1
|
Harikumar H, van Royen ME, van Leenders GJ. 4D pathology: translating dynamic epithelial tubulogenesis to prostate cancer pathology. Histopathology 2024. [PMID: 39428716 DOI: 10.1111/his.15354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The Gleason score is the gold standard for grading of prostate cancer (PCa) and is assessed by assigning specific grades to different microscopical growth patterns. Aside from the Gleason grades, individual growth patterns such as cribriform architecture were recently shown to have independent prognostic value for disease outcome. PCa grading is performed on static tissue samples collected at one point in time, whereas in vivo epithelial tumour structures are dynamically invading, branching and expanding into the surrounding stroma. Due to the lack of models that are able to track human PCa microscopical developments over time, our understanding of underlying tissue dynamics is sparse. We postulate that human PCa expansion utilizes embryonic and developmental tubulogenetic pathways. The aim of this study is to provide a comprehensive overview of developmental pathways of normal epithelial tubule formation, elongation, and branching, and relate those to the static microscopical PCa growth patterns observed in daily clinical practise. This study could provide a rationale for the discerned pathological interobserver variability and the clinical outcome differences between PCa growth patterns.
Collapse
Affiliation(s)
- Hridya Harikumar
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - Martin E van Royen
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| | - Geert Jlh van Leenders
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Centre, Rotterdam, the Netherlands
| |
Collapse
|
2
|
Mechanism of Extracellular Vesicle Secretion Associated with TGF-β-Dependent Inflammatory Response in the Tumor Microenvironment. Int J Mol Sci 2022; 23:ijms232315335. [PMID: 36499660 PMCID: PMC9740594 DOI: 10.3390/ijms232315335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/10/2022] Open
Abstract
Extracellular vesicles (EVs) serve as central mediators in communication between tumor and non-tumor cells. These interactions are largely dependent on the function of the endothelial barrier and the set of receptors present on its surface, as endothelial cells (ECs) are a plenteous source of EVs. The molecular basis for EV secretion and action in the tumor microenvironment (TME) has not been fully elucidated to date. Emerging evidence suggests a prominent role of inflammatory pathways in promoting tumor progression and metastasis. Although transforming growth factor β (TGF-β) is a cytokine with strong immunomodulatory and protective activity in benign and early-stage cancer cells, it plays a pro-tumorigenic role in advanced cancer cells, which is known as the "TGF-β paradox". Thus, the aim of this review is to describe the correlation between EV release, TGF-β-dependent inflammation, and dysregulation of downstream TGF-β signaling in the context of cancer development.
Collapse
|
3
|
Yan X, Hong B, Feng J, Jin Y, Chen M, Li F, Qian Y. B7-H4 is a potential diagnostic and prognostic biomarker in colorectal cancer and correlates with the epithelial-mesenchymal transition. BMC Cancer 2022; 22:1053. [PMID: 36217128 PMCID: PMC9549643 DOI: 10.1186/s12885-022-10159-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/06/2022] [Indexed: 12/01/2022] Open
Abstract
Background As a negative co-stimulatory molecule of the B7 family, B7-H4 has recently attracted increased attention. However, the clinical value of B7-H4 in colorectal cancer (CRC) remains controversial and requires further investigation. This study aimed to investigate the role of B7-H4 in the clinical diagnosis and survival prognosis of CRC. Methods The relationships between B7-H4 expression, immune cell infiltration, epithelial-mesenchymal transition (EMT), clinicopathological features, and survival prognosis were determined through the TCGA database and verified in a large CRC cohort (n = 1118). Results The results showed the level of B7-H4 mRNA expression was significantly increased in the CRC tumor tissues compared with normal tissues (P < 0.001). Immunohistochemistry showed that B7-H4 protein expression was also up-regulated in CRC. The positive rate of B7-H4 in CRC tumor tissues was 76.38%, which was significantly higher than that in non-tumor tissues (P < 0.001). Overexpression of B7-H4 was positively correlated with lymph node metastasis, advanced TNM stage, and poor tumor differentiation (P = 0.012; 0.009; 0.014). Prognostic analysis showed high B7-H4 expression was associated with significantly shorter OS. Multivariate analysis demonstrated the risk of death in CRC patients with high B7-H4 expression is 1.487 times that of low B7-H4 expression. In addition, B7-H4 expression was negatively correlated with the epithelial marker E-cadherin (P < 0.001) and positively correlated with the mesenchymal marker vimentin (P < 0.001) in CRC tissues. However, B7-H4 expression was not associated with the immunosuppressive microenvironment in CRC. Conclusion B7-H4 may represent a potential biomarker for the diagnosis and prognosis of CRC and enhance CRC invasion by promoting EMT. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10159-5.
Collapse
Affiliation(s)
- Xiaotian Yan
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 166 North Qiutao Road, Hangzhou, Zhejiang Province, 310006, China
| | - Bo Hong
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Jie Feng
- Department of Blood Transfusion, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Yuanqing Jin
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang Province, China
| | - Mengting Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang Province, China
| | - Fugang Li
- Shanghai Upper Bio Tech Pharma Company Limited, Shanghai, 201201, China
| | - Yun Qian
- Department of Clinical Laboratory, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, 166 North Qiutao Road, Hangzhou, Zhejiang Province, 310006, China.
| |
Collapse
|
4
|
Li X, Chen L, Peng X, Zhan X. Progress of tumor-associated macrophages in the epithelial-mesenchymal transition of tumor. Front Oncol 2022; 12:911410. [PMID: 35965509 PMCID: PMC9366252 DOI: 10.3389/fonc.2022.911410] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
As a significant public health problem with high morbidity and mortality worldwide, tumor is one of the major diseases endangering human life. Moreover, metastasis is the most important contributor to the death of tumor patients. Epithelial-mesenchymal transition (EMT) is an essential biological process in developing primary tumors to metastasis. It underlies tumor progression and metastasis by inducing a series of alterations in tumor cells that confer the ability to move and migrate. Tumor-associated macrophages (TAMs) are one of the primary infiltrating immune cells in the tumor microenvironment, and they play an indispensable role in the EMT process of tumor cells by interacting with tumor cells. With the increasing clarity of the relationship between TAMs and EMT and tumor metastasis, targeting TAMs and EMT processes is emerging as a promising target for developing new cancer therapies. Therefore, this paper reviews the recent research progress of tumor-associated macrophages in tumor epithelial-mesenchymal transition and briefly discusses the current anti-tumor therapies targeting TAMs and EMT processes.
