1
|
Du K, Liu Y, Zhang L, Peng L, Dong W, Jiang Y, Niu M, Sun Y, Wu C, Niu Y, Ding Y. Lapatinib combined with doxorubicin causes dose-dependent cardiotoxicity partially through activating the p38MAPK signaling pathway in zebrafish embryos. Biomed Pharmacother 2024; 175:116637. [PMID: 38653111 DOI: 10.1016/j.biopha.2024.116637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024] Open
Abstract
Because of its enhanced antitumor efficacy, lapatinib (LAP) is commonly used clinically in combination with the anthracycline drug doxorubicin (DOX) to treat metastatic breast cancer. While it is well recognized that this combination chemotherapy can lead to an increased risk of cardiotoxicity in adult women, its potential cardiotoxicity in the fetus during pregnancy remains understudied. Here, we aimed to examine the combination of LAP chemotherapy and DOX-induced cardiotoxicity in the fetus using a zebrafish embryonic system and investigate the underlying pathologic mechanisms. First, we examined the dose-dependent cardiotoxicity of combined LAP and DOX exposure in zebrafish embryos, which mostly manifested as pericardial edema, bradycardia, cardiac function decline and reduced survival. Second, we revealed that a significant increase in oxidative stress concurrent with activated MAPK signaling, as indicated by increased protein expression of phosphorylated p38 and Jnk, was a notable pathophysiological event after combined LAP and DOX exposure. Third, we showed that inhibiting MAPK signaling by pharmacological treatment with the p38MAPK inhibitor SB203580 or genetic ablation of the map2k6 gene could significantly alleviate combined LAP and DOX exposure-induced cardiotoxicity. Thus, we provided both pharmacologic and genetic evidence to suggest that inhibiting MAPK signaling could exert cardioprotective effects. These findings have implications for understanding the potential cardiotoxicity induced by LAP and DOX combinational chemotherapy in the fetus during pregnancy, which could be leveraged for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Ke Du
- School of Public Health, Qingdao University, Qingdao 266021, China; The Biomedical Sciences Institute of the Affiliated Hospital, Qingdao University, Qingdao 266021, China
| | - Yuting Liu
- School of Public Health, Qingdao University, Qingdao 266021, China; The Biomedical Sciences Institute of the Affiliated Hospital, Qingdao University, Qingdao 266021, China
| | - Lu Zhang
- Department of Clinical Laboratory, Qingdao Women's and Children's Hospital, Qingdao 266034, China
| | - Lixia Peng
- The Biomedical Sciences Institute of the Affiliated Hospital, Qingdao University, Qingdao 266021, China
| | - Wenjing Dong
- The Biomedical Sciences Institute of the Affiliated Hospital, Qingdao University, Qingdao 266021, China
| | - Yajie Jiang
- School of Public Health, Qingdao University, Qingdao 266021, China; The Biomedical Sciences Institute of the Affiliated Hospital, Qingdao University, Qingdao 266021, China
| | - Mingming Niu
- School of Public Health, Qingdao University, Qingdao 266021, China; The Biomedical Sciences Institute of the Affiliated Hospital, Qingdao University, Qingdao 266021, China
| | - Yuanchao Sun
- The Biomedical Sciences Institute of the Affiliated Hospital, Qingdao University, Qingdao 266021, China
| | - Chuanhong Wu
- The Biomedical Sciences Institute of the Affiliated Hospital, Qingdao University, Qingdao 266021, China
| | - Yujuan Niu
- The Biomedical Sciences Institute of the Affiliated Hospital, Qingdao University, Qingdao 266021, China
| | - Yonghe Ding
- School of Public Health, Qingdao University, Qingdao 266021, China; The Biomedical Sciences Institute of the Affiliated Hospital, Qingdao University, Qingdao 266021, China; Department of Biochemistry and Molecular Biology, Division of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
2
|
Hussein M, Jensen AB. Drug-Induced Liver Injury Caused by Capecitabine: A Case Report and a Literature Review. Case Rep Oncol 2023; 16:378-384. [PMID: 37384198 PMCID: PMC10293942 DOI: 10.1159/000529866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/16/2023] [Indexed: 06/30/2023] Open
Abstract
Chemotherapy is widely used in cancer treatment, and the drug Capecitabine is often used in treatment of breast cancer and usually well-tolerated. Toxicity from Capecitabine typically involves hand-foot syndrome, fatigue, nausea, reduced appetite, and diarrhea, while severe liver toxicity is rarely seen. We present a case of a 63-year-old female with metastatic breast cancer, without liver metastasis, who developed a severe drug-induced liver injury (DILI) with critically elevated liver enzyme levels as reaction to Capecitabine treatment with seemingly no evident explanation as to why. The patient had a RUCAM score of 7 and a Naranjo score of 6 implying that this association between Capecitabine and the liver injury falls into the "probable" category. The patient recovered completely and was then successfully treated with other cytotoxic drugs without any sign of liver engagement. An in-depth literature search based on Pubmed database was performed to obtain information about Capecitabine, liver injury, and chemotherapy-associated acute hepatic toxicity. The following keywords were used: Capecitabine, chemotherapy, liver toxicity, and hepatic toxicity. Five studies were found showing some similarities to this case documenting hepatic injury after Capecitabine treatment including hepatic steatosis and moderately elevated liver enzymes. However, no studies were found reporting a severe DILI with highly elevated enzyme levels as immediate response to Capecitabine treatment. No reason could be identified as for why the patient developed an acute toxic liver reaction to Capecitabine. This case calls for more attention to the potential severe liver toxicity of an otherwise well-tolerated drug.
