1
|
Lesovaya EA, Fetisov TI, Bokhyan BY, Maksimova VP, Kulikov EP, Belitsky GA, Kirsanov KI, Yakubovskaya MG. Genetic, Epigenetic and Transcriptome Alterations in Liposarcoma for Target Therapy Selection. Cancers (Basel) 2024; 16:271. [PMID: 38254762 PMCID: PMC10813500 DOI: 10.3390/cancers16020271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Liposarcoma (LPS) is one of the most common adult soft-tissue sarcomas (STS), characterized by a high diversity of histopathological features as well as to a lesser extent by a spectrum of molecular abnormalities. Current targeted therapies for STS do not include a wide range of drugs and surgical resection is the mainstay of treatment for localized disease in all subtypes, while many LPS patients initially present with or ultimately progress to advanced disease that is either unresectable, metastatic or both. The understanding of the molecular characteristics of liposarcoma subtypes is becoming an important option for the detection of new potential targets and development novel, biology-driven therapies for this disease. Innovative therapies have been introduced and they are currently part of preclinical and clinical studies. In this review, we provide an analysis of the molecular genetics of liposarcoma followed by a discussion of the specific epigenetic changes in these malignancies. Then, we summarize the peculiarities of the key signaling cascades involved in the pathogenesis of the disease and possible novel therapeutic approaches based on a better understanding of subtype-specific disease biology. Although heterogeneity in liposarcoma genetics and phenotype as well as the associated development of resistance to therapy make difficult the introduction of novel therapeutic targets into the clinic, recently a number of targeted therapy drugs were proposed for LPS treatment. The most promising results were shown for CDK4/6 and MDM2 inhibitors as well as for the multi-kinase inhibitors anlotinib and sunitinib.
Collapse
Affiliation(s)
- Ekaterina A. Lesovaya
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol’tnaya St., Ryazan 390026, Russia;
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Timur I. Fetisov
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Beniamin Yu. Bokhyan
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Varvara P. Maksimova
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Evgeny P. Kulikov
- Faculty of Oncology, I.P. Pavlov Ryazan State Medical University, Ministry of Health of Russia, 9 Vysokovol’tnaya St., Ryazan 390026, Russia;
| | - Gennady A. Belitsky
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
| | - Kirill I. Kirsanov
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Marianna G. Yakubovskaya
- N.N. Blokhin Russian Cancer Research Center, Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia; (E.A.L.); (T.I.F.); (B.Y.B.); (V.P.M.); (K.I.K.)
- Laboratory of Single Cell Biology, Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya St., Moscow 117198, Russia
| |
Collapse
|
2
|
Warmke LM, Al-Ibraheemi A, Wang L, Parham D, Rudzinski ER, Stohr BA, Miles C, Habeeb O, Davis JL. FGFR1 gene fusions in a subset of pediatric mesenchymal tumors: Expanding the genetic spectrum of tumors sharing histologic overlap with infantile fibrosarcoma and "NTRK-rearranged" spindle cell neoplasms. Genes Chromosomes Cancer 2023; 62:641-647. [PMID: 37265193 DOI: 10.1002/gcc.23179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/01/2023] [Accepted: 05/20/2023] [Indexed: 06/03/2023] Open
Abstract
As the classification of kinase-driven spindle cell tumors continues to evolve, we describe the first series of pediatric mesenchymal tumors harboring FGFR1 gene fusions that share histologic overlap with infantile fibrosarcoma and "NTRK-rearranged" spindle cell neoplasms. Herein, we present three cases of FGFR1-rearranged pediatric mesenchymal tumors, including one case with FGFR1::PARD6B gene fusion and two cases with FGFR1::EBF2 gene fusion. The tumors involved infants ranging from 3 to 9 months in age with a male-to-female ratio of 2:1. All tumors involved the deep soft tissue of the gluteal, pelvic, or perirectal region. Histologically, the tumors comprised a cellular spindle cell neoplasm with primitive stellate cells, focal myxoid stroma, focal epithelioid features, no necrosis, and occasional mitotic figures (2-6 per 10 high-power field). By immunohistochemistry, the neoplastic cells focally expressed CD34 but lacked expression of S100 protein, SMA, desmin, myogenin, MyoD1, pan-TRK, and ALK. These three cases, including a case with long-term clinical follow-up, demonstrate that FGFR1 fusions occur in a subset of newly described pediatric kinase-driven mesenchymal tumors with locally aggressive behavior. Importantly, knowledge of these genetic alterations in this spectrum of pediatric tumors is key for diagnostic and targeted therapeutic purposes.