Collapse
Affiliation(s)
| | | | - Xiaobo Peng
- *Correspondence: Xiaobo Peng, ; Xianbao Zhan,
| | | |
Collapse
|
5
|
Chehade H, Tedja R, Ramos H, Bawa TS, Adzibolosu N, Gogoi R, Mor G, Alvero AB. Regulatory Role of the Adipose Microenvironment on Ovarian Cancer Progression. Cancers (Basel) 2022; 14:cancers14092267. [PMID: 35565396 PMCID: PMC9101128 DOI: 10.3390/cancers14092267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Adipocytes or fat cells are integral part of the ovarian tumor microenvironment. Secreted factors from adipocytes, as well as direct cell-to-cell interaction with ovarian cancer cells have been shown to directly support ovarian tumor progression. Elucidating the molecular pathways involved is crucial in the identification of relevant targets. Abstract The tumor microenvironment of ovarian cancer is the peritoneal cavity wherein adipose tissue is a major component. The role of the adipose tissue in support of ovarian cancer progression has been elucidated in several studies from the past decades. The adipocytes, in particular, are a major source of factors, which regulate all facets of ovarian cancer progression such as acquisition of chemoresistance, enhanced metastatic potential, and metabolic reprogramming. In this review, we summarize the relevant studies, which highlight the role of adipocytes in ovarian cancer progression and offer insights into unanswered questions and possible future directions of research.
Collapse
Affiliation(s)
- Hussein Chehade
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
| | - Roslyn Tedja
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
- Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Harry Ramos
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
| | - Tejeshwar Singh Bawa
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
| | - Nicholas Adzibolosu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
| | - Radhika Gogoi
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
- Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Gil Mor
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
- Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Ayesha B. Alvero
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA; (H.C.); (R.T.); (H.R.); (T.S.B.); (N.A.); (R.G.); (G.M.)
- Karmanos Cancer Institute, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
6
|
Nakamura N, Fujihara H, Kawaguchi K, Yamada H, Nakayama R, Yasukawa M, Kishi Y, Hamada Y, Masutani M. Possible Action of Olaparib for Preventing Invasion of Oral Squamous Cell Carcinoma In Vitro and In Vivo. Int J Mol Sci 2022; 23:ijms23052527. [PMID: 35269669 PMCID: PMC8909974 DOI: 10.3390/ijms23052527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 11/25/2022] Open
Abstract
Despite recent advances in treatment, the prognosis of oral cancer remains poor, and prevention of recurrence and metastasis is critical. Olaparib is a PARP1 inhibitor that blocks polyADP-ribosylation, which is involved in the epithelial–mesenchymal transition (EMT) characteristic of tumor recurrence. We explored the potential of olaparib in inhibiting cancer invasion in oral carcinoma using three oral cancer cell lines, HSC-2, Ca9-22, and SAS. Olaparib treatment markedly reduced their proliferation, migration, invasion, and adhesion. Furthermore, qRT-PCR revealed that olaparib inhibited the mRNA expression of markers associated with tumorigenesis and EMT, notably Ki67, Vimentin, β-catenin, MMP2, MMP9, p53, and integrin α2 and β1, while E-Cadherin was upregulated. In vivo analysis of tumor xenografts generated by injection of HSC-2 cells into the masseter muscles of mice demonstrated significant inhibition of tumorigenesis and bone invasion by olaparib compared with the control. This was associated with reduced expression of proteins involved in osteoclastogenesis, RANK and RANKL. Moreover, SNAIL and PARP1 were downregulated, while E-cadherin was increased, indicating the effect of olaparib on proteins associated with EMT in this model. Taken together, these findings confirm the effects of olaparib on EMT and bone invasion in oral carcinoma and suggest a new therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Nanami Nakamura
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Hisako Fujihara
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
- Department of Oral Hygiene, Tsurumi Junior College, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
- Correspondence: ; Tel.: +81-45-580-8330; Fax: +81-45-581-1391
| | - Koji Kawaguchi
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Hiroyuki Yamada
- Division of Maxillofacial Surgery, Department of Oral and Maxillofacial Surgery, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8050, Japan;
| | - Ryoko Nakayama
- Department of Pathology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan;
| | - Masaaki Yasukawa
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Yuta Kishi
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Yoshiki Hamada
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (N.N.); (K.K.); (M.Y.); (Y.K.); (Y.H.)
