLUSIONS CCKAR, CDKN2A and LRRK2 were found to be most involved genes in its progression and development through different regulatory pathways. Further, most of the genes were significantly involved in PI3k-Akt, Wnt and hedgehog signaling pathways which have a key role in gallbladder cancer development.
Collapse
Affiliation(s)
- Ruhi Dixit
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, 221 005, Varanasi, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Monika Rajput
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, 221005, Varanasi, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, 221 005, Varanasi, India.
| |
Collapse
|
5
|
Wang J, Xia S, Zhao J, Gong C, Xi Q, Sun W. Prognostic Potential of Secreted Modular Calcium-Binding Protein 1 in Low-Grade Glioma. Front Mol Biosci 2021; 8:666623. [PMID: 34869577 PMCID: PMC8640086 DOI: 10.3389/fmolb.2021.666623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Secreted modular calcium-binding protein 1 (SMOC1) belongs to a family of matricellular proteins; it was involved in embryo development, endothelial cell proliferation, angiogenesis, integrin–matrix interactions, cell adhesion, and regulation of glucose metabolism. Previous studies showed that the expression of SMOC1 was increased in some tumors. However, the prognostic value and the biological function of SMOC1 in tumor remain unclear. Methods: In this study, we explored the expression profile and prognostic value of SMOC1 in pan-cancers, especially glioma, via multiple databases, including Oncomine, Gene Expression Profiling Interactive 2, PrognoScan, Kaplan–Meier plotter, and the Chinese Glioma Genome Atlas database. Furthermore, LinkedOmics was used to identify the genes coexpressed with SMOC1 and to perform Kyoto Encyclopedia of Genes and Genomes pathways and Gene Ontology analysis in low-grade glioma (LGG). Also, the Cancer Single-Cell State Atlas database was used to evaluate the correlation between SMOC1 expression and functional state activities in glioma cells. In addition, the Tumor Immune Estimation Resource and TISIDB databases were used to evaluate the correlations between SMOC1 expression and tumor-infiltrating immune cells in the tumor microenvironment. Results: Compared with normal brain tissues, the expression of SMOC1 was increased in LGG tissues. The higher expression of SMOC1 was significantly correlated with better survival of LGG patients. Additionally, functional analyses showed that the SMOC1 coexpressed genes were inhibited in processes such as response to type I interferon and interferon-gamma, lymphocyte-mediated immunity, leukocyte migration, adaptive immune response, neutrophil-mediated immunity, T cell activation, and pathways including EMC–receptor interaction, Th17 cell differentiation, and leukocyte trans-endothelial migration in LGG. Moreover, the expression of SMOC1 was correlated with stemness, hypoxia, EMT, and metastasis of glioma cells. Additionally, the expression of SMOC1 expression was negatively correlated with levels of infiltrating B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells, and gene markers of most immune cells in LGG. Conclusion: Our results suggest that SMOC1 could be a potential biomarker to determine prognosis and might play a specific role in the tumor microenvironment of glioma, thereby influencing the development and progression of glioma. These findings provide some new insights for further investigation.
Collapse
Affiliation(s)
- Jing Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Xia
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingsong Xi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Wang H, An J, He S, Liao C, Wang J, Tuo B. Chloride intracellular channels as novel biomarkers for digestive system tumors (Review). Mol Med Rep 2021; 24:630. [PMID: 34278487 DOI: 10.3892/mmr.2021.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2021] [Accepted: 05/19/2021] [Indexed: 11/06/2022] Open
Abstract
Digestive system malignant tumors are common tumors, and the traditional treatment methods for these tumors include surgical resection, radiotherapy, chemotherapy, and molecularly targeted drugs. However, diagnosis remains challenging, and the early detection of postoperative recurrence is complicated. Therefore, it is necessary to explore novel biomarkers to facilitate clinical diagnosis and treatment. Accumulating evidence supports the crucial role of chloride channels in the development of multiple types of cancers. Given that chloride channels are widely expressed and involved in cell proliferation, apoptosis and cell cycle, among other processes, they may serve as a promising diagnostic and therapeutic target. Chloride intracellular channels (CLICs) are a class of chloride channels that are upregulated or downregulated in certain types of cancer. Furthermore, in certain cases, during cell cycle progression, the localization and function of the cytosolic form of the transmembrane proteins of CLICs are also altered, which may provide a key target for cancer therapy. The aim of the present review was to focus on CLICs as biomarkers for digestive system tumors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Suyu He
- The Fourth Department of the Digestive Disease Center, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Chengcheng Liao
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Juan Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
7
|
An Immune-Related Prognostic Classifier Is Associated with Diffuse Large B Cell Lymphoma Microenvironment. J Immunol Res 2021; 2021:5564568. [PMID: 34212052 PMCID: PMC8205595 DOI: 10.1155/2021/5564568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Background Diffuse large B cell lymphoma (DLBCL) is a life-threatening malignant tumor characterized by heterogeneous clinical, phenotypic, and molecular manifestations. Given the association between immunity and tumors, identifying a suitable immune biomarker could improve DLBCL diagnosis. Methods We systematically searched for DLBCL gene expression microarray datasets from the GEO database. Immune-related genes (IRGs) were obtained from the ImmPort database, and 318 transcription factor (TF) targets in cancer were retrieved from the Cistrome Cancer database. An immune-related classifier for DLBCL prognosis was constructed using Cox regression and LASSO analysis. To assess differences in overall survival between the low- and high-risk groups, we analyzed the tumor microenvironment (TME) and immune infiltration in DLBCL using the ESTIMATE and CIBERSORT algorithms. WGCNA was applied to study the molecular mechanisms explaining the clinical significance of our immune-related classifier and TFs. Results Eighteen IRGs were selected to construct the classifier. The multi-IRG classifier showed powerful predictive ability. Patients with a high-risk score had poor survival. Based on the AUC for three- and five-year survival, the classifier exhibited better predictive power than clinical data. Discrepancies in overall survival between the low- and high-risk score groups might be explained by differences in immune infiltration, TME, and transcriptional regulation. Conclusions Our study describes a novel prognostic IRG classifier with strong predictive power in DLBCL. Our findings provide valuable guidance for further analysis of DLBCL pathogenesis and clinical treatment.