Collapse
Affiliation(s)
- Laura M Warmke
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Larry Wang
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, California, United States
| | - David Parham
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, California, United States
| | - Erin R Rudzinski
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, United States
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, United States
| | - Bradley A Stohr
- Department of Pathology, University of California San Francisco, San Francisco, California, United States
| | - Carina Miles
- Department of Pathology, Middlemore Hospital, Auckland, New Zealand
| | - Omar Habeeb
- Department of Pathology, Middlemore Hospital, Auckland, New Zealand
| | - Jessica L Davis
- Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana, United States
| |
Collapse
|
3
|
Dang TN, Tiongco RP, Brown LM, Taylor JL, Lyons JM, Lau FH, Floyd ZE. Expression of the preadipocyte marker ZFP423 is dysregulated between well-differentiated and dedifferentiated liposarcoma. BMC Cancer 2022; 22:300. [PMID: 35313831 PMCID: PMC8939188 DOI: 10.1186/s12885-022-09379-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background Well-differentiated and dedifferentiated liposarcomas are rare soft tissue tumors originating in adipose tissue that share genetic abnormalities but have significantly different metastatic potential. Dedifferentiated liposarcoma (DDLPS) is highly aggressive and has an overall 5-year survival rate of 30% as compared to 90% for well-differentiated liposarcoma (WDLPS). This discrepancy may be connected to their potential to form adipocytes, where WDLPS is adipogenic but DDLPS is adipogenic-impaired. Normal adipogenesis requires Zinc Finger Protein 423 (ZFP423), a transcriptional coregulator of Perixosome Proliferator Activated Receptor gamma (PPARG2) mRNA expression that defines committed preadipocytes. Expression of ZFP423 in preadipocytes is promoted by Seven-In-Absentia Homolog 2 (SIAH2)-mediated degradation of Zinc Finger Protein 521 (ZFP521). This study investigated the potential role of ZFP423, SIAH2 and ZFP521 in the adipogenic potential of WDLPS and DDLPS. Methods Human WDLPS and DDLPS fresh and paraffin-embedded tissues were used to assess the gene and protein expression of proadipogenic regulators. In parallel, normal adipose tissue stromal cells along with WDLPS and DDLPS cell lines were cultured, genetically modified, and induced to undergo adipogenesis in vitro. Results Impaired adipogenic potential in DDLPS was associated with reduced ZFP423 protein levels in parallel with reduced PPARG2 expression, potentially involving regulation of ZFP521. SIAH2 protein levels did not define a clear distinction related to adipogenesis in these liposarcomas. However, in primary tumor specimens, SIAH2 mRNA was consistently upregulated in DDLPS compared to WDLPS when assayed by fluorescence in situ hybridization or real-time PCR. Conclusions These data provide novel insights into ZFP423 expression in adipogenic regulation between WDLPS and DDLPS adipocytic tumor development. The data also introduces SIAH2 mRNA levels as a possible molecular marker to distinguish between WDLPS and DDLPS. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09379-6.
Collapse
Affiliation(s)
- Thanh N Dang
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA
| | - Rafael P Tiongco
- Tulane University School of Medicine, New Orleans, Louisiana, 70118, USA
| | - Loren M Brown
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, Louisiana, 70112, USA
| | - Jessica L Taylor
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA
| | - John M Lyons
- Our Lady of the Lake Medical Center, Baton Rouge, Louisiana, 70808, USA
| | - Frank H Lau
- Department of Surgery, Louisiana State University Health Science Center, New Orleans, Louisiana, 70112, USA.
| | - Z Elizabeth Floyd
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, 70808, USA.
| |
Collapse
|
4
|
Napolitano A, Ostler AE, Jones RL, Huang PH. Fibroblast Growth Factor Receptor (FGFR) Signaling in GIST and Soft Tissue Sarcomas. Cells 2021; 10:cells10061533. [PMID: 34204560 PMCID: PMC8235236 DOI: 10.3390/cells10061533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Sarcomas are a heterogeneous group of rare malignancies originating from mesenchymal tissues with limited therapeutic options. Recently, alterations in components of the fibroblast growth factor receptor (FGFR) signaling pathway have been identified in a range of different sarcoma subtypes, most notably gastrointestinal stromal tumors, rhabdomyosarcomas, and liposarcomas. These alterations include genetic events such as translocations, mutations, and amplifications as well as transcriptional overexpression. Targeting FGFR has therefore been proposed as a novel potential therapeutic approach, also in light of the clinical activity shown by multi-target tyrosine kinase inhibitors in specific subtypes of sarcomas. Despite promising preclinical evidence, thus far, clinical trials have enrolled very few sarcoma patients and the efficacy of selective FGFR inhibitors appears relatively low. Here, we review the known alterations of the FGFR pathway in sarcoma patients as well as the preclinical and clinical evidence for the use of FGFR inhibitors in these diseases. Finally, we discuss the possible reasons behind the current clinical data and highlight the need for biomarker stratification to select patients more likely to benefit from FGFR targeted therapies.
Collapse
Affiliation(s)
- Andrea Napolitano
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- Department of Medical Oncology, University Campus Bio-Medico, 00128 Rome, Italy
| | - Alexandra E. Ostler
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
| | - Robin L. Jones
- Sarcoma Unit, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK; (A.N.); (A.E.O.); (R.L.J.)
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Paul H. Huang
- The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
- Correspondence: ; Tel.: +44-207-153-5554
| |
Collapse
|
5
|
Establishment and characterization of NCC-MLPS1-C1: a novel patient-derived cell line of myxoid liposarcoma. Hum Cell 2020; 34:667-674. [PMID: 33146842 DOI: 10.1007/s13577-020-00454-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
Myxoid liposarcoma is a rare mesenchymal malignancy, which is characterized by a FUS-DDIT3 fusion known as chromosomal translocation t(12;16)(q13;p11) and arises in the fat tissue. Although surgery with radiation has been established as a standard treatment, myxoid liposarcoma shows frequent recurrence and poor prognosis, thus requiring new therapeutic approaches. Patient-derived cell lines represent a critical tool for basic and preclinical research. However, only two such myxoid liposarcoma cell lines have been reported, and they are not available in cell banks. The aim of this study was to establish and characterize a novel myxoid liposarcoma cell line. Using surgically resected tumor tissue from a 47-year-old male patient, we established the NCC-MLPS1-C1 cell line. NCC-MLPS1-C1 cells were characterized by FUS-DDIT3 fusion, slow growth, spheroid formation, and invasive capability. We screened the effect of anti-cancer agents on the proliferation of NCC-MLPS1-C1 cells. The cells displayed a remarkable response to multitarget kinase inhibitors of RET, PDGFR-β, VEGFR, or FGFR. NCC-MLPS1-C1 cells and the tumor tissue shared common profiles of kinase activity including identified drug targets, such as RET and PDGFR-β. We believe that NCC-MLPS1-C1 cells will represent a useful tool for basic and preclinical studies of myxoid liposarcoma.