| | - Mitsuko Masutani
- Department of Frontier Life Science, Graduate School of Biochemical Science, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan;
- Division of Chemotherapy and Clinical Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| |
Collapse
|
7
|
The Transcription Factors Zeb1 and Snail Induce Cell Malignancy and Cancer Stem Cell Phenotype in Prostate Cells, Increasing Androgen Synthesis Capacity and Therapy Resistance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:51-64. [PMID: 36587301 DOI: 10.1007/978-3-031-12974-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prostate cancer (PCa) incidence has increased during the last decades, becoming one of the leading causes of death by cancer in men worldwide. During an extended period of prostate cancer, malignant cells are androgen-sensitive being testosterone the main responsible for tumor growth. Accordingly, treatments blocking production and action of testosterone are mostly used. However, during disease progression, PCa cells become androgen insensitive producing a castration-resistant stage with a worse prognosis. Overcoming castration-resistant prostate cancer (CRPC) has become a great challenge in the management of this disease. In the search for molecular pathways leading to therapy resistance, the epithelial-mesenchymal transition (EMT), and particularly the transcription factors zinc finger E-box-binding homeobox 1 (Zeb1) and zinc finger protein SNAI1 (Snail), master genes of the EMT, have shown to have pivotal roles. Also, the discovery that cancer stem cells (CSCs) can be generated de novo from their non-CSCs counterpart has led to the question whereas these EMT transcription factors could be implicated in this dynamic conversion between non-CSC and CSC. In this review, we analyze evidence supporting the idea that Zeb1 and Snail induce cell malignancy and cancer stem cell phenotype in prostate cells, increasing androgen synthesis capacity and therapy resistance.
Collapse
|
8
|
Zhang Y, Su J, Ma K, Li H, Fu X, Zhang C. Photobiomodulation promotes hair regeneration in injured skin by enhancing migration and exosome secretion of dermal papilla cells. Wound Repair Regen 2021; 30:245-257. [PMID: 34921570 DOI: 10.1111/wrr.12989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/24/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
The application of photobiomodulation (PBM) in regenerative medicine has expanded to the treatment of alopecia caused by various reasons. However, the mechanisms responsible for its effects are poorly understood. Here, we aimed to investigate the effects of PBM on hair regeneration in injured skin and to explore the underlying mechanisms. The scratched epidermis or dermis models were established in C57 mice aged 7-8 weeks. We found that the scratched epidermis had no influence on hair regeneration, but the scratched dermis led to obvious hair follicle atrophy and significantly influenced hair regeneration. The wounds in scratched dermis models were treated with PBM (655 nm, 3 J/cm2 [10 min]) and the hair regeneration and cell proliferation in hair follicle were evaluated. Compared with control, the hair coverage level was significantly enhanced after PBM treatment. Sox9+ and PCNA+ cells in hair follicle were obviously observed in PBM-treated group, but not in control. In vitro, the effects of PBM on the function of dermal papilla cells (DPCs) were investigated. The results showed that the migration of DPCs was increased significantly by PBM (655 nm, 3 J/cm2 [10 min]), whereas no effect was found on proliferation. Furthermore, we found that PBM promoted exosome secretion of DPCs, accompanied by the activation of Akt/GSK-3β/β-catenin pathway. AKT inhibitor MK-2206 effectively blocked PBM-induced migration and exosome secretion of DPCs. These findings suggest that the enhanced migration and exosome secretion of DPCs mediated by the Akt/GSK-3β/β-catenin pathway were responsible for the promotion of hair regeneration in injured skin by PBM.
Collapse
Affiliation(s)
- Yuehou Zhang
- School of Medicine, NanKai University, Tianjin, China
| | - Jianlong Su
- School of Medicine, NanKai University, Tianjin, China
| | - Kui Ma
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital, PLA Medical College, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaobing Fu
- School of Medicine, NanKai University, Tianjin, China.,Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital, PLA Medical College, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital, PLA Medical College, Beijing, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, China
| |
Collapse
|
9
|
Papanikolaou S, Vourda A, Syggelos S, Gyftopoulos K. Cell Plasticity and Prostate Cancer: The Role of Epithelial-Mesenchymal Transition in Tumor Progression, Invasion, Metastasis and Cancer Therapy Resistance. Cancers (Basel) 2021; 13:cancers13112795. [PMID: 34199763 PMCID: PMC8199975 DOI: 10.3390/cancers13112795] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Although epithelial-to-mesenchymal transition (EMT) is a well-known cellular process involved during normal embryogenesis and wound healing, it also has a dark side; it is a complex process that provides tumor cells with a more aggressive phenotype, facilitating tumor metastasis and even resistance to therapy. This review focuses on the key pathways of EMT in the pathogenesis of prostate cancer and the development of metastases and evasion of currently available treatments. Abstract Prostate cancer, the second most common malignancy in men, is characterized by high heterogeneity that poses several therapeutic challenges. Epithelial–mesenchymal transition (EMT) is a dynamic, reversible cellular process which is essential in normal embryonic morphogenesis and wound healing. However, the cellular changes that are induced by EMT suggest that it may also play a central role in tumor progression, invasion, metastasis, and resistance to current therapeutic options. These changes include enhanced motility and loss of cell–cell adhesion that form a more aggressive cellular phenotype. Moreover, the reverse process (MET) is a necessary element of the metastatic tumor process. It is highly probable that this cell plasticity reflects a hybrid state between epithelial and mesenchymal status. In this review, we describe the underlying key mechanisms of the EMT-induced phenotype modulation that contribute to prostate tumor aggressiveness and cancer therapy resistance, in an effort to provide a framework of this complex cellular process.