Collapse
|
8
|
Supplitt S, Karpinski P, Sasiadek M, Laczmanska I. Current Achievements and Applications of Transcriptomics in Personalized Cancer Medicine. Int J Mol Sci 2021; 22:1422. [PMID: 33572595 PMCID: PMC7866970 DOI: 10.3390/ijms22031422] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
Over the last decades, transcriptome profiling emerged as one of the most powerful approaches in oncology, providing prognostic and predictive utility for cancer management. The development of novel technologies, such as revolutionary next-generation sequencing, enables the identification of cancer biomarkers, gene signatures, and their aberrant expression affecting oncogenesis, as well as the discovery of molecular targets for anticancer therapies. Transcriptomics contribute to a change in the holistic understanding of cancer, from histopathological and organic to molecular classifications, opening a more personalized perspective for tumor diagnostics and therapy. The further advancement on transcriptome profiling may allow standardization and cost reduction of its analysis, which will be the next step for transcriptomics to become a canon of contemporary cancer medicine.
Collapse
Affiliation(s)
- Stanislaw Supplitt
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland; (P.K.); (M.S.); (I.L.)
| | - Pawel Karpinski
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland; (P.K.); (M.S.); (I.L.)
- Laboratory of Genomics and Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Maria Sasiadek
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland; (P.K.); (M.S.); (I.L.)
| | - Izabela Laczmanska
- Department of Genetics, Wroclaw Medical University, Marcinkowskiego 1, 50-368 Wroclaw, Poland; (P.K.); (M.S.); (I.L.)
| |
Collapse
|
9
|
Glucagon-Like Peptide 2 Inhibits Postprandial Gallbladder Emptying in Man: A Randomized, Double-Blinded, Crossover Study. Clin Transl Gastroenterol 2021; 11:e00257. [PMID: 33512799 PMCID: PMC7710225 DOI: 10.14309/ctg.0000000000000257] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION: A recent study in mice points to the gut-derived hormone glucagon-like peptide 2 (GLP-2) as an important regulator of gallbladder motility inducing gallbladder relaxation and refilling. In this study, we evaluated the effect of exogenous GLP-2 on postprandial gallbladder motility in healthy men. METHODS: In a randomized, double-blinded, placebo-controlled, crossover study, we evaluated the effect of 4-hour intravenous infusions of high-dose GLP-2 (10 pmol × kg−1 × min−1), low-dose GLP-2 (1 pmol × kg−1 × min−1), and placebo (saline) on postprandial gallbladder motility. A 300-kcal liquid-mixed meal (added 1.5 g of acetaminophen for indirect measurement of gastric emptying) was served 30 minutes after start of intravenous infusions. Gallbladder volume was assessed by ultrasonography. RESULTS: Fifteen healthy men, age 24.3 (22.4–26.1) years (mean [95% confidence interval]) and body mass index 22.5 (21.7–23.4) kg × m−2, were included. Basal plasma GLP-2 concentration was 14 (11–17) pmol/L. During low-dose and high-dose GLP-2 infusions, steady-state postprandial plasma GLP-2 concentrations amounted to 201 (188–214) and 2,658 (2,443–2,873) pmol/L, respectively, compared with maximum postprandial plasma GLP-2 concentration of 34 (25–44) pmol/L during placebo. Gallbladder emptying (assessed as baseline-subtracted area under the curve for gallbladder volume) was reduced by low-dose GLP-2 (−0.8 [0.7–1.9] L × min, P < 0.0001) and nearly abolished by high-dose GLP-2 (1.3 [−1.7 to 0.01] L × min, P = 0.029) compared to placebo (−2.0 [−2.8 to −1.1] L × min). Compared to placebo, gastric emptying was reduced by high-dose GLP-2 (P = 0.0060 and 0.019), whereas low-dose GLP-2 did not affect gastric emptying (P = 0.13 and 0.85). DISCUSSION: Exogenous GLP-2 exerts a dose-dependent inhibitory effect on postprandial gallbladder emptying in healthy men.
Collapse
|
10
|
Tulsyan S, Hussain S, Mittal B, Saluja SS, Tanwar P, Rath GK, Goodman M, Kaur T, Mehrotra R. A systematic review with in silico analysis on transcriptomic profile of gallbladder carcinoma. Semin Oncol 2020; 47:398-408. [PMID: 33162112 DOI: 10.1053/j.seminoncol.2020.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/21/2019] [Accepted: 02/21/2020] [Indexed: 01/17/2023]
|
11
|
Yang Z, Ma H, Liu W. In silico identification of common and specific signatures in coronary heart diseases. Exp Ther Med 2020; 20:3595-3614. [PMID: 32905032 PMCID: PMC7464937 DOI: 10.3892/etm.2020.9121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2020] [Accepted: 04/15/2020] [Indexed: 12/03/2022] Open
Abstract
Coronary heart disease (CHD) is on the increase in developing countries, where lifestyle choices such as smoking, bad diet, and no exercise contribute and increase the incidence of high blood pressure and high cholesterol levels to cause CHD. Through utilization of a biomarker-based approach for developing interventions, the aim of the study was to identify differentially expressed genes (DEGs) and their association and impact on various bio-targets. The microarray datasets of both healthy and CHD patients were analyzed to identify the DEGs and their interactions using Gene Ontology, PANTHER, Reactome, and STRING (for the possible associated genes with multiple targets). Our data mining approach suggests that the DEGs were associated with molecular functions, including protein binding (75%) and catalytic activity (56%); biological processes such as cellular process (83%), biological regulation (57%), and metabolic process (44%); and cellular components such as cell (65%) and organelle (58%); as well as other associations including apoptosis, inflammatory, cell development and metabolic pathways. The molecular functions were further analyzed, and protein binding in particular was analyzed using network analysis to determine whether there was a clear association with CHD and disease. The ingenuity pathway analysis revealed pathways related to cell cholesterol biosynthesis, the immune system including cytokinin signaling, in which, the understanding of DEGs is crucial to predict the advancement of preventive strategies. Results of the present study showed that, there is a need to validate the top DEGs to rule out their molecular mechanism in heart failure caused by CHD.