Collapse
|
6
|
Novel Therapeutic Insights in Dedifferentiated Liposarcoma: A Role for FGFR and MDM2 Dual Targeting. Cancers (Basel) 2020; 12:cancers12103058. [PMID: 33092134 PMCID: PMC7589658 DOI: 10.3390/cancers12103058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Well-differentiated/dedifferentiated liposarcomas (WDLPS/DDLPS) are the most frequent soft tissue sarcomas. Despite the hopes raised by some targeted therapies, effective well-tolerated treatments for DDLPS are still lacking. Small-molecule FGFR inhibitors are currently evaluated in advanced clinical trials including the potent FDA-approved pan-FGFR inhibitor erdafitinib. We provide the first analysis of FGFR1-4 expression and their prognostic value in a series of 694 WDLPS/DDLPS samples. We identified FGFR1 and FGFR4 as prognostic biomarkers. We demonstrated erdafitinib efficacy and showed that erdafitinib combination with the MDM2 antagonist idasanutlin was highly synergistic in vitro and in vivo. The clinical relevance of our findings was supported by our data on a patient with DDLPS refractory to multiple lines of treatment whose tumor was stabilized for 12 weeks on erdafitinib. These data provide a rationale to use FGFR expression as a biomarker to select patients for clinical trials investigating FGFR inhibitors and to test combined erdafitinib and idasanutlin. Abstract We aimed to evaluate the therapeutic potential of the pan-FGFR inhibitor erdafitinib to treat dedifferentiated liposarcoma (DDLPS). FGFR expression and their prognostic value were assessed in a series of 694 samples of well-differentiated/dedifferentiated liposarcoma (WDLPS/DDLPS). The effect of erdafitinib—alone or in combination with other antagonists—on tumorigenicity was evaluated in vitro and in vivo. We detected overexpression of FGFR1 and/or FGFR4 in a subset of WDLPS and DDLPS and demonstrated correlation of this expression with poor prognosis. Erdafitinib treatment reduced cell viability, inducing apoptosis and strong inhibition of the ERK1/2 pathway. Combining erdafitinib with the MDM2 antagonist RG7388 exerted a synergistic effect on viability, apoptosis, and clonogenicity in one WDLPS and two DDLPS cell lines. Efficacy of this combination was confirmed in vivo on a DDLPS xenograft. Importantly, we report the efficacy of erdafitinib in one patient with refractory DDLPS showing disease stabilization for 12 weeks. We provide evidence that the FGFR pathway has therapeutic potential for a subset of DDLPS and that an FGFR1/FGFR4 expression might constitute a powerful biomarker to select patients for FGFR inhibitor clinical trials. In addition, we show that combining erdafitinib with RG7388 is a promising strategy for patients with DDLPS that deserves further investigation in the clinical setting.
Collapse
|
7
|
Abstract
Fused in sarcoma: DNA damage‐inducible transcript 3 protein (FUS:DDIT3) is a chimeric fusion oncoprotein present in 90% of human myxoid liposarcomas (MLS). The study by Trautmann et al in this issue of EMBO Molecular Medicine utilizes a drop‐out RNAi screen to establish hyperactive Yes‐associated protein 1 (YAP1), a major downstream nuclear effector of the Hippo signaling pathway, as a selectively essential transcript promoting viability and growth of MLS. These observations add to a growing body of evidence underscoring the importance of dysregulation of Hippo signaling in soft‐tissue sarcomas expressing fusion oncoproteins and identify a novel target for therapeutic intervention in MLS. Comprehensive molecular characterization pipelines are needed to screen patients with advanced soft‐tissue sarcomas for the presence of druggable alterations, including but not limited to nuclear YAP1 expression in MLS, to facilitate treatment decisions and advance therapy.