Collapse
Affiliation(s)
- Miriam Hussein
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders Bonde Jensen
- Department of Oncology and Institute of Clinical Medicine, Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Alasmari MM. A Review of Margetuximab-Based Therapies in Patients with HER2-Positive Metastatic Breast Cancer. Cancers (Basel) 2022; 15:cancers15010038. [PMID: 36612034 PMCID: PMC9817862 DOI: 10.3390/cancers15010038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer globally, with high mortality rates. Targeted drug therapies have revolutionized cancer treatment. For example, treatment with human epidermal receptor 2 (HER2) antagonists has markedly improved the prognosis of patients with HER2-positive BC (HER2 + BC). However, HER2+ metastatic BC (MBC) remains prevalent owing to its resistance to conventional anti-HER2 drugs. Therefore, novel agents are needed to overcome the limitations of existing cancer treatments and to enhance the progression-free and overall survival rates. Progress has been made by optimizing the fragment crystallizable (Fc) domain of trastuzumab, an IgG1 monoclonal, chimeric anti-HER2 antibody, to develop margetuximab. The modified Fc domain of margetuximab enhances its binding affinity to CD16A and decreases its binding affinity to CD32B, thereby promoting its antitumor activity. This review summarizes studies on the efficacy of margetuximab, discusses its utility as an anti-HER2 monoclonal antibody drug for the treatment of HER2 + BC, and presents the latest advances in the treatment of BC. This review provides insights into the clinical implication of margetuximab in HER2 + MBC treatment.
Collapse
Affiliation(s)
- Moudi M. Alasmari
- College of Medicine, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), Jeddah 21461, Saudi Arabia;
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 21423, Saudi Arabia
| |
Collapse
|
4
|
Mudd TW, Guddati AK. Management of hepatotoxicity of chemotherapy and targeted agents. Am J Cancer Res 2021; 11:3461-3474. [PMID: 34354855 PMCID: PMC8332851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/13/2021] [Indexed: 06/13/2023] Open
Abstract
Hepatotoxicity of chemotherapeutic agents such as methotrexate, oxaliplatin, and irinotecan have been well documented and characterized allowing for careful management by oncologists during administration. However, the rapid advance of the field of oncology and introduction of new classes of therapies such as small molecule inhibitors and immunotherapies have introduced new hepatotoxicity challenges and management strategies. This work is a compilation of the hepatotoxicity and recommended management of various chemotherapies and targeted agents, with a focus on the newer classes of targeted anticancer agents.