Collapse
Affiliation(s)
- Zhijia Yang
- The Third Department of Cardiovascular Medicine, Handan Central Hospital, Handan, Hebei 056002, P.R. China
| | - Haifang Ma
- The First Department of Cardiovascular Medicine, Affiliated Hospital of Hebei University of Technology, Handan, Hebei 056002, P.R. China
| | - Wei Liu
- The First Department of Cardiovascular Medicine, Handan Central Hospital, Handan, Hebei 056001, P.R. China
| |
Collapse
|
12
|
Byrling J, Kristl T, Hu D, Pla I, Sanchez A, Sasor A, Andersson R, Marko-Varga G, Andersson B. Mass spectrometry-based analysis of formalin-fixed, paraffin-embedded distal cholangiocarcinoma identifies stromal thrombospondin-2 as a potential prognostic marker. J Transl Med 2020; 18:343. [PMID: 32887625 PMCID: PMC7487897 DOI: 10.1186/s12967-020-02498-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/18/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022] Open
Abstract
Background Distal cholangiocarcinoma is an aggressive malignancy with a dismal prognosis. Diagnostic and prognostic biomarkers for distal cholangiocarcinoma are lacking. The aim of the present study was to identify differentially expressed proteins between distal cholangiocarcinoma and normal bile duct samples. Methods A workflow utilizing discovery mass spectrometry and verification by parallel reaction monitoring was used to analyze surgically resected formalin-fixed, paraffin-embedded samples from distal cholangiocarcinoma patients and normal bile duct samples. Bioinformatic analysis was used for functional annotation and pathway analysis. Immunohistochemistry was performed to validate the expression of thrombospondin-2 and investigate its association with survival. Results In the discovery study, a total of 3057 proteins were identified. Eighty-seven proteins were found to be differentially expressed (q < 0.05 and fold change ≥ 2 or ≤ 0.5); 31 proteins were upregulated and 56 were downregulated in the distal cholangiocarcinoma samples compared to controls. Bioinformatic analysis revealed an abundance of differentially expressed proteins associated with the tumor reactive stroma. Parallel reaction monitoring verified 28 proteins as upregulated and 18 as downregulated in distal cholangiocarcinoma samples compared to controls. Immunohistochemical validation revealed thrombospondin-2 to be upregulated in distal cholangiocarcinoma epithelial and stromal compartments. In paired lymph node metastases samples, thrombospondin-2 expression was significantly lower; however, stromal thrombospondin-2 expression was still frequent (72%). Stromal thrombospondin-2 was an independent predictor of poor disease-free survival (HR 3.95, 95% CI 1.09–14.3; P = 0.037). Conclusion Several proteins without prior association with distal cholangiocarcinoma biology were identified and verified as differentially expressed between distal cholangiocarcinoma and normal bile duct samples. These proteins can be further evaluated to elucidate their biomarker potential and role in distal cholangiocarcinoma carcinogenesis. Stromal thrombospondin-2 is a potential prognostic marker in distal cholangiocarcinoma.
Collapse
Affiliation(s)
- Johannes Byrling
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Theresa Kristl
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Dingyuan Hu
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Indira Pla
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Aniel Sanchez
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Agata Sasor
- Department of Clinical Sciences Lund, Pathology, Lund University, and Skåne University Hospital, Lund, Sweden
| | - Roland Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden
| | - György Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science and Imaging, Lund University, Lund, Sweden
| | - Bodil Andersson
- Department of Clinical Sciences Lund, Surgery, Lund University, and Skåne University Hospital, Lund, Sweden.
| |
Collapse
|
13
|
Wang J, Xu C, Cheng Q, Zhao J, Wu S, Li W, Ma W, Liu C, Jiang X. RNA Sequencing Revealed Signals of Evolution From Gallbladder Stone to Gallbladder Carcinoma. Front Oncol 2020; 10:823. [PMID: 32547950 PMCID: PMC7272658 DOI: 10.3389/fonc.2020.00823] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/27/2019] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
Gallbladder stone is a major risk factor for gallbladder carcinoma (GBC), while there is still a controversy whether period of follow-up since newly diagnoses of asymptomatic gallstones increases the risk of GBC. In this study, 10 GBC patients and 30 patients with gallstones were admitted to our hospital. Patients with gallstones were divided into 3 groups according to the follow-up time, involving 10 patients with follow-up period of 1–3 years (GS3 group), 10 patients with follow-up period of 5–10 years (GS5 group), and 10 patients with follow-up period of more than 10 years (GS10 group). Tumor and para-tumor tissues of GBC patients, and gallbladder tissues of gallstone patients were collected. RNA sequencing was performed on the 50 samples. Besides, 1,704 differentially expressed genes (DEGs) were identified in tumors compared with para-tumor tissues of 10 GBC patients, which were enriched into some well-known cancer-related pathways, such as PI3K-Akt, mitogen-activated protein kinase (MAPK), Ras, and Wnt signaling pathways, and the most significant pathway was neuroactive ligand-receptor interaction. Patients with gallstones with periods of follow-up equal to 1–3 and > 10 years showed to have higher cancer risk than those with 5–10 years. ALPP and GPR87 are potential biomarkers for predicting cancer risk in patients with gallstones. The in vitro results revealed that GPR-87 can promote the proliferation, migration, and invasion of GBC cells. Herein, we explored the relationship between GBC patients and patients with gallstones with different periods of follow-up in transcriptome level.
Collapse
Affiliation(s)
- Jinghan Wang
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Chang Xu
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Qingbao Cheng
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jiangman Zhao
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Shouxin Wu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Wushuang Li
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, China
| | - Wencong Ma
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Chen Liu
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| |
Collapse
|
14
|
Huang R, Mao M, Lu Y, Yu Q, Liao L. A novel immune-related genes prognosis biomarker for melanoma: associated with tumor microenvironment. Aging (Albany NY) 2020; 12:6966-6980. [PMID: 32310824 PMCID: PMC7202520 DOI: 10.18632/aging.103054] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/07/2019] [Accepted: 03/29/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Melanoma is a cancer of the skin with potential to spread to other organs and is responsible for most deaths due to skin cancer. It is imperative to identify immune biomarkers for early melanoma diagnosis and treatment. RESULTS 63 immune-related genes of the total 1039 unique IRGs retrieved were associated with overall survival of melanoma. A multi-IRGs classifier constructed using eight IRGs showed a powerful predictive ability. The classifier had better predictive power compared with the current clinical data. GSEA analysis showed multiple signaling differences between high and low risk score group. Furthermore, biomarker was associated with multiple immune cells and immune infiltration in tumor microenvironment. CONCLUSIONS The immune-related genes prognosis biomarker is an effective potential prognostic classifier in the immunotherapies and surveillance of melanoma. METHODS Melanoma samples of genes were retrieved from TCGA and GEO databases while the immune-related genes (IRGs) were retrieved from the ImmPort database. WGCNA, Cox regression analysis and LASSO analysis were used to classify melanoma prognosis. ESTIMATE and CIBERSORT algorithms were used to explore the relationship between risk score and tumor immune microenvironment. GSEA analysis was performed to explore the biological signaling pathway.