Collapse
Affiliation(s)
- Carla Regina
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Simone Hettmer
- Division of Pediatric Hematology and Oncology, Department of Pediatric and Adolescent Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Li J, Xu C, Liu Y, Li Y, Du S, Zhang R, Sun Y, Zhang R, Wang Y, Xue H, Ni S, Asiya M, Xue G, Li Y, Shi L, Li D, Pan Z, Zhang Y, Wang Z, Cai B, Wang N, Yang B. Fibroblast growth factor 21 inhibited ischemic arrhythmias via targeting miR-143/EGR1 axis. Basic Res Cardiol 2020; 115:9. [PMID: 31900593 DOI: 10.1007/s00395-019-0768-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
Ventricular arrhythmia is the most common cause of sudden cardiac death in patients with myocardial infarction (MI). Fibroblast growth factor 21 (FGF21) has been shown to play an important role in cardiovascular and metabolic diseases. However, the effects of FGF21 on ventricular arrhythmias following MI have not been addressed yet. The present study was conducted to investigate the pharmacological action of FGF21 on ventricular arrhythmias after MI. Adult male mice were administrated with or without recombinant human basic FGF21 (rhbFGF21), and the susceptibility to arrhythmias was assessed by programmed electrical stimulation and optical mapping techniques. Here, we found that rhbFGF21 administration reduced the occurrence of ventricular tachycardia (VT), improved epicardial conduction velocity and shorted action potential duration at 90% (APD90) in infarcted mouse hearts. Mechanistically, FGF21 may improve cardiac electrophysiological remodeling as characterized by the decrease of INa and IK1 current density in border zone of infarcted mouse hearts. Consistently, in vitro study also demonstrated that FGF21 may rescue oxidant stress-induced dysfunction of INa and IK1 currents in cultured ventricular myocytes. We further found that oxidant stress-induced down-regulation of early growth response protein 1 (EGR1) contributed to INa and IK1 reduction in post-infarcted hearts, and FGF21 may recruit EGR1 into the SCN5A and KCNJ2 promoter regions to up-regulate NaV1.5 and Kir2.1 expression at transcriptional level. Moreover, miR-143 was identified as upstream of EGR1 and mediated FGF21-induced EGR1 up-regulation in cardiomyocytes. Collectively, rhbFGF21 administration effectively suppressed ventricular arrhythmias in post-infarcted hearts by regulating miR-143-EGR1-NaV1.5/Kir2.1 axis, which provides novel therapeutic strategies for ischemic arrhythmias in clinics.
Collapse
Affiliation(s)
- Jiamin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chaoqian Xu
- Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yining Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuanshi Li
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Sijia Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ruijie Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuehang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ronghao Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ying Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hongru Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Sha Ni
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Mavlikhanova Asiya
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Genlong Xue
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yanyao Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ling Shi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Desheng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhenwei Pan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, 150086, China
| | - Zhiguo Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Benzhi Cai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University (Institute of Clinical Pharmacy, The University Key Laboratory of Drug Research, Heilongjiang Higher Education Institutions), Harbin, 150081, China.
| | - Ning Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
9
|
Wang D, Yang L, Yu W, Zhang Y. Investigational fibroblast growth factor receptor 2 antagonists in early phase clinical trials to treat solid tumors. Expert Opin Investig Drugs 2019; 28:903-916. [PMID: 31560229 DOI: 10.1080/13543784.2019.1672655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Fibroblast growth factor receptor 2 (FGFR2) is a highly conserved transmembrane tyrosine kinase receptor. FGFR2 dysregulation occurs in numerous human solid tumors and overexpression is closely associated with tumor progression. FGFR2 has recently been reported as a therapeutic target for cancer. Several targeted therapies are being investigated to disrupt FGFR2 activity; these include multi-target tyrosine kinase inhibitors (TKIs), pan-FGFR targeted TKIs and FGFR2 monoclonal antibodies. Areas: This review examines FGFR2 regulation and function in cancer and its potential as a target for cancer treatment. Expert opinion: Highly specific FGFR2 blockers have not yet been developed and moreover, resistance to FGFR2-targeted therapies is a challenge. More sophisticated patient selection strategies would help improve FGFR2-targeted therapies and combination therapy is considered the most promising approach for cancer patients with FGFR2 alterations.
Collapse
Affiliation(s)
- Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
| | - Weina Yu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China.,School of Life Sciences, Zhengzhou University , Zhengzhou , Henan , P.R. China
| |
Collapse
|
10
|
FusionPathway: Prediction of pathways and therapeutic targets associated with gene fusions in cancer. PLoS Comput Biol 2018; 14:e1006266. [PMID: 30040819 PMCID: PMC6075785 DOI: 10.1371/journal.pcbi.1006266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/03/2018] [Accepted: 06/05/2018] [Indexed: 12/03/2022] Open
Abstract
Numerous gene fusions have been uncovered across multiple cancer types. Although the ability to target several of these fusions has led to the development of some successful anti-cancer drugs, most of them are not druggable. Understanding the molecular pathways of a fusion is important in determining its function in oncogenesis and in developing therapeutic strategies for patients harboring the fusion. However, the molecular pathways have been elucidated for only a few fusions, in part because of the labor-intensive nature of the required functional assays. Therefore, we developed a domain-based network approach to infer the pathways of a fusion. Molecular interactions of a fusion are first predicted by using its protein domain composition, and its associated pathways are then inferred from these molecular interactions. We demonstrated the capabilities of this approach by primarily applying it to the well-studied BCR-ABL1 fusion. The approach was also applied to two undruggable fusions in sarcoma, EWS-FL1 and FUS-DDIT3. We successfully identified known genes and pathways associated with these fusions and satisfactorily validated these predictions using several benchmark sets. The predictions of EWS-FL1 and FUS-DDIT3 also correlate with results of high-throughput drug screening. To our best knowledge, this is the first approach for inferring pathways of fusions. We present a computational framework, FusionPathway, to infer the oncogenesis pathways of a fusion and help develop therapeutic strategies in these pathways for patients harboring the fusion. In this work, we successfully validated the capabilities of this approach through its application to the well-studied BCR-ABL1 fusion and two undruggable fusions in sarcoma, EWS-FL1 and FUS-DDIT3. Especially, the predictions of EWS-FL1 and FUS-DDIT3 correlate well with results of high-throughput drug screening in sarcoma cells. Therefore, FusionPathway can be an effective method to infer pathways and potential therapeutic targets that are associated with those undruggable fusions. Our results of BCR-ABL1 also suggest that FusionPathway may be able to help elucidate pathway-dependent mechanisms of resistances to those kinase fusion-targeting therapies and develop strategies to overcome the resistances. In addition, the developed R package of FusionPathways (https://github.com/perwu/FusionPathway/) can help people easily apply our approach to study other important fusions in cancer.