Collapse
|
10
|
Aspartame induces cancer stem cell enrichment through p21, NICD and GLI1 in human PANC-1 pancreas adenocarcinoma cells. Food Chem Toxicol 2021; 153:112264. [PMID: 33992720 DOI: 10.1016/j.fct.2021.112264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 04/30/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022]
Abstract
This study aimed to investigate the molecular effects of the common natural sugar glucose and artificial sweetener aspartame on cancer stem cell (CSC) population and cancer aggressiveness of PANC-1 human pancreas adenocarcinoma cells. According to our findings while aspartame exposure significantly increased the CSC population, high glucose had no effect on it. The epithelial-mesenchymal transition marker N-cadherin increased only in the aspartame group. The findings indicate that a high level of glucose exposure does not effect the invasion and migration of PANC-1 cells, while aspartame increases both of these aggressiveness criteria. The findings also suggest that a high concentration of glucose maintains CSC population through induction of nuclear Oct3/4 and differentiation to parental cells via increasing cytoplasmic c-myc. Aspartame exposure to PANC-1 cells activated AKT and deactivated GSK3β by increasing levels of ROS and cytoplasmic Ca+2, respectively, through T1R2/T1R3 stimulation. Then p-GSK3β(Ser9) boosted the CSC population by increasing pluripotency factors Oct3/4 and c-myc via NICD, GLI1 and p21. In the aspartame group, T1R1 silencing further increased the CSC population but decreased cell viability and suppressed the p21, NICD and GLI activation. The presence and amount of T1R subunits in the membrane fraction of PANC-1 cells are demonstrated for the first time in this study, as is the regulatory effect of T1R1's on CSC population. In conclusion, the present study demonstrated that long-term aspartame exposure increases CSC population and tumor cell aggressiveness through p21, NICD, GLI1. Moreover, while aspartame had no tumorigenic effect, it could potentially advance an existing tumor.
Collapse
|
11
|
Jolly MK, Murphy RJ, Bhatia S, Whitfield HJ, Redfern A, Davis MJ, Thompson EW. Measuring and Modelling the Epithelial- Mesenchymal Hybrid State in Cancer: Clinical Implications. Cells Tissues Organs 2021; 211:110-133. [PMID: 33902034 DOI: 10.1159/000515289] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
The epithelial-mesenchymal (E/M) hybrid state has emerged as an important mediator of elements of cancer progression, facilitated by epithelial mesenchymal plasticity (EMP). We review here evidence for the presence, prognostic significance, and therapeutic potential of the E/M hybrid state in carcinoma. We further assess modelling predictions and validation studies to demonstrate stabilised E/M hybrid states along the spectrum of EMP, as well as computational approaches for characterising and quantifying EMP phenotypes, with particular attention to the emerging realm of single-cell approaches through RNA sequencing and protein-based techniques.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Ryan J Murphy
- Queensland University of Technology, School of Mathematical Sciences, Brisbane, Queensland, Australia
| | - Sugandha Bhatia
- Queensland University of Technology, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Brisbane, Queensland, Australia.,Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Holly J Whitfield
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew Redfern
- Department of Medicine, School of Medicine, University of Western Australia, Fiona Stanley Hospital Campus, Perth, Washington, Australia
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Erik W Thompson
- Queensland University of Technology, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Brisbane, Queensland, Australia.,Queensland University of Technology, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
12
|
Aggarwal V, Montoya CA, Donnenberg VS, Sant S. Interplay between tumor microenvironment and partial EMT as the driver of tumor progression. iScience 2021; 24:102113. [PMID: 33659878 PMCID: PMC7892926 DOI: 10.1016/j.isci.2021.102113] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT), an evolutionary conserved phenomenon, has been extensively studied to address the unresolved variable treatment response across therapeutic regimes in cancer subtypes. EMT has long been envisaged to regulate tumor invasion, migration, and therapeutic resistance during tumorigenesis. However, recently it has been highlighted that EMT involves an intermediate partial EMT (pEMT) phenotype, defined by incomplete loss of epithelial markers and incomplete gain of mesenchymal markers. It has been further emphasized that pEMT transition involves a spectrum of intermediate hybrid states on either side of pEMT spectrum. Emerging evidence underlines bi-directional crosstalk between tumor cells and surrounding microenvironment in acquisition of pEMT phenotype. Although much work is still ongoing to gain mechanistic insights into regulation of pEMT phenotype, it is evident that pEMT plays a critical role in tumor aggressiveness, invasion, migration, and metastasis along with therapeutic resistance. In this review, we focus on important role of tumor-intrinsic factors and tumor microenvironment in driving pEMT and emphasize that engineered controlled microenvironments are instrumental to provide mechanistic insights into pEMT biology. We also discuss the significance of pEMT in regulating hallmarks of tumor progression i.e. cell cycle regulation, collective migration, and therapeutic resistance. Although constantly evolving, current progress and momentum in the pEMT field holds promise to unravel new therapeutic targets to halt tumor progression at early stages as well as tackle the complex therapeutic resistance observed across many cancer types. Partial EMT phenotype drives key hallmarks of tumor progression Role of tumor microenvironment in pEMT phenotype via cellular signaling pathways Engineering 3D in vitro models to study pEMT phenotype Opportunities and challenges in understanding pEMT phenotype
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Catalina Ardila Montoya
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh, School of Medicine Pittsburgh, PA 15213, USA.,UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA.,UPMC-Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15213, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.,Department of Pharmaceutical Sciences, School of Pharmacy; Department of Bioengineering, Swanson School of Engineering; McGowan Institute for Regenerative Medicine, University of Pittsburgh, UPMC-Hillman Cancer Center, 700 Technology Drive, Room 4307, Pittsburgh, PA 15261, USA
| |
Collapse
|
13
|
Sinha D, Saha P, Samanta A, Bishayee A. Emerging Concepts of Hybrid Epithelial-to-Mesenchymal Transition in Cancer Progression. Biomolecules 2020; 10:E1561. [PMID: 33207810 PMCID: PMC7697085 DOI: 10.3390/biom10111561] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial mesenchymal transition (EMT) is a complex process through which epithelial (E) cells lose their adherens junctions, transform into mesenchymal (M) cells and attain motility, leading to metastasis at distant organs. Nowadays, the concept of EMT has shifted from a binary phase of interconversion of pure E to M cells and vice versa to a spectrum of E/M transition states preferably coined as hybrid/partial/intermediate EMT. Hybrid EMT, being a plastic transient state, harbours cells which co-express both E and M markers and exhibit high tumourigenic properties, leading to stemness, metastasis, and therapy resistance. Several preclinical and clinical studies provided the evidence of co-existence of E/M phenotypes. Regulators including transcription factors, epigenetic regulators and phenotypic stability factors (PSFs) help in maintaining the hybrid state. Computational and bioinformatics approaches may be excellent for identifying new factors or combinations of regulatory elements that govern the different EMT transition states. Therapeutic intervention against hybrid E/M cells, though few, may evolve as a rational strategy against metastasis and drug resistance. This review has attempted to present the recent advancements on the concept and regulation of the process of hybrid EMT which generates hybrid E/M phenotypes, evidence of intermediate EMT in both preclinical and clinical setup, impact of partial EMT on promoting tumourigenesis, and future strategies which might be adapted to tackle this phenomenon.