Collapse
Affiliation(s)
- Todd William Mudd
- Division of Hematology/Oncology, Georgia Cancer Center, Augusta University Augusta, GA 30912, USA
| | - Achuta Kumar Guddati
- Division of Hematology/Oncology, Georgia Cancer Center, Augusta University Augusta, GA 30912, USA
| |
Collapse
|
5
|
Owumi SE, Lewu DO, Arunsi UO, Oyelere AK. Luteolin attenuates doxorubicin-induced derangements of liver and kidney by reducing oxidative and inflammatory stress to suppress apoptosis. Hum Exp Toxicol 2021; 40:1656-1672. [PMID: 33827303 DOI: 10.1177/09603271211006171] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Doxorubicin is an effective anti-neoplastic agent; the reported toxicities of DOX limit its use. Luteolin is a polyphenolic phytochemical that exhibits beneficial biological effects via several mechanisms. We investigate luteolin protective effects on hepatorenal toxicity associated with doxorubicin treatment in rats. For 2 weeks, randomly assigned rat cohorts were treated as follows: control, luteolin (100 mg/kg; per os), doxorubicin alone (2mg/kg; by intraperitoneal injection), co-treated cohorts received luteolin (50 and 100 mg/kg) in addition to doxorubicin. Treatment with doxorubicin alone significantly (p < 0.05) increased biomarkers of hepatorenal toxicities in the serum. Doxorubicin also reduced relative organ weights, antioxidant capacity, and anti-inflammatory cytokine interleukine-10. Doxorubicin also increased reactive oxygen and nitrogen species, lipid peroxidation, pro-inflammatory-interleukin-1β and tumour necrosis factor-α-cytokine, and apoptotic caspases-3 and -9). Morphological damage accompanied these biochemical alterations in the rat's liver and kidney treated with doxorubicin alone. Luteolin co-treatment dose-dependently abated doxorubicin-mediated toxic responses, improved antioxidant capacity and interleukine-10 level. Luteolin reduced (p < 0.05) lipid peroxidation, caspases-3 and -9 activities and marginally improved rats' survivability. Similarly, luteolin co-treated rats exhibited improvement in hepatorenal pathological lesions observed in rats treated with doxorubicin alone. In summary, luteolin co-treatment blocked doxorubicin-mediated hepatorenal injuries linked with pro-oxidative, inflammatory, and apoptotic mechanisms. Therefore, luteolin can act as a chemoprotective agent in abating toxicities associated with doxorubicin usage and improve its therapeutic efficacy.
Collapse
Affiliation(s)
- S E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, 113092College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - D O Lewu
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, 113092College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - U O Arunsi
- School of Medicine, Cancer Immunology and Biotechnology, Department of Biosciences, University of Nottingham, UK
| | - A K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, 1372Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
6
|
Huang S, Yang J, Fu F, Wang C, Guo X, He B, Xiao D, Cai H, Liu M. Clinical and genetic risk factors for the prediction of hepatotoxicity induced by a docetaxel, epirubicin and cyclophosphamide regimen in breast cancer patients. Pharmacogenomics 2020; 22:87-98. [PMID: 33356548 DOI: 10.2217/pgs-2020-0080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To screen clinical and genetic risk factors and examine their combined effect on docetaxel, epirubicin and cyclophosphamide (TEC) regimen-induced liver injury (TEC-ILI). Patients & methods: We enrolled 396 breast cancer patients, and TEC-ILI-associated factors were screened by logistic regression analyses. Results: SOD2 rs4880 and ABCG2 rs2231142 polymorphisms correlated with an increased risk of TEC-ILI. Multivariate analysis incorporating clinical and genetic factors revealed that ABCC1 rs246221 (CC) and SOD2 rs4880 (AG/GG) increased the risk of TEC-ILI. Patients with at least two risk factors among nonalcoholic fatty liver disease, high low-density lipoproteinemia levels and the rs246221 or rs4880 adverse genotypes exhibited a significantly increased risk of developing TEC-ILI. Conclusion: The combination of clinical and genetic risk factors had higher predictive value for TEC-ILI than the interclinical risk factors alone.
Collapse
Affiliation(s)
- Shunmin Huang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, China.,School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Jing Yang
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, China.,School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Fangmeng Fu
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Chuan Wang
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Xiaoxiong Guo
- Department of Gastroenterology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Baochang He
- Department of Epidemiology & Biostatistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, China
| | - Danni Xiao
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Hongfu Cai
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, China.,School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, 350001, China.,School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
7
|
Levit SL, Yang H, Tang C. Rapid Self-Assembly of Polymer Nanoparticles for Synergistic Codelivery of Paclitaxel and Lapatinib via Flash NanoPrecipitation. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E561. [PMID: 32244904 PMCID: PMC7153395 DOI: 10.3390/nano10030561] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/11/2020] [Accepted: 03/18/2020] [Indexed: 12/12/2022]
Abstract
Taxol, a formulation of paclitaxel (PTX), is one of the most widely used anticancer drugs, particularly for treating recurring ovarian carcinomas following surgery. Clinically, PTX is used in combination with other drugs such as lapatinib (LAP) to increase treatment efficacy. Delivering drug combinations with nanoparticles has the potential to improve chemotherapy outcomes. In this study, we use Flash NanoPrecipitation, a rapid, scalable process to encapsulate weakly hydrophobic drugs (logP < 6) PTX and LAP into polymer nanoparticles with a coordination complex of tannic acid and iron formed during the mixing process. We determine the formulation parameters required to achieve uniform nanoparticles and evaluate the drug release in vitro. The size of the resulting nanoparticles was stable at pH 7.4, facilitating sustained drug release via first-order Fickian diffusion. Encapsulating either PTX or LAP into nanoparticles increases drug potency (as indicated by the decrease in IC-50 concentration); we observe a 1500-fold increase in PTX potency and a six-fold increase in LAP potency. When PTX and LAP are co-loaded in the same nanoparticle, they have a synergistic effect that is greater than treating with two single-drug-loaded nanoparticles as the combination index is 0.23 compared to 0.40, respectively.