Collapse
|
11
|
Jing W, Lan T, Chen H, Zhang Z, Chen M, Peng R, He X, Zhang H. Amplification of FRS2 in atypical lipomatous tumour/well-differentiated liposarcoma and de-differentiated liposarcoma: a clinicopathological and genetic study of 146 cases. Histopathology 2018; 72:1145-1155. [PMID: 29368794 DOI: 10.1111/his.13473] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/18/2018] [Indexed: 02/05/2023]
Abstract
AIMS The aim of this study was to evaluate the frequency of FRS2 amplification and its relationship with the clinicopathological features of atypical lipomatous tumour (ALT)/well-differentiated liposarcoma (WDL)/de-differentiated liposarcoma (DDL). METHODS AND RESULTS FRS2 and MDM2 fluorescence in-situ hybridisation (FISH) was performed on 146 tumours (70 ALT/WDLs and 76 DDLs). One hundred and eight control samples were included for FRS2 analysis. FRS2 amplification was detected in 136 of 146 (93.2%) ALT/WDL/DDLs, including 63 ALT/WDLs and 73 DDLs. A higher FRS2/CEP12 ratio was observed in DDLs than in ALT/WDLs (P = 0.0005). The FRS2/CEP12 ratio of peripheral tumours was lower than that of central tumours (P = 0.00004). All the ALT/WDL/DDLs showed MDM2 amplification (100%). The MDM2+ /FRS2- series included seven ALT/WDLs and three DDLs. Four of seven (57.1%) MDM2+ /FRS2- ALT/WDLs occurred in peripheral sites, slightly higher than the percentage of MDM2+ /FRS2+ ALT/WDLs (28 of 63, 44.4%). All the three MDM2+ /FRS2- DDLs (100%) were peripheral tumours, a much higher proportion than that of MDM2+ /FRS2+ DDLs (10 of 73, 13.7%). A high percentage of homologous pleomorphic liposarcoma-like DDLs (two of three) were observed in the MDM2+ /FRS2- group. In the control group all the parosteal osteosarcomas (five of five, 100%) were FRS2 amplified, whereas the remaining 103 samples were FRS2 non-amplified. CONCLUSIONS These findings suggest that FRS2 is amplified consistently in ALT/WDL/DDLs and offer another avenue for the investigation of the biology of this tumour group. MDM2+ /FRS2- cases seem to be associated with certain clinicopathological features, and further investigation is needed.
Collapse
Affiliation(s)
- Wenyi Jing
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Lan
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Huijiao Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Min Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Peng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Tiong KH, Tan BS, Choo HL, Chung FFL, Hii LW, Tan SH, Khor NTW, Wong SF, See SJ, Tan YF, Rosli R, Cheong SK, Leong CO. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival. Oncotarget 2018; 7:57633-57650. [PMID: 27192118 PMCID: PMC5295378 DOI: 10.18632/oncotarget.9328] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/26/2016] [Indexed: 12/27/2022] Open
Abstract
Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.
Collapse
Affiliation(s)
- Kai Hung Tiong
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,Oral Cancer Research and Coordinating Center (OCRCC), Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.,Cancer Research Initiatives Foundation, Sime Darby Medical Centre, Subang Jaya, Malaysia
| | - Boon Shing Tan
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Heng Lungh Choo
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ling-Wei Hii
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Si Hoey Tan
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Nelson Tze Woei Khor
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Shew Fung Wong
- School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Sze-Jia See
- Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Yuen-Fen Tan
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Rozita Rosli
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Soon-Keng Cheong
- Faculty of Medicine and Health Sciences, University Tunku Abdul Rahman, Bandar Sungai Long, Selangor, Malaysia
| | - Chee-Onn Leong
- Center for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia.,School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Kanojia D, Garg M, Martinez J, M T A, Luty SB, Doan NB, Said JW, Forscher C, Tyner JW, Koeffler HP. Kinase profiling of liposarcomas using RNAi and drug screening assays identified druggable targets. J Hematol Oncol 2017; 10:173. [PMID: 29132397 PMCID: PMC5683536 DOI: 10.1186/s13045-017-0540-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/06/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Liposarcoma, the most common soft tissue tumor, is understudied cancer, and limited progress has been made in the treatment of metastatic disease. The Achilles heel of cancer often is their kinases that are excellent therapeutic targets. However, very limited knowledge exists of therapeutic critical kinase targets in liposarcoma that could be potentially used in disease management. METHODS Large RNAi and small-molecule tyrosine kinase inhibitor screens were performed against the proliferative capacity of liposarcoma cell lines of different subtypes. Each small molecule inhibitor was either FDA approved or in a clinical trial. RESULTS Screening assays identified several previously unrecognized targets including PTK2 and KIT in liposarcoma. We also observed that ponatinib, multi-targeted tyrosine kinase inhibitor, was the most effective drug with anti-growth effects against all cell lines. In vitro assays showed that ponatinib inhibited the clonogenic proliferation of liposarcoma, and this anti-growth effect was associated with apoptosis and cell cycle arrest at the G0/G1 phase as well as a decrease in the KIT signaling pathway. In addition, ponatinib inhibited in vivo growth of liposarcoma in a xenograft model. CONCLUSIONS Two large-scale kinase screenings identified novel liposarcoma targets and a FDA-approved inhibitor, ponatinib with clear anti-liposarcoma activity highlighting its potential therapy for treatment of this deadly tumor.