Collapse
Affiliation(s)
- Dona Sinha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Priyanka Saha
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anurima Samanta
- Department of Receptor Biology and Tumour Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India; (P.S.); (A.S.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
14
|
Kumar M, Jaiswal RK, Yadava PK, Singh RP. An assessment of poly (ADP-ribose) polymerase-1 role in normal and cancer cells. Biofactors 2020; 46:894-905. [PMID: 33098603 DOI: 10.1002/biof.1688] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) is a superfamily of 18 proteins characterized by the PARP homology domain, the catalytic domain. This catalytic domain helps in the ADP-ribosylation of various acceptor proteins using nicotinamide adenine dinucleotide (NAD+) as a donor for ADP-ribose. PARP-1 and PARP-2 carry out 80% of poly-ADP-ribosylation of cellular protein. Hence, their combined knockout results in embryonic lethality of mice. PARP-1 consists of three major domains, namely, DNA binding domain, automodification domain, and a catalytic domain. These domains further consist of subdomains and motifs, which helps PARP-1 in a diverse function. PARP-1 is mainly involved in DNA damage detection and repair, but emerging evidence suggests its role in many other functions such as DNA synthesis, replication, apoptosis, necrosis, and cancer progression. Herein, we review the current state of the PARP-1 role in DNA damage repair and other biological processes including epithelial to mesenchymal transition (EMT). We have also observed the role of PARP-1 in modulating EMT regulators like E-cadherin, Vimentin, Claudin-1, Snail, Smad-4, Twist-1, and β-catenin. Here, we have also attempted to relate the role of PARP-1 in EMT of cancer cells.
Collapse
Affiliation(s)
- Manoj Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Pramod K Yadava
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
van Leenders GJLH, Verhoef EI, Hollemans E. Prostate cancer growth patterns beyond the Gleason score: entering a new era of comprehensive tumour grading. Histopathology 2020; 77:850-861. [PMID: 32683729 PMCID: PMC7756302 DOI: 10.1111/his.14214] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022]
Abstract
The Gleason grading system is one of the most important factors in clinical decision‐making for prostate cancer patients, and is entirely based on the classification of tumour growth patterns. In recent years it has become clear that some individual growth patterns themselves have independent prognostic value, and could be used for better personalised risk stratification. In this review we summarise recent literature on the clinicopathological value and molecular characteristics of individual prostate cancer growth patterns, and show how these, most particularly cribriform architecture, could alter treatment decisions for prostate cancer patients.
Collapse
Affiliation(s)
| | - Esther I Verhoef
- Department of Pathology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Eva Hollemans
- Department of Pathology, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Niknami Z, Muhammadnejad A, Ebrahimi A, Harsani Z, Shirkoohi R. Significance of E-cadherin and Vimentin as epithelial-mesenchymal transition markers in colorectal carcinoma prognosis. EXCLI JOURNAL 2020; 19:917-926. [PMID: 32665775 PMCID: PMC7355153 DOI: 10.17179/excli2020-1946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/24/2020] [Indexed: 12/23/2022]
Abstract
Colorectal cancer is the most common malignancy of the gastrointestinal tract with very high mortality. One of the most distinguishing features for the establishment of an epithelial-mesenchymal transition phenotype is the alteration of mesenchymal markers and structural adhesion proteins. We investigated the level of Vimentin and E-cadherin expression in relation to invasion and metastasis on colorectal cancer patients. Tissue specimens were collected consecutively from thirty-nine colorectal carcinoma patients during surgeries. The patients were diagnosed and treated between 2013 and 2016. In order to histological staging, tissue sections were prepared from formalin-fixed paraffin-embedded blocks and stained with Hematoxylin and Eosin. Also for evaluating the epithelial-mesenchymal transition markers, E-cadherin and Vimentin, all patient samples were stained and detected via immunohistochemistry, and afterwards the results were analyzed to determine whether these markers could be useful prognostic markers for predicting colorectal cancer patient outcomes. The expression of Vimentin as a mesenchymal marker along with rising grade of cancer, pathological stages, and metastasis to regional lymph nodes increased furthermore, in cancers with vascular invasion, Vimentin value was high. Reversely, the expression of E-cadherin with climbing grade, stages and colon cancer categories decreased and also in cancers with vascular invasion reduced. Variation of the markers had no relation to age and sex. In summary, along with cancer progression level of Vimentin expression varies inversely with E-cadherin expression and by increasing metastasis and invasion the Vimentin expression elevates. Further evaluation in this area might lead to a good method for predicting progressive clone cancer.