Collapse
Affiliation(s)
- Shani L. Levit
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.L.); (H.Y.)
| | - Hu Yang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.L.); (H.Y.)
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, USA
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Christina Tang
- Chemical and Life Science Engineering Department, Virginia Commonwealth University, Richmond, VA 23284, USA; (S.L.L.); (H.Y.)
| |
Collapse
|
8
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
9
|
Hsu WT, Huang CY, Yen CY, Cheng AL, Hsieh PC. The HER2 inhibitor lapatinib potentiates doxorubicin-induced cardiotoxicity through iNOS signaling. Am J Cancer Res 2018; 8:3176-3188. [PMID: 29930721 PMCID: PMC6010982 DOI: 10.7150/thno.23207] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 02/20/2018] [Indexed: 01/04/2023] Open
Abstract
Rationale: Lapatinib (LAP) is a crucial alternative to trastuzumab upon the onset of drug resistance during treatment of metastatic human epidermal growth factor receptor 2-positive breast cancer. Like trastuzumab, LAP is commonly used alongside anthracyclines as a combination therapy, due to enhanced anti-cancer efficacy. However, this is notably associated with cardiotoxicity so it is imperative to understand the mechanisms driving this cardiotoxicity and develop cardioprotective strategies. To this end, here we utilize human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), which exhibit several characteristics representative of in vivo cardiomyocytes that make them breakthrough models to study drug toxicity. Methods: We investigated LAP- and doxorubicin (DOX)-induced toxicity in hPSC-CMs and evaluated the involvement of inducible nitric oxide (NO) synthase (iNOS). The significance of iNOS-mediated cardiotoxicity was furthermore evaluated in animal studies. Results: LAP synergistically increased DOX toxicity in hPSC-CMs in a dose- and time-dependent manner. At concentrations that were otherwise non-apoptotic when administered separately, LAP significantly potentiated DOX-induced hPSC-CM apoptosis. This was accompanied by increased iNOS expression and pronounced production of NO. iNOS inhibition significantly reduced hPSC-CM sensitivity to LAP and DOX co-treatment (LAP-plus-DOX), leading to reduced apoptosis. Consistent with our observations in vitro, delivery of an iNOS inhibitor in mice treated with LAP-plus-DOX attenuated myocardial apoptosis and systolic dysfunction. Moreover, inhibition of iNOS did not compromise the anti-cancer potency of LAP-plus-DOX in a murine breast cancer xenograft model. Conclusions: Our findings suggest that iNOS inhibition is a promising cardioprotective strategy to accompany HER2-inhibitor/anthracycline combination therapies. Furthermore, these results support the promise of hPSC-CMs as a platform for investigating cardiotoxicity and developing cardioprotectants as a whole.