Collapse
Affiliation(s)
- Rongzhi Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| | - Min Mao
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| | - Yunxin Lu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| | - Qingliang Yu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| | - Liang Liao
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China.,Department of Traumatic Orthopedics and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, The Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
15
|
Abstract
Objective: Secreted modular calcium-binding proteins (SMOCs) are extracellular glycoproteins of the secreted protein, acidic, and rich in cysteine-related modular calcium-binding protein family and include two isoforms, SMOC1 and SMOC2, in humans. Functionally, SMOCs bind to calcium for various cell functions. In this review, we provided a summary of the most recent advancements in and findings of SMOC1 and SMOC2 in development, homeostasis, and disease states. Data sources: All publications in the PubMed database were searched and retrieved (up to July 24, 2019) using various combinations of keywords searching, including SMOC1, SMOC2, and diseases. Study selection: All original studies and review articles of SMOCs in human diseases and embryo development written in English were retrieved and included. Results: SMOC1 and SMOC2 regulate embryonic development, cell homeostasis, and disease pathophysiology. They play an important role in the regulation of cell cycle progression, cell attachment to the extracellular matrix, tissue fibrosis, calcification, angiogenesis, birth defects, and cancer development. Conclusions: SMOC1 and SMOC2 are critical regulators of many cell biological processes and potential therapeutic targets for the control of human cancers and birth defects.
Collapse
|
16
|
Clinicopathological significance of olfactomedin-4 in extrahepatic bile duct carcinoma. Pathol Res Pract 2020; 216:152940. [PMID: 32276789 DOI: 10.1016/j.prp.2020.152940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/20/2020] [Revised: 03/01/2020] [Accepted: 03/21/2020] [Indexed: 12/28/2022]
Abstract
The clinicopathological and prognostic significance of olfactomedin-4 (OLFM4) expression has not yet been elucidated in extrahepatic bile duct carcinomas (EBDCs). Immunohistochemical analysis of OLFM4 expression in 31 normal biliary epithelia, 33 biliary intraepithelial neoplasias (BilINs), and 180 surgically resected EBDCs (54 perihilar and 126 distal) was performed and was used to analyze clinicopathological variables including patient survival. The expression of OLFM4 showed a progressive increase from normal biliary epithelia (0.2 ± 0.4) to BilINs (2.8 ± 3.2) to EBDCs (4.6 ± 4.2; P < 0.001). OLFM4 was highly expressed in 26.1% (47/180) of the EBDC cases, and high OLFM4 levels were more frequently observed in tumors with nodular growth (P = 0.029), well differentiation (P = 0.011), and lower T-category (P = 0.025) and stage grouping (P = 0.013). Patients with EBDC having high expression of OLFM4 had better survival than those with low expression of OLFM4 (median, 43.3 vs. 29.2 months; P = 0.037). OLFM4 might play an important role in carcinogenesis and in the progression from BilINs to EBDCs. High OLFM4 expression predicted less aggressive clinical behavior in patients with EBDC.
Collapse
|
17
|
Multiple novel hepatocellular carcinoma signature genes are commonly controlled by the master pluripotency factor OCT4. Cell Oncol (Dordr) 2019; 43:279-295. [PMID: 31848930 DOI: 10.1007/s13402-019-00487-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 11/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Worldwide, hepatocellular carcinoma (HCC) is a common solid tumor with a poor prognosis. HCC is often due to hepatitis B virus (HBV) infection. As yet, efficacious HCC treatment regimens for late-stage HCC patients are lacking. Therefore, the identification of more specific and sensitive biomarkers for its early diagnosis and treatment remains an urgent need. METHODS Total RNAs from paired HBV-derived HCC tumors and adjacent peritumor tissues (APTs) were subjected to RNA sequencing (RNA-seq), and differentially expressed genes (DEGs) between HCC tumors and APTs were selected and verified. RESULTS We identified 166 DEGs and found that eight top-ranked and verified DEGs (TK1, CTTN, CEP72, TRIP13, FTH1, FLAD1, CHRM2, AMBP) all contained putative OCT4 binding motifs in their promoter regions. TK1, TRIP13 and OCT4 were found to exhibit concurrent higher expression levels in HCC tumors than in APTs. The mRNA levels of TK1, TRIP13 and OCT4 in a cohort of 384 HCC samples from the TCGA database were all found to be negatively correlated with patient overall survival, relapse-free survival and progression-free survival, underscoring the HCC biomarker status of TK1 and TRIP13 on one hand, and implicating their association with OCT4 on the other hand. Furthermore, OCT4 proteins were found to bind to the promoters of both genes in vitro and in vivo. Knocking out OCT4 in HCC-derived cell lines reduced the expression of TK1 and TRIP13 and significantly decreased their tumorigenicity. CONCLUSIONS Using RNA-seq, we identified several novel HCC signature genes that may serve as biomarkers for its diagnosis and prognosis. Their common transcriptional regulation by OCT4 suggests key roles in the development of HCC, and indicates that OCT4 may serve as a potential therapeutic target.
Collapse
|
18
|
Deng Y, Xie Q, Zhang G, Li S, Wu Z, Ma Z, He X, Gao Y, Wang Y, Kang X, Wang J. Slow skeletal muscle troponin T, titin and myosin light chain 3 are candidate prognostic biomarkers for Ewing's sarcoma. Oncol Lett 2019; 18:6431-6442. [PMID: 31807166 PMCID: PMC6876326 DOI: 10.3892/ol.2019.11044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2019] [Accepted: 09/17/2019] [Indexed: 11/29/2022] Open
Abstract
Ewing's sarcoma (ES) is a common malignant bone tumor in children and adolescents. Although great efforts have been made to understand the pathogenesis and development of ES, the underlying molecular mechanism remains unclear. The present study aimed to identify new key genes as potential biomarkers for the diagnosis, targeted therapy or prognosis of ES. mRNA expression profile chip data sets GSE17674, GSE17679 and GSE45544 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened using the R software limma package, and functional and pathway enrichment analyses were performed using the enrichplot package and GSEA software. The NetworkAnalyst online tool, as well as Cytoscape and its plug-ins cytoHubba and NetworkAnalyzer, were used to construct a protein-protein interaction network (PPI) and conduct module analysis to screen key (hub) genes. LABSO COX regression and overall survival (OS) analysis of the Hub genes were performed. A total of 211 DEGs were obtained by integrating and analyzing the three data sets. The functions and pathways of the DEGs were mainly associated with the regulation of small-molecule metabolic processes, cofactor-binding, amino acid, proteasome and ribosome biosynthesis in eukaryotes, as well as the Rac1, cell cycle and P53 signaling pathways. A total of one important module and 20 hub genes were screened from the PPI network using the Maximum Correlation Criteria algorithm of cytoHubba. LASSO COX regression results revealed that titin (TTN), fast skeletal muscle troponin T, skeletal muscle actin α-actin, nebulin, troponin C type 2 (fast), myosin light-chain 3 (MYL3), slow skeletal muscle troponin T (TNNT1), myosin-binding protein C1 slow-type, tropomyosin 3 and myosin heavy-chain 7 were associated with prognosis in patients with ES. The Kaplan-Meier curves demonstrated that high mRNA expression levels of TNNT1 (P<0.001), TTN (P=0.049), titin-cap (P=0.04), tropomodulin 1 (P=0.011), troponin I2 fast skeletal type (P=0.021) and MYL3 (P=0.017) were associated with poor OS in patients with ES. In conclusion, the DEGs identified in the present study may be key genes in the pathogenesis of ES, three of which, namely TNNT1, TTN and MYL3, may be potential prognostic biomarkers for ES.