Collapse
Affiliation(s)
- Zohreh Niknami
- Department of Genetics, Faculty of Science, Islamic Azad University, Damghan, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Ebrahimi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Harsani
- Department of Cell and Molecular Biology, Islamic Azad Medical University of Tehran, Tehran, Iran
| | - Reza Shirkoohi
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Abstract
OBJECTIVE The majority of patients with colorectal cancer are diagnosed with locally advanced and/or disseminated disease, and treatment options include surgery in combination with cytotoxic chemotherapy regimens, biologics, and/or radiotherapy. Thus, colorectal cancer remains a heavy burden on society and health care systems.Mounting evidence show that driver gene mutations play only part of the role in carcinogenesis. Epigenetics are strongly implicated in initiation and progression of colorectal cancer along with major players such as intestinal microbiotic dysbiosis and chronic mucosal inflammation.To assess phenotypic changes in proteins and gene expression, multigene expression signatures based on sequencing techniques have been developed to hopefully improve predictors of the tumor profile, immune response, and therapeutic outcomes. Our objective was to review current advances in the field and to update surgeons and academics on driver gene mutations and epigenetics in colorectal cancer. BACKGROUND AND METHODS This is a narrative review studying relevant research published in the PUBMED database from 2012-2018. RESULTS AND CONCLUSION Increased understanding of the molecular biology will improve options to characterize colorectal cancer with regard to mutations and molecular pathways, including microsatellite instability, epigenetics, microbiota, and microenvironment. Research will inevitably improve risk group stratification and targeted treatment approaches.Epigenetic profiling and epigenetic modulating drugs will increase risk stratification, increase accessibility for DNA targeting chemotherapeutics and reduce cytotoxic drug resistance.New generation antibiotics such as biofilm inhibitors and quorum sensing inhibitors are being developed to target the carcinogenetic impact of colonic dysbiosis and inflammation.
Collapse
|
18
|
Hybrid Epithelial/Mesenchymal State in Cancer Metastasis: Clinical Significance and Regulatory Mechanisms. Cells 2020; 9:cells9030623. [PMID: 32143517 PMCID: PMC7140395 DOI: 10.3390/cells9030623] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been well recognized for its essential role in cancer progression as well as normal tissue development. In cancer cells, activation of EMT permits the cells to acquire migratory and invasive abilities and stem-like properties. However, simple categorization of cancer cells into epithelial and mesenchymal phenotypes misleads the understanding of the complicated metastatic process, and contradictory results from different studies also indicate the limitation of application of EMT theory in cancer metastasis. Nowadays, growing evidence suggests the existence of an intermediate status between epithelial and mesenchymal phenotypes, i.e., the "hybrid epithelial-mesenchymal (hybrid E/M)" state, provides a possible explanation for those conflicting results. Appearance of hybrid E/M phenotype offers a more plastic status for cancer cells to adapt the stressful environment for proceeding metastasis. In this article, we review the biological importance of the dynamic changes between the epithelial and the mesenchymal states. The regulatory mechanisms encompassing the translational, post-translational, and epigenetic control for this complex and plastic status are also discussed.
Collapse
|
19
|
Nguyen T, Duchesne L, Sankara Narayana GHN, Boggetto N, Fernig DD, Uttamrao Murade C, Ladoux B, Mège RM. Enhanced cell-cell contact stability and decreased N-cadherin-mediated migration upon fibroblast growth factor receptor-N-cadherin cross talk. Oncogene 2019; 38:6283-6300. [PMID: 31312021 DOI: 10.1038/s41388-019-0875-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022]
Abstract
N-cadherin adhesion has been reported to enhance cancer and neuronal cell migration either by mediating actomyosin-based force transduction or initiating fibroblast growth factor receptor (FGFR)-dependent biochemical signalling. Here we show that FGFR1 reduces N-cadherin-mediated cell migration. Both proteins are co-stabilised at cell-cell contacts through direct interaction. As a consequence, cell adhesion is strengthened, limiting the migration of cells on N-cadherin. Both the inhibition of migration and the stabilisation of cell adhesions require the FGFR activity stimulated by N-cadherin engagement. FGFR1 stabilises N-cadherin at the cell membrane through a pathway involving Src and p120. Moreover, FGFR1 stimulates the anchoring of N-cadherin to actin. We found that the migratory behaviour of cells depends on an optimum balance between FGFR-regulated N-cadherin adhesion and actin dynamics. Based on these findings we propose a positive feed-back loop between N-cadherin and FGFR at adhesion sites limiting N-cadherin-based single-cell migration.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - Laurence Duchesne
- Univ Rennes, CNRS, IGDR (Institute of Genetics and Development of Rennes) - UMR 6290, F-35000, Rennes, France
| | | | - Nicole Boggetto
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - David D Fernig
- Department of Biochemistry, Institute of Integrated Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | | | - Benoit Ladoux
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France
| | - René-Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, 15 Rue Hélène Brion, 75205, Paris Cedex 13, France.