Collapse
Affiliation(s)
- Deepika Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Manoj Garg
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Jacqueline Martinez
- Cell, Developmental & Cancer, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Anand M T
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Samuel B Luty
- Cell, Developmental & Cancer, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - Ngan B Doan
- Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, 90095, USA
| | - Jonathan W Said
- Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California, 90095, USA
| | - Charles Forscher
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California School of Medicine, Los Angeles, California, 90048, USA
| | - Jeffrey W Tyner
- Cell, Developmental & Cancer, Oregon Health & Science University, Portland, Oregon, 97239, USA
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California School of Medicine, Los Angeles, California, 90048, USA.,National University Cancer Institute, National University Hospital, Singapore, 119074, Singapore
| |
Collapse
|
14
|
Chen J, Wang Z, Zheng Z, Chen Y, Khor S, Shi K, He Z, Wang Q, Zhao Y, Zhang H, Li X, Li J, Yin J, Wang X, Xiao J. Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-κB-dependent neuroinflammation to improve functional recovery after spinal cord injury. Cell Death Dis 2017; 8:e3090. [PMID: 28981091 PMCID: PMC5682656 DOI: 10.1038/cddis.2017.490] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/07/2017] [Accepted: 08/28/2017] [Indexed: 01/09/2023]
Abstract
Therapeutics used to treat central nervous system (CNS) injury were designed to repair neurites and inhibit cell apoptosis. Previous studies have shown that neuron-derived FGF10 exerts potential neuroprotective effects after cerebral ischemia injury. However, little is known about the role of endogenous FGF10 in the recovery process after spinal cord injury (SCI). In this study, we found that FGF10 is mainly produced by neuron and microglia/macrophages, and its expression is increased after SCI. Exogenous treatment of FGF10 improved functional recovery after injury by reducing apoptosis, as well as repairing neurites via FGFR2/PI3K/Akt pathway. On another hand, inhibiting the PI3K/Akt pathway with LY294002 partially reversed the therapeutic effects of FGF10. In addition, small interfering RNA knockdown of FGFR2 suppressed PI3K/Akt pathway activation by FGF10 and abolished its anti-apoptotic and neurite repair effects in vitro. Furthermore, FGF10 treatment inhibited the activation and proliferation of microglia/macrophages through regulation of TLR4/NF-κB pathway, and attenuated the release of pro-inflammatory cytokines after SCI. Thus, the increased expression of FGF10 after acute SCI is an endogenous self-protective response, suggesting that FGF10 could be a potential treatment for CNS injury.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - ZengMing Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - KeSi Shi
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - ZiLi He
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qingqing Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingzheng Zhao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jiawei Li
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayu Yin
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Xiao
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Zhang L, Tan W, Zhou J, Xu M, Yuan G. Investigation of G-quadruplex formation in the FGFR2 promoter region and its transcriptional regulation by liensinine. Biochim Biophys Acta Gen Subj 2017; 1861:884-891. [PMID: 28132898 DOI: 10.1016/j.bbagen.2017.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/21/2017] [Accepted: 01/25/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Fibroblast growth factor receptor 2 (FGFR2) is overexpressed in breast cancer tissues and cells, and has been shown to be a susceptibility factor for breast cancer. In this study, we found that the G-rich sequences in the FGFR2 promoter region can form G-quadruplexes, which could be the target and inhibitor of the FGFR2 gene. METHODS Initially, the formation of G-quadruplexes was confirmed by ESI-MS and CD, and DMS footprinting experiments gave the folding pattern of the G-quadruplexes. After luciferase reporter assays revealed that the G-quadruplex could inhibit the activity of the FGFR2 promoter, MS and SPR showed binding affinity and selectivity of the ligand. Then cell culture experiments and ChIP assay showed the bioactivity of the ligand. RESULTS We found that three G-rich sequences (S1-S3) in the FGFR2 promoter region can form G-quadruplex structures. And a natural alkaloid, liensinine, was found to bind to the S1 G-quadruplex with relative high affinity and selectivity. Cell culture experiments showed that liensinine inhibits FGFR2 activity at both the transcriptional and translational levels. Moreover, chromatin immunoprecipitation assay (ChIP) results showed that liensinine blocks the binding of E2F1 at the transcription factor binding site (TFBS) in the S1 sequence, which is the mechanism through which liensinine inhibits the FGFR2 gene. CONCLUSIONS A natural alkaloid was discovered to selectively bind to the S1 G-quadruplex with relative high affinity, and therefore inhibited FGFR2 transcription and translation. GENERAL SIGNIFICANCE Our discovery offers a useful strategy to inhibit FGFR2 transcription, i.e., targeting the G-quadruplex with a natural alkaloid.
Collapse
Affiliation(s)
- Lulu Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Analytical Instrumentation Center, Peking University, Beijing 100871, China.
| | - Ming Xu
- Institute of Vascular Medicine, Department of Cardiology, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Beijing 100191, China.