Collapse
Affiliation(s)
- Yajun Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Qiqi Xie
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Shaoping Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zuolong Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhanjun Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yicheng Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jing Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Orthopedic Disease of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
19
|
Prediction of lymphovascular space invasion in endometrial cancer using the 55-gene signature selected by DNA microarray analysis. PLoS One 2019; 14:e0223178. [PMID: 31557240 PMCID: PMC6762169 DOI: 10.1371/journal.pone.0223178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022] Open
Abstract
Lymphovascular space invasion (LVSI) is considered to be the beginning of lymphogenous and hematogenous metastases. It is strongly related to dissemination, and therefore could be a valuable predictive sign of lymph node metastases and distant spread. Recently, the presence of LVSI in endometrial cancer (EC) has been shown to be an independent prognostic factor. The preoperative diagnosis of LVSI by pathological examination is difficult and LVSI is detected after surgery. The aim of the current study was to explore candidate genes as potential diagnostic biomarkers and determine whether they are predictors of LVSI in patients with EC. A total of 88 surgical specimens obtained from EC patients who had undergone surgical resection at Fukushima Medical University Hospital between 2010 and 2015 were analyzed using DNA microarray. LVSI was significantly associated with poor prognostic factors in EC such as higher tumor grade, lymph node metastasis, deep myometrium invasion, advanced stage and recurrence. Fifty-five candidate genes were significantly differentially expressed between 26 LVSI-positive and 62 LVSI-negative samples. All 88 samples were divided into two groups according to hierarchical clustering of 55 genes. Regarding diagnostic accuracy, sensitivity and negative predictive value were both high (92% and 95%, respectively); further, specificity and positive predictive value were both moderate (63% and 71%, respectively). Our data suggests that the 55-gene signature could contribute to predicting LVSI in EC, and provide clinically important information for better management. The molecular signatures of 55 genes may be also useful for understanding the underlying mechanism of LVSI.
Collapse
|
20
|
Solberg NT, Melheim M, Strand MF, Olsen PA, Krauss S. MEK Inhibition Induces Canonical WNT Signaling through YAP in KRAS Mutated HCT-15 Cells, and a Cancer Preventive FOXO3/FOXM1 Ratio in Combination with TNKS Inhibition. Cancers (Basel) 2019; 11:cancers11020164. [PMID: 30717152 PMCID: PMC6406699 DOI: 10.3390/cancers11020164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/28/2023] Open
Abstract
The majority of colorectal cancers are induced by subsequent mutations in APC and KRAS genes leading to aberrant activation of both canonical WNT and RAS signaling. However, due to induction of feedback rescue mechanisms some cancers do not respond well to targeted inhibitor treatments. In this study we show that the APC and KRAS mutant human colorectal cancer cell line HCT-15 induces canonical WNT signaling through YAP in a MEK dependent mechanism. This inductive loop is disrupted with combined tankyrase (TNKS) and MEK inhibition. RNA sequencing analysis suggests that combined TNKS/MEK inhibition induces metabolic stress responses in HCT-15 cells promoting a positive FOXO3/FOXM1 ratio to reduce antioxidative and cryoprotective systems.
Collapse
Affiliation(s)
- Nina Therese Solberg
- Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway.
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway.
| | - Maria Melheim
- Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway.
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway.
| | - Martin Frank Strand
- Department of Health Sciences, Kristiania University College, PB 1190 Sentrum, 0107 Oslo, Norway.
| | - Petter Angell Olsen
- Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway.
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway.
| | - Stefan Krauss
- Unit for Cell Signaling, Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0372 Oslo, Norway.
- Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PO Box 1112 Blindern, 0317 Oslo, Norway.
| |
Collapse
|
21
|
Liu X, Wang J, Chen M, Liu S, Yu X, Wen F. Combining data from TCGA and GEO databases and reverse transcription quantitative PCR validation to identify gene prognostic markers in lung cancer. Onco Targets Ther 2019; 12:709-720. [PMID: 30718962 PMCID: PMC6345189 DOI: 10.2147/ott.s183944] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
Background The aim of this study was to predict and explore the possible mechanism and clinical value of genetic markers in the development of lung cancer with a combined database to screen the prognostic genes of lung cancer. Materials and methods Common differential genes in two gene expression chips (GSE3268 and GSE10072 datasets) were investigated by collecting and calculating from Gene Expression Omnibus and The Cancer Genome Atlas databases using R language. Five markers of gene composition (ribonucleotide reductase regulatory subunit M2 [RRM2], trophoblast glycoprotein [TPBG], transmembrane protease serine 4[TMPRFF4], chloride intracellular channel 3 [CLIC3], and WNT inhibitory factor-1 [WIF1]) were found by the stepwise Cox regression function when we further screened combinations of gene models, which were more meaningful for prognosis. By analyzing the correlation between gene markers and clinicopathological parameters of lung cancer and its effect on prognosis, the TPBG gene was selected to analyze differential expression, its possible pathways and functions were predicted using gene set enrichment analysis (GSEA), and its protein interaction network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database; then, quantitative PCR and the Oncomine database were used to verify the expression differences of TPBG in lung cancer cells and tissues. Results The expression levels of five genetic markers were correlated with survival prognosis, and the total survival time of the patients with high expression of the genetic markers was shorter than those with low expression (P<0.001). GSEA showed that these high-expression samples enriched the gene sets of cell adhesion, cytokine receptor interaction pathway, extracellular matrix receptor pathway, adhesion pathway, skeleton protein regulation, cancer pathway and TGF-β pathway. Conclusion The high expression of five gene constituent markers is a poor prognostic factor in lung cancer and may serve as an effective biomarker for predicting metastasis and prognosis of patients with lung cancer.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China, .,Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China, .,Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Mei Chen
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Shilan Liu
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Xiaodan Yu
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Fuqiang Wen
- Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China, .,Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China,
| |
Collapse
|
22
|
Aldossary MY, Alayed AA, Amr S, Alqahtani MS. Primary squamous cell carcinoma of the gallbladder: Report of a rare neoplasm from the Eastern Province of Saudi Arabia. Int J Surg Case Rep 2018; 51:186-189. [PMID: 30176555 PMCID: PMC6120602 DOI: 10.1016/j.ijscr.2018.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/14/2018] [Revised: 08/14/2018] [Accepted: 08/25/2018] [Indexed: 02/07/2023] Open
Abstract
There is paucity in the literature regarding gallbladder cancer in Saudi Arabia. Only 3% of gallbladder cancers worldwide are primary squamous cell carcinoma (SCC). We present the first case of primary gallbladder SCC reported in Saudi Arabia. Physicians should be aware of this cancer even if it is rare in our country. We should consider gallbladder cancer when diagnosing gallbladder-related symptoms.