| |
Collapse
|
20
|
Hensley PJ, Cao Z, Pu H, Dicken H, He D, Zhou Z, Wang C, Koochekpour S, Kyprianou N. Predictive and targeting value of IGFBP-3 in therapeutically resistant prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2019; 7:188-202. [PMID: 31317059 PMCID: PMC6627542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Our previous studies demonstrated that a novel quinazoline derivative, DZ-50, inhibited prostate cancer epithelial cell invasion and survival by targeting insulin-like-growth factor binding protein-3 (IGFBP-3) and mediating epithelial-mesenchymal transition (EMT) conversion to mesenchymal-epithelial transition (MET). This study investigated the therapeutic value of DZ-50 agent in in vitro and in vivo models of advanced prostate cancer and the ability of the compound to overcome resistance to antiandrogen (enzalutamide) in prostate tumors. APPROACH LNCaP and LNCaP-enzalutamide resistant human prostate cancer (LNCaP-ER) cells, as well as 22Rv1 and enzalutamide resistant, 22Rv1-ER were used as cell models. The effects of DZ-50 and the antiandrogen, enzalutamide (as single agents or in combination) on cell death, EMT-MET interconversion, and expression of IGFBP3 and the androgen receptor (AR), were examined. The TRAMP mouse model of prostate cancer progression was used as a pre-clinical model. Transgenic mice (20-wks of age) were treated with DZ-50 (100 mg/kg for 2 wks, oral gavage daily) and prostate tumors were subjected to immunohistochemical assessment of apoptosis, cell proliferation, markers of EMT and differentiation and IGFBP-3 and AR expression. A tissue microarray (TMA) was analyzed for expression of IGBP-3, the target of DZ-50 and its association with tumor progression and biochemical recurrence. RESULTS We found that treatment with DZ-50 enhanced the anti-tumor response to the antiandrogen via promoting EMT to MET interconversion, in vitro. This DZ-50-mediated phenotypic reversal to MET leads to prostate tumor re-differentiation in vivo, by targeting nuclear IGFBP-3 expression (without affecting AR). Analysis of human prostate cancer specimens and TCGA patient cohorts revealed that overexpression of IGBP-3 protein correlated with tumor recurrence and poor patient survival. CONCLUSIONS These findings provide significant new insights into (a) the predictive value of IGFBP-3 in prostate cancer progression and (b) the antitumor action of DZ-50, [in combination or sequencing with enzalutamide] as a novel approach for the treatment of therapeutically resistant prostate cancer.
Collapse
Affiliation(s)
| | - Zheng Cao
- Department of Urology, University of KentuckyLexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Hong Pu
- Department of Urology, University of KentuckyLexington, KY, USA
| | - Haley Dicken
- Department of Toxicology and Cancer Biology, University of KentuckyLexington, KY, USA
| | - Daheng He
- Department of Markey Cancer Center, University of KentuckyLexington, KY, USA
| | - Zhaohe Zhou
- Department of Markey Cancer Center, University of KentuckyLexington, KY, USA
| | - Chi Wang
- Department of Markey Cancer Center, University of KentuckyLexington, KY, USA
| | | | - Natasha Kyprianou
- Department of Urology, University of KentuckyLexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
- Department of Toxicology and Cancer Biology, University of KentuckyLexington, KY, USA
| |
Collapse
|
21
|
Liu L, Yu TT, Ren CC, Yang L, Cui SH, Zhang XA. CP-31398 inhibits the progression of cervical cancer through reversing the epithelial mesenchymal transition via the downregulation of PAX2s. J Cell Physiol 2019; 234:2929-2942. [PMID: 30132866 DOI: 10.1002/jcp.27109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/28/2018] [Indexed: 01/18/2023]
Abstract
CP-31398, a styrylquinazoline, emerges from a screen for therapeutic agents that restore the wild-type DNA-binding conformation of mutant p53 to suppress tumors in vivo, but its effects on cervical cancer (CC) remain unknown. Hence, this study aimed to explore the effects CP-31398 has on the CC cells and to investigate whether it is associated with paired box 2 (PAX2) expression. CC cells were treated with different concentrations of CP-31398 (1, 2, 4, 6, 8, and 10 μg/ml) to determine the optimum concentration using fluorometric microculture cytotoxicity assay. After constructing the sh-PAX2 vector, CC cells were transfected with sh-PAX2 or treated with CP-31398. The effects of CP-31398 or PAX2 silencing on CC cell proliferation, apoptosis, invasion, and migration were evaluated. Epithelial mesenchymal transition (EMT)-related genes such as E-cadherin, vimentin, N-cadherin, snail, and twist in CC cells were detected. Tumor formation experiment in nude mice was performed to observe tumor growth. The optimum concentration of CP-31398 was 2 μg/ml. PAX2 was overexpressed in CC cells. CC cells treated with CP-31398 or treated with sh-PAX2 inhibited proliferation, invasion, and migration but promoted apoptosis with decreased PAX2 expression. The EMT process in CC cells was also reversed after treatment with CP-31398 or sh-PAX2. Moreover, the tumor formation experiment in nude mice revealed the inhibitory activity of CP-31398 in CC tumor in nude mice by suppressing PAX2. Our results provide evidence that CP-31398 could inhibit EMT and promote apoptosis of CC cells to curb CC tumor growth by downregulating PAX2.
Collapse
Affiliation(s)
- Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tan-Tan Yu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen-Chen Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shi-Hong Cui
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-An Zhang
- Department of Imaging, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Abdallah RA, Abdou AG, Abdelwahed M, Ali H. Immunohistochemical Expression of E- and N-Cadherin in Nodular Prostatic Hyperplasia and Prostatic Carcinoma. J Microsc Ultrastruct 2019; 7:19-27. [PMID: 31008053 PMCID: PMC6442322 DOI: 10.4103/jmau.jmau_46_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: Different theories have been postulated to explain the development of nodular prostatic hyperplasia (NPH). Epithelial to mesenchymal transition (EMT) is a physiologic process in which the epithelial cells lose their polarity and cell-cell adhesion and acquire a mesenchymal phenotype. Aim: The aim of the present study is to investigate the potential role of E- and N-cadherin in the induction of EMT in NPH and prostatic carcinoma. Methods: This study was carried out on 55 cases of NPH and 20 cases prostatic carcinoma for evaluation of immunohistochemical expression of E and N cadherins. Results: Most NPH (54/55 cases, 98.2%) and all cases of prostatic carcinoma showed positive N-cadherin expression in prostatic glands and stroma. High percentage of N-cadherin expression by stromal cells was significantly in favor of prostatic carcinoma compared to NPH. High percentage of N-cadherin expression by epithelial cells of carcinoma group was significantly associated with young age while its high expression by stromal cells was significantly associated with multicentricity. About 96.4% of NPH and 75% of prostatic carcinoma showed positive E-cadherin expression with a significant difference. No significant association between E-cadherin and N-cadherins in both NPH and prostatic carcinoma was identified. Conclusions: The prominent expression of N-cadherin in large numbers of NPH and prostate carcinoma cases in the epithelial and stromal components could point to the occurrence of EMT in those diseases. It also opens a new gate for treatment of those patients by targeting N-cadherin molecule. The absence of inverse association between E-cadherin and N-cadherins in NPH and prostatic carcinoma may indicate that cadherin switch is not an essential step for the development of EMT.