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
16
|
Axitinib Has Antiangiogenic and Antitumorigenic Activity in Myxoid Liposarcoma. Sarcoma 2016; 2016:3484673. [PMID: 27822137 PMCID: PMC5086398 DOI: 10.1155/2016/3484673] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
Myxoid liposarcoma is a rare form of soft-tissue sarcoma. Although most patients initially respond well to treatment, approximately 21% relapse, highlighting the need for alternative treatments. To identify novel treatment regimens and gain a better understanding of myxoid liposarcoma tumor biology, we screened various candidate and approved targeted therapeutics and chemotherapeutics against myxoid liposarcoma cell lines. Therapeutics that target angiogenesis showed antitumor activity. The small molecule inhibitor axitinib, which targets angiogenesis by inhibiting the VEGFR and PDGFR families and c-Kit, inhibited cell cycle progression and induced apoptosis in vitro, as well as having significant antitumor activity against MLS 1765 myxoid liposarcoma xenografts in mice. Axitinib also displayed synergistic antitumor activity in vitro when combined with the potassium channel ionophore salinomycin or the BH3 mimetic ABT-737. Another angiogenesis-targeting therapeutic, 4EGI-1, which targets the oncoprotein eIF4E, significantly decreased angiogenic ligand expression by myxoid liposarcoma cells and reduced tumor cell growth. To verify this oncogenic addiction to angiogenic pathways, we utilized VEGFR-derived ligand traps and found that autocrine VEGFR signaling was crucial to myxoid liposarcoma cell survival. Overall, these findings suggest that autocrine angiogenic signaling through the VEGFR family is critical to myxoid liposarcoma cell survival and that further study of axitinib as a potential anticancer therapy is warranted.
Collapse
|
17
|
G protein pathway suppressor 2 (GPS2) acts as a tumor suppressor in liposarcoma. Tumour Biol 2016; 37:13333-13343. [PMID: 27460081 PMCID: PMC5097092 DOI: 10.1007/s13277-016-5220-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 07/14/2016] [Indexed: 12/15/2022] Open
Abstract
Liposarcoma(LPS) is the most common type of soft tissue sarcoma accounting for 20 % of all adult sarcomas. However, the molecular pathogenesis of this malignancy is still poorly understood. Here, we showed that GPS2 expression was downregulated in LPS and correlated with the prognosis of this disease. In vitro study showed that knockdown of GPS2 resulted in enhanced proliferation and migration of LPS cell line SW872, without significant influence of cell death. Conclusively, our results suggest that GPS2 may act as a tumor suppressor in LPS and serve as a potential prognosis marker for this disease.
Collapse
|
18
|
Zhou WY, Zheng H, Du XL, Yang JL. Characterization of FGFR signaling pathway as therapeutic targets for sarcoma patients. Cancer Biol Med 2016; 13:260-8. [PMID: 27458533 PMCID: PMC4944539 DOI: 10.20892/j.issn.2095-3941.2015.0102] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The fibroblast growth factor receptor (FGFR) family plays important roles in regulating cell growth, proliferation, survival, differentiation and angiogenesis. Deregulation of the FGF/FGFR signaling pathway has been associated with multiple development syndromes and cancers, and thus therapeutic strategies targeting FGFs and FGFR in human cancer are currently being explored. However, few studies on the FGF/FGFR pathway have been conducted in sarcoma, which has a poor outcome with traditional treatments such as surgery, chemotherapy, and radiotherapy. Hence, in the present review, we provide an overview of the role of the FGF/FGFR pathway signal in sarcoma and FGFR inhibitors, which might be new targets for the treatment of sarcomas according to recent research.
Collapse
Affiliation(s)
| | - Hong Zheng
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xiao-Ling Du
- Department of Diagnostics, Tianjin Medical University, Tianjin 300061, China
| | | |
Collapse
|
19
|
Nguyen T, Mège RM. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations. Eur J Cell Biol 2016; 95:415-426. [PMID: 27320194 DOI: 10.1016/j.ejcb.2016.05.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - René Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France.