Introduction Primary squamous cell carcinoma of the gallbladder is extremely rare, and accounts for about 3% of all malignant gallbladder neoplasms. Presentation of case We report the case of a 58-year-old woman who presented with acute onset epigastric pain radiating to the back. The initial diagnosis, based on radiological images, was an incidental gallbladder mass with multiple gallstones. A staging laparoscopy was performed, followed by exploratory laparotomy with radical cholecystectomy. Segments 4b and 5 of the liver and the first part of the duodenum with the transverse colon were also resected. Histopathology of the gallbladder mass revealed invasive moderately differentiated squamous cell carcinoma with infiltration of liver segments 4b and 5, the first part of the duodenum, and two pericaval lymph nodes (with lymphovascular and perineural invasion). The primary tumour was scored as pT3, pN2, M1, stage IVB, based on the American Joint Committee on Cancer classification, version 7. The patient was discharged postoperatively and started adjuvant chemotherapy. Discussion The best option for treating early-stage gallbladder cancer is radical surgery, while adjuvant chemo-radiation can also be beneficial. Our patient did not exhibit the typical symptoms of gallbladder cancer, and radiography was required for her diagnosis. Thus, additional work is needed to improve the detection of squamous cell carcinoma to improve the prognosis of patients like our own. Conclusion Clinicians must be alert to the possibility of squamous cell gallbladder carcinoma, and gallbladder neoplasms should be among the possibilities considered during the differential diagnosis of symptoms related to the gallbladder.
Collapse
Affiliation(s)
- Mohammed Y Aldossary
- Department of General Surgery, Hepatobiliary Unit, King Fahad Specialist Hospital Dammam, Saudi Arabia.
| | - Amal A Alayed
- Department of General Surgery, Hepatobiliary Unit, King Fahad Specialist Hospital Dammam, Saudi Arabia
| | - Samir Amr
- Department of Pathology and Laboratory Medicine, King Fahad Specialist Hospital-Dammam, Saudi Arabia
| | - Mohammed S Alqahtani
- Department of General Surgery, Hepatobiliary Unit, King Fahad Specialist Hospital Dammam, Saudi Arabia
| |
Collapse
|
23
|
Han J, Chen M, Wang Y, Gong B, Zhuang T, Liang L, Qiao H. Identification of Biomarkers Based on Differentially Expressed Genes in Papillary Thyroid Carcinoma. Sci Rep 2018; 8:9912. [PMID: 29967488 PMCID: PMC6028435 DOI: 10.1038/s41598-018-28299-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/28/2017] [Accepted: 05/29/2018] [Indexed: 12/29/2022] Open
Abstract
The incidence of papillary thyroid carcinoma (PTC) is increasing rapidly throughout the world. Hence, there is an urgent need for identifying more specific and sensitive biomarkers to explorate the pathogenesis of PTC. In this study, three pairs of stage I PTC tissues and matched normal adjacent tissues were sequenced by RNA-Seq, and 719 differentially expressed genes (DEGs) were screened. KEGG pathway enrichment analyses indicated that the DEGs were significantly enriched in 28 pathways. A total of 18 nodes consisting of 20 DEGs were identified in the top 10% of KEGG integrated networks. The functions of DEGs were further analysed by GO. The 13 selected genes were confirmed by qRT-PCR in 16 stage I PTC patients and by The Cancer Genome Atlas (TCGA) database. The relationship interactions between DEGs were analysed by protein-protein interaction networks and chromosome localizations. Finally, four newly discovered genes, COMP, COL3A1, ZAP70, and CD247, were found to be related with PTC clinical phenotypes, and were confirmed by Spearman’s correlation analyses in TCGA database. These four DEGs might be promising biomarkers for early-stage PTC, and provide an experimental foundation for further exploration of the pathogenesis of early-stage PTC.
Collapse
Affiliation(s)
- Jun Han
- Department of Endoerinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Meijun Chen
- Department of Endoerinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Boxuan Gong
- Faculty of Vehicle Engineering and Mechanics, Dalian University of Technology, Dalian, 116024, China
| | - Tianwei Zhuang
- Department of Endoerinology and Metabolism, Mu danjiang Medical University Affiliated Hongqi Hospital, Mu danjiang, 157000, China
| | - Lingyu Liang
- Internal medicine, Hebei Provincial Eye Hospital, Xingtai, Hebei, 054001, China
| | - Hong Qiao
- Department of Endoerinology and Metabolism, The Second Affiliated Hospital, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
24
|
Wang XY, Chen SH, Zhang YN, Xu CF. Olfactomedin-4 in digestive diseases: A mini-review. World J Gastroenterol 2018; 24:1881-1887. [PMID: 29740203 PMCID: PMC5937205 DOI: 10.3748/wjg.v24.i17.1881] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/11/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 02/06/2023] Open
Abstract
Olfactomedin-4 (OLFM4, GW112, hGC-1) is a glycoprotein belonging to the olfactomedin family. The expression of OLFM4 is strong in the small intestine, colon and prostate, and moderate in the stomach and bone marrow. Previous studies have revealed that OLFM4 is closely associated with many digestive diseases. Up-regulation of OLFM4 has been detected in the Helicobacter pylori (H. pylori)-infected gastric mucosa, inflammatory bowel disease tissue and gastrointestinal malignancies, including gastric cancer, colorectal cancer, pancreatic cancer and gallbladder cancer. Down-regulation of OLFM4 has also been detected in some cases, such as in poorly differentiated, advanced-stage and metastatic tumors. Studies using OLFM4-deficient mouse models have revealed that OLFM4 acts as a negative regulator of H. pylori-specific immune responses and plays an important role in mucosal defense in inflammatory bowel disease. Patients with OLFM4-positive gastric cancer or colorectal cancer have a better survival rate than OLFM4-negative patients. However, the prognosis is worse in pancreatic cancer patients with high levels of expression of OLFM4. The NF-κB, Notch and Wnt signaling pathways are involved in the regulation of OLFM4 expression in digestive diseases, and its role in pathogenesis is associated with anti-inflammation, apoptosis, cell adhesion and proliferation. OLFM4 may serve as a potential specific diagnostic marker and a therapeutic target in digestive diseases. Further studies are required to explore the clinical value of OLFM4.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Sheng-Hui Chen