Collapse
|
10
|
Bonde GV, Yadav SK, Chauhan S, Mittal P, Ajmal G, Thokala S, Mishra B. Lapatinib nano-delivery systems: a promising future for breast cancer treatment. Expert Opin Drug Deliv 2018. [DOI: 10.1080/17425247.2018.1449832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gunjan Vasant Bonde
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Sarita Kumari Yadav
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
- Department of Pharmacy, Moti Lal Nehru Medical College, Allahabad, India
| | - Sheetal Chauhan
- Department of Pharmacology, Melaka Manipal Medical College, Manipal University, Manipal, India
| | - Pooja Mittal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Gufran Ajmal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Sathish Thokala
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
11
|
Omobowale TO, Oyagbemi AA, Ajufo UE, Adejumobi OA, Ola-Davies OE, Adedapo AA, Yakubu MA. Ameliorative Effect of Gallic Acid in Doxorubicin-Induced Hepatotoxicity in Wistar Rats Through Antioxidant Defense System. J Diet Suppl 2017; 15:183-196. [DOI: 10.1080/19390211.2017.1335822] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Temidayo Olutayo Omobowale
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Uchechukwu Enwiwe Ajufo
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olumuyima Abiola Adejumobi
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olufunke Eunice Ola-Davies
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Adeolu Alex Adedapo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Momoh Audu Yakubu
- Department of Environmental & Interdisciplinary Sciences, College of Science, Engineering & Technology, NSB303, Vascular Biology Unit, Center for Cardiovascular Diseases, COPHS, Texas Southern University, Houston, TX, USA
| |
Collapse
|
12
|
Abstract
INTRODUCTION Understanding the mechanism of DILI with MTA, and how to avoid and manage these toxicities is essential for minimising inferior cancer treatment outcomes. An organised and comprehensive overview of MTA-associated hepatotoxicity is lacking; this review aims to fill the gap. AREAS COVERED A literature review was performed based on published case reports and relevant studies or articles pertaining to the topics on PubMed. Food and Drug Administration drug information documents and search on the US National Library of Medicine LiverTox database was performed for all relevant MTA. EXPERT OPINION MTA-associated hepatotoxicity is common but rarely fatal. The pattern of hepatotoxicity is predominantly idiosyncratic. Pharmacogenomics show potential in predicting patients at risk of poorly metabolising or developing immunoallergic responses to MTA, but prospective data is scant. Preventing reactivation of viral hepatitis using anti-viral drugs, and avoidance of drug combinations at high risk of negative interactions are the most readily preventable measures for DILI.
Collapse
Affiliation(s)
- Kirsty Wai-Chung Lee
- a Sir YK Pao Center for Cancer, Department of Clinical Oncology, State Key Laboratory in Oncology in South China , The Chinese University of Hong Kong, Hong Kong Cancer Institute and Prince of Wales Hospital , Shatin , Hong Kong
| | - Stephen Lam Chan
- a Sir YK Pao Center for Cancer, Department of Clinical Oncology, State Key Laboratory in Oncology in South China , The Chinese University of Hong Kong, Hong Kong Cancer Institute and Prince of Wales Hospital , Shatin , Hong Kong.,b Institute of Digestive Disease , The Chinese University of Hong Kong , Shatin , Hong Kong
| |
Collapse
|
13
|
Yu Y, Zhong Z, Guan Y. The downregulation of Bcl-xL/Bcl-2-associated death promoter indicates worse outcomes in patients with small cell lung carcinoma. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:13075-13082. [PMID: 26722503 PMCID: PMC4680448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
It is well known that lung cancer is the 1st leading cause of death worldwide. Many reports have demonstrated that Bad, the Bcl-xL/Bcl-2-associated death promoter plays a crucial role in the intrinsic apoptosis pathway. The aim of this study was to explore the expression of Bad and its clinical significance in small cell lung carcinoma (SCLC) By analyzing the expression of Bad in 147 SCLC patient specimen, we found that Bad expression was remarkably decreased in 55.8% (82/147) cases, compared with the neighboring non-tumor tissues. Further study showed that Bad expression was correlated with adverse clinical characters such as clinical stage (P = 0.001), tumor size (P = 0.036) and tumor recurrence (P = 0.030). Furthermore, the results of Kaplan-Meier analysis showed that low Bad expression was significantly correlated to overall survival (P < 0.0001) and disease-free survival (P = 0.017) of patients with SCLC. Moreover, multivariate analyses revealed that Bad was an independent indicator of overall survival in SCLC (hazard ration = 0.620, 95% confidence interval: 0.389-0.987, P < 0.001). In summary, we can conclude that patients with SCLC represent downregulation of Bad and the latter could be served as a useful biomarker for the outcomes of SCLC.
Collapse
Affiliation(s)
- Yaoyang Yu
- Department of Thoracic Surgery, Zhumadian Central Hospital Zhumadian 463000, Henan, China
| | - Zhaokui Zhong
- Department of Thoracic Surgery, Zhumadian Central Hospital Zhumadian 463000, Henan, China
| | - Yaowu Guan
- Department of Thoracic Surgery, Zhumadian Central Hospital Zhumadian 463000, Henan, China
| |
Collapse
|