| |
Collapse
|
20
|
Katoh M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med 2016; 38:3-15. [PMID: 27245147 PMCID: PMC4899036 DOI: 10.3892/ijmm.2016.2620] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF)2, FGF4, FGF7 and FGF20 are representative paracrine FGFs binding to heparan-sulfate proteoglycan and fibroblast growth factor receptors (FGFRs), whereas FGF19, FGF21 and FGF23 are endocrine FGFs binding to Klotho and FGFRs. FGFR1 is relatively frequently amplified and overexpressed in breast and lung cancer, and FGFR2 in gastric cancer. BCR-FGFR1, CNTRL-FGFR1, CUX1-FGFR1, FGFR1OP-FGFR1, MYO18A-FGFR1 and ZMYM2-FGFR1 fusions in myeloproliferative neoplasms are non-receptor-type FGFR kinases, whereas FGFR1-TACC1, FGFR2-AFF3, FGFR2-BICC1, FGFR2-PPHLN1, FGFR3-BAIAP2L1 and FGFR3-TACC3 fusions in solid tumors are transmembrane-type FGFRs with C-terminal alterations. AZD4547, BGJ398 (infigratinib), Debio-1347 and dovitinib are FGFR1/2/3 inhibitors; BLU9931 is a selective FGFR4 inhibitor; FIIN-2, JNJ-42756493, LY2874455 and ponatinib are pan-FGFR inhibitors. AZD4547, dovitinib and ponatinib are multi-kinase inhibitors targeting FGFRs, colony stimulating factor 1 receptor (CSF1R), vascular endothelial growth factor (VEGF)R2, and others. The tumor microenvironment consists of cancer cells and stromal/immune cells, such as cancer-associated fibroblasts (CAFs), endothelial cells, M2-type tumor-associating macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells. FGFR inhibitors elicit antitumor effects directly on cancer cells, as well as indirectly through the blockade of paracrine signaling. The dual inhibition of FGF and CSF1 or VEGF signaling is expected to enhance the antitumor effects through the targeting of immune evasion and angiogenesis in the tumor microenvironment. Combination therapy using tyrosine kinase inhibitors (FGFR or CSF1R inhibitors) and immune checkpoint blockers (anti-PD-1 or anti-CTLA-4 monoclonal antibodies) may be a promising choice for cancer patients. The inhibition of FGF19-FGFR4 signaling is associated with a risk of liver toxicity, whereas the activation of FGF23-FGFR4 signaling is associated with a risk of heart toxicity. Endocrine FGF signaling affects the pathophysiology of cancer patients who are prescribed FGFR inhibitors. Whole-genome sequencing is necessary for the detection of promoter/enhancer alterations of FGFR genes and rare alterations of other genes causing FGFR overexpression. To sustain the health care system in an aging society, a benefit-cost analysis should be performed with a focus on disease-free survival and the total medical cost before implementing genome-based precision medicine for cancer patients.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan
| |
Collapse
|
21
|
Oncogene mutation profiling reveals poor prognosis associated with FGFR1/3 mutation in liposarcoma. Hum Pathol 2016; 55:143-50. [PMID: 27237367 DOI: 10.1016/j.humpath.2016.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 01/11/2023]
Abstract
Liposarcoma (LPS) is one of the most prevalent soft tissue sarcomas. LPS shows a poor response to radiation and chemotherapy. The causes of death in patients with LPS include locally recurrent and metastatic disease. We sought to examine novel gene mutations and pathways in primary and matched recurrent LPSs to identify potential therapeutic targets. We conducted a high-throughput analysis of 238 known mutations in 19 oncogenes using Sequenom MassARRAY technology. Nucleic acids were extracted from 19 primary and recurrent LPS samples, encompassing 9 dedifferentiated LPSs (DDLPS), 9 myxoid/round cell LPSs, and 1 pleomorphic LPS. Mutation screening revealed missense mutations in 21.1% (4/19) of the LPS specimens, including 4 different genes (FGFR1, FGFR3, PIK3CA, and KIT). Based on histologic subtypes, 22.2% DDLPS (2/9) and 22.2% myxoid cell LPS (2/9) contained gene mutations. Specifically, 3 (23.1%) of 13 primary tumors harbored mutations. Furthermore, although gene mutations were identified in 1 (11.1%) of 9 recurrent LPS samples, the difference between the primary and the recurrence was not statistically significant. Analysis of patient survival data indicated that patients harboring FGFR1/3 mutations experienced reduced overall survival (P<.05). Despite the limited number of samples, our findings provide the first evidence of FGFR1/3 mutations in DDLPS, which were associated with poor clinical outcomes. The FGFR pathway may play an important role in the development and progression of DDLPS and warrants further investigation; moreover, PIK3CA mutation is a common event (11.1%) in myxoid cell LPS.
Collapse
|
22
|
Ciencewicki JM, Verhein KC, Gerrish K, McCaw ZR, Li J, Bushel PR, Kleeberger SR. Effects of mannose-binding lectin on pulmonary gene expression and innate immune inflammatory response to ozone. Am J Physiol Lung Cell Mol Physiol 2016; 311:L280-91. [PMID: 27106289 DOI: 10.1152/ajplung.00205.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 04/20/2016] [Indexed: 02/07/2023] Open
Abstract
Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl(+/+)) and MBL-deficient (Mbl(-/-)) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl(-/-) than Mbl(+/+) mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl(+/+) and Mbl(-/-) mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS(2) data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at baseline and after exposure to ozone and significantly reduced pulmonary inflammation, thus indicating an important innate immunomodulatory role of the gene in this model.
Collapse
Affiliation(s)
- Jonathan M Ciencewicki
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Kirsten C Verhein
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Kevin Gerrish
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; and
| | - Zachary R McCaw
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jianying Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina;
| |
Collapse
|
23
|
Akizawa H, Nagatomo H, Odagiri H, Kohri N, Yamauchi N, Yanagawa Y, Nagano M, Takahashi M, Kawahara M. Conserved roles of fibroblast growth factor receptor 2 signaling in the regulation of inner cell mass development in bovine blastocysts. Mol Reprod Dev 2016; 83:516-25. [DOI: 10.1002/mrd.22646] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/30/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Hiroki Akizawa
- Laboratory of Animal Breeding and Reproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Hiroaki Nagatomo
- Laboratory of Animal Breeding and Reproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Haruka Odagiri
- Laboratory of Animal Breeding and Reproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Nanami Kohri
- Laboratory of Animal Breeding and Reproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Nobuhiko Yamauchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture; Kyushu University; Fukuoka Japan
| | - Yojiro Yanagawa
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Masashi Nagano
- Laboratory of Theriogenology, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine; Hokkaido University; Sapporo Japan
| | - Masashi Takahashi
- Laboratory of Animal Breeding and Reproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| | - Manabu Kawahara
- Laboratory of Animal Breeding and Reproduction; Research Faculty of Agriculture; Hokkaido University; Sapporo Japan
| |
Collapse
|