- Department of Gastroenterology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Ya-Nan Zhang
- Department of Geriatrics, Zhejiang Provincial People’s Hospital, Hangzhou 310014, Zhejiang Province, China
| | - Cheng-Fu Xu
- Department of Gastroenterology, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
25
|
Ren J, Jian F, Jiang H, Sun Y, Pan S, Gu C, Chen X, Wang W, Ning G, Bian L, Sun Q. Decreased expression of SFRP2 promotes development of the pituitary corticotroph adenoma by upregulating Wnt signaling. Int J Oncol 2018; 52:1934-1946. [PMID: 29620167 PMCID: PMC5919716 DOI: 10.3892/ijo.2018.4355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2017] [Accepted: 03/30/2018] [Indexed: 01/07/2023] Open
Abstract
Cushing's disease is primarily caused by pituitary adrenocorticotropin‑secreting adenoma. However, its pathogenesis has remained obscure. In the present study, whole transcriptome analysis was performed by RNA sequencing (RNA‑Seq) and expression of secreted frizzled‑related protein 2 (SFRP2) was decreased in corticotroph tumors compared with normal pituitary glands. Furthermore, the RNA‑Seq results were validated and the expression of SFRP2 in tumor tissues was analyzed by comparing another cohort of 23 patients with Cushing's disease and 3 normal human pituitary samples using reverse transcription‑quantitative polymerase chain reaction, western blot and immunohistochemistry staining. Clinically, there was an association between lower SFRP2 expression and aggressive adenoma characteristics, including larger size and invasiveness. Conversely, SFRP2 overexpression reduced the ability of AtT20 cells to proliferate and migrate, and reduced production of the adrenocorticotrophic hormone in vitro. Mechanistically, overexpressed SFRP2 reduced the level of β‑catenin in the cytoplasm and nucleus, and decreased Wnt signaling activity in AtT20 cells. Therefore, SFRP2 appears to act as a tumor suppressor in Cushing's disease by regulating the activity of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jie Ren
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Fangfang Jian
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Hong Jiang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Yuhao Sun
- Department of Stereotactic and Functional Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Sijian Pan
- Department of Stereotactic and Functional Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Changwei Gu
- Department of Neurosurgery, Ruijin Hospital, Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Xiao Chen
- Department of Neurosurgery, Ruijin Hospital, Luwan Branch, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
26
|
Johnston JR, Chase PB, Pinto JR. Troponin through the looking-glass: emerging roles beyond regulation of striated muscle contraction. Oncotarget 2017; 9:1461-1482. [PMID: 29416706 PMCID: PMC5787451 DOI: 10.18632/oncotarget.22879] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2017] [Accepted: 11/20/2017] [Indexed: 01/03/2023] Open
Abstract
Troponin is a heterotrimeric Ca2+-binding protein that has a well-established role in regulating striated muscle contraction. However, mounting evidence points to novel cellular functions of troponin, with profound implications in cancer, cardiomyopathy pathogenesis and skeletal muscle aging. Here, we highlight the non-canonical roles and aberrant expression patterns of troponin beyond the sarcomeric milieu. Utilizing bioinformatics tools and online databases, we also provide pathway, subcellular localization, and protein-protein/DNA interaction analyses that support a role for troponin in multiple subcellular compartments. This emerging knowledge challenges the conventional view of troponin as a sarcomere-specific protein exclusively involved in muscle contraction and may transform the way we think about sarcomeric proteins, particularly in the context of human disease and aging.
Collapse
Affiliation(s)
- Jamie R Johnston
- Department of Biomedical Sciences, The Florida State University College of Medicine, Tallahassee, FL, 32306-4300, USA
| | - P Bryant Chase
- Department of Biological Science, The Florida State University, Tallahassee, FL, 32306-4370, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, The Florida State University College of Medicine, Tallahassee, FL, 32306-4300, USA
| |
Collapse
|
27
|
Huang XQ, Zhou ZQ, Zhang XF, Chen CL, Tang Y, Zhu Q, Zhang JH, Xia JC. Overexpression of SMOC2 Attenuates the Tumorigenicity of Hepatocellular Carcinoma Cells and Is Associated With a Positive Postoperative Prognosis in Human Hepatocellular Carcinoma. J Cancer 2017; 8:3812-3827. [PMID: 29151969 PMCID: PMC5688935 DOI: 10.7150/jca.20775] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2017] [Accepted: 08/21/2017] [Indexed: 01/05/2023] Open
Abstract
Secreted modular calcium binding protein-2 (SMOC2), a recently identified matricellular protein that belongs to the SPARC protein family, has been reported to be downregulated in various cancers. The purpose of this study was to investigate the clinical significance and biological function of SMOC2 in human hepatocellular carcinoma. Real-time quantitative PCR and western blotting analyses revealed that SMOC2 mRNA and protein levels were significantly downregulated in human HCC tissues compared to the matched adjacent normal tissues. Clinicopathological analysis indicated that SMOC2 expression was significantly associated with tumor size, number of tumors, tumor-node-metastasis (TNM) stage and distant metastasis. Kaplan-Meier survival analysis showed that high tumor SMOC2 expression was associated with improved overall survival and disease-free survival in patients with HCC. Functional analyses (cell proliferation and colony formation assays, cell migration and invasion assays, cell cycle and apoptosis assays) demonstrated that stable overexpression of SMOC2 using a lentiviral vector significantly inhibited cell proliferation, colony formation, migration and invasion, and induced G0/G1 phase arrest in HCC cells in vitro. In addition, experiments with a mouse model revealed the suppressed effect of SMOC2 on HCC tumorigenicity and metastases in vivo. These results suggest that SMOC2 functions as a tumor suppressor during the development of HCC and may represent an effective prognostic factor and novel therapeutic target for HCC.
Collapse
Affiliation(s)
- Xu-Qiong Huang
- Huadu District People's Hospital of Guangzhou, Southern Medical University, Guangzhou, Guangdong province, 510800, China.,Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, Guangdong province, 510010, China
| | - Zi-Qi Zhou
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong province, 510060, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong province, 510060, China
| | - Chang-Long Chen
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong province, 510060, China
| | - Yan Tang
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong province, 510060, China
| | - Qian Zhu
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong province, 510060, China
| | - Jian-Hua Zhang
- Department of Epidemiology and Health Statistics, Guangdong Pharmaceutical University, Guangzhou, Guangdong province, 510010, China.,Department of Health Service Management, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong province, 510006, China
| | - Jian-Chuan Xia
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong province, 510060, China
| |
Collapse
|
28
|
Kuroda T, Yasuda S, Nakashima H, Takada N, Matsuyama S, Kusakawa S, Umezawa A, Matsuyama A, Kawamata S, Sato Y. Identification of a Gene Encoding Slow Skeletal Muscle Troponin T as a Novel Marker for Immortalization of Retinal Pigment Epithelial Cells. Sci Rep 2017; 7:8163. [PMID: 28811571 PMCID: PMC5557831 DOI: 10.1038/s41598-017-08014-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/16/2017] [Accepted: 07/05/2017] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are leading candidate raw materials for cell-based therapeutic products (CTPs). In the development of hPSC-derived CTPs, it is imperative to ensure that they do not form tumors after transplantation for safety reasons. Because cellular immortalization is a landmark of malignant transformation and a common feature of cancer cells, we aimed to develop an in vitro assay for detecting immortalized cells in CTPs. We employed retinal pigment epithelial (RPE) cells as a model of hPSC-derived products and identified a gene encoding slow skeletal muscle troponin T (TNNT1) as a novel marker of immortalized RPE cells by comprehensive microarray analysis. TNNT1 mRNA was commonly upregulated in immortalized RPE cells and human induced pluripotent stem cells (hiPSCs), which have self-renewal ability. Additionally, we demonstrated that TNNT1 mRNA expression is higher in several cancer tissues than in normal tissues. Furthermore, stable expression of TNNT1 in ARPE-19 cells affected actin filament organization and enhanced their migration ability. Finally, we established a simple and rapid qRT-PCR assay targeting TNNT1 transcripts that detected as low as 3% of ARPE-19 cells contained in normal primary RPE cells. Purified hiPSC-derived RPE cells showed TNNT1 expression levels below the detection limit determined with primary RPE cells. Our qRT-PCR method is expected to greatly contribute to process validation and quality control of CTPs.
Collapse
Affiliation(s)
- Takuya Kuroda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Tokyo, Japan
- Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Satoshi Yasuda
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Tokyo, Japan
- Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Hiroyuki Nakashima
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Tokyo, Japan
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Nozomi Takada
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Tokyo, Japan
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Satoko Matsuyama
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Tokyo, Japan
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Shinji Kusakawa
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Tokyo, Japan
- Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Akifumi Matsuyama
- Platform of Therapeutics for Rare Disease, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Shin Kawamata
- Foundation for Biomedical Research and Innovation, Kobe, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, Tokyo, Japan.
- Foundation for Biomedical Research and Innovation, Kobe, Japan.
- Department of Quality Assurance Science for Pharmaceuticals, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
- Department of Cellular & Gene Therapy Products, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
- Department of Drug Discovery and Evolution, Graduated School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
29
|
El‐Khoueiry A. Uncommon Hepatobiliary Tumors. TEXTBOOK OF UNCOMMON CANCER 2017:444-457. [DOI: 10.1002/9781119196235.ch30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
|
30
|
Yusta B, Matthews D, Flock GB, Ussher JR, Lavoie B, Mawe GM, Drucker DJ. Glucagon-like peptide-2 promotes gallbladder refilling via a TGR5-independent, GLP-2R-dependent pathway. Mol Metab 2017; 6:503-511. [PMID: 28580281 PMCID: PMC5444019 DOI: 10.1016/j.molmet.2017.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/27/2017] [Revised: 03/16/2017] [Accepted: 03/18/2017] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Glucagon-like peptides (GLPs) are secreted from enteroendocrine cells in response to nutrients and bile acids and control metabolism via actions on structurally-related yet distinct G protein coupled receptors. GLP-1 regulates gut motility, appetite, islet function, and glucose homeostasis, whereas GLP-2 enhances intestinal nutrient absorption. GLP-1R agonists are used to treat diabetes and obesity, and a GLP-2R agonist is approved to treat short bowel syndrome. Unexpectedly, reports of gallbladder disease have been associated with the use of both GLP-1R and GLP-2R agonists and after bariatric surgery, although the mechanisms remain unknown. METHODS We investigated whether GLP-1 or GLP-2 acutely controls gallbladder (GB) volume and whether GLP-2 regulates GB muscle activity in mice. The expression of Tgr5, Glp2r, and Glp1r was assessed in mouse GB, and the effects of GLP-2 on hepatic bile acid (BA) flow, intestinal and liver BA uptake, and GB gene expression were determined. GLP-2 regulation of GB volume was assessed in wildtype, Glp2r-/- and Tgr5-/- mice. The effect of GLP-2 on GB smooth muscle (GBSM) calcium transients was characterized ex vivo. RESULTS Acute administration of the GLP-1R agonist exendin-4 lowered glucose but had no effect on GB volume in mice. In contrast, GLP-2 rapidly enhanced GB filling in a dose-dependent manner, actions maintained in the presence of cholecystokinin, and mediated through the canonical GLP-2R. GLP-2 also rapidly induced immediate early gene expression in GB, consistent with detection of the endogenous Glp2r in GB RNA. The ability of GLP-2 to increase GB volume was not abrogated by systemic administration of hexamethonium, propranolol, a vasoactive peptide receptor antagonist or N-Nitroarginine methyl ester, and was maintained in Tgr5-/- mice. In contrast, lithocholic acid, a Tgr5 agonist, increased GB filling in Glp2r-/- but not in Tgr5-/- mice. GLP-2 had no effect on ileal uptake or hepatic clearance of taurocholic acid or on hepatic bile flow, yet reduced the frequency of spontaneous calcium transients in murine GBSM ex vivo, in a tetrodotoxin-sensitive manner. CONCLUSIONS Our data extend endocrine concepts of regulation of GB filling beyond FXR-FGF15/19 and the direct effects of BA via Tgr5, to encompass a novel BA-Tgr5-L cell GLP-2 axis providing nutrient-mediated feedback from BA to terminate meal-related GB contraction. These findings have implications for conditions characterized by elevated circulating levels of GLP-2 such as after bariatric surgery and the development and use of agents that promote Tgr5 activation, L cell secretion, or GLP-2R agonism for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Bernardo Yusta
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, M5G 1X5, Canada
| | - Dianne Matthews
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, M5G 1X5, Canada
| | - Grace B Flock
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, M5G 1X5, Canada
| | - John R Ussher
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, M5G 1X5, Canada
| | - Brigitte Lavoie
- The Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Gary M Mawe
- The Department of Neurological Sciences, University of Vermont, Burlington, VT, USA
| | - Daniel J Drucker
- The Department of Medicine, University of Toronto, Canada.,The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, Ontario, M5G 1X5, Canada
| |
Collapse
|