Collapse
Affiliation(s)
| | - Asmaa Gaber Abdou
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebein El Kom, Egypt
| | - Moshira Abdelwahed
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebein El Kom, Egypt
| | - Hend Ali
- Department of Pathology, Faculty of Medicine, Menoufia University, Shebein El Kom, Egypt
| |
Collapse
|
23
|
Pastushenko I, Blanpain C. EMT Transition States during Tumor Progression and Metastasis. Trends Cell Biol 2018; 29:212-226. [PMID: 30594349 DOI: 10.1016/j.tcb.2018.12.001] [Citation(s) in RCA: 1670] [Impact Index Per Article: 278.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire mesenchymal features. In cancer, EMT is associated with tumor initiation, invasion, metastasis, and resistance to therapy. Recently, it has been demonstrated that EMT is not a binary process, but occurs through distinct cellular states. Here, we review the recent studies that demonstrate the existence of these different EMT states in cancer and the mechanisms regulating their functions. We discuss the different functional characteristics, such as proliferation, propagation, plasticity, invasion, and metastasis associated with the distinct EMT states. We summarize the role of the transcriptional and epigenetic landscapes, gene regulatory network and their surrounding niche in controlling the transition through the different EMT states.
Collapse
Affiliation(s)
- Ievgenia Pastushenko
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, Brussels, Belgium; WELBIO, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
24
|
Cheng J, Dwyer M, Okolotowicz KJ, Mercola M, Cashman JR. A Novel Inhibitor Targets Both Wnt Signaling and ATM/p53 in Colorectal Cancer. Cancer Res 2018; 78:5072-5083. [DOI: 10.1158/0008-5472.can-17-2642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/02/2018] [Accepted: 07/10/2018] [Indexed: 11/16/2022]
|
25
|
Kolijn K, Verhoef EI, Smid M, Böttcher R, Jenster GW, Debets R, van Leenders GJLH. Epithelial-Mesenchymal Transition in Human Prostate Cancer Demonstrates Enhanced Immune Evasion Marked by IDO1 Expression. Cancer Res 2018; 78:4671-4679. [PMID: 29921693 DOI: 10.1158/0008-5472.can-17-3752] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/16/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
Abstract
Cancer invasion and metastasis are driven by epithelial-mesenchymal transition (EMT), yet the exact mechanisms that account for EMT in clinical prostate cancer are not fully understood. Expression of N-cadherin is considered a hallmark of EMT in clinical prostate cancer. In this study, we determined the molecular mechanisms associated with N-cadherin expression in patients with prostate cancer. We performed laser capture microdissection of matched N-cadherin-positive and -negative prostate cancer areas from patient samples (n = 8), followed by RNA sequencing. N-cadherin expression was significantly associated with an immune-regulatory signature including profound upregulation of indoleamine 2,3-dioxygenase (IDO1; log2-fold change = 5.1; P = 2.98E-04). Fluorescent immunostainings of patient samples confirmed expression of IDO1 protein and also its metabolite kynurenine in primarily N-cadherin-positive areas. N-cadherin-positive areas also exhibited a local decrease of intraepithelial cytotoxic (CD8+) T cells and an increase of immunosuppressive regulatory T cells (CD4+/FOXP3+). In conclusion, EMT in clinical prostate cancer is accompanied by upregulated expression of IDO1 and an increased number of regulatory T cells. These data indicate that EMT, which is an important step in tumor progression, can be protected from effective immune control in patients with prostate cancer.Significance: These findings demonstrate EMT is linked to an immunosuppressive environment in clinical prostate cancer, suggesting that patients with prostate cancer can potentially benefit from combinatorial drug therapy. Cancer Res; 78(16); 4671-9. ©2018 AACR.
Collapse
Affiliation(s)
- Kimberley Kolijn
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Esther I Verhoef
- Department of Pathology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marcel Smid
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - René Böttcher
- Department of Urology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Guido W Jenster
- Department of Urology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Reno Debets
- Department of Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
26
|
Feng C, Zhang L, Sun Y, Li X, Zhan L, Lou Y, Wang Y, Liu L, Zhang Y. GDPD5, a target of miR-195-5p, is associated with metastasis and chemoresistance in colorectal cancer. Biomed Pharmacother 2018; 101:945-952. [DOI: 10.1016/j.biopha.2018.03.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/06/2018] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
|
27
|
Wang H, Stoecklein NH, Lin PP, Gires O. Circulating and disseminated tumor cells: diagnostic tools and therapeutic targets in motion. Oncotarget 2018; 8:1884-1912. [PMID: 27683128 PMCID: PMC5352105 DOI: 10.18632/oncotarget.12242] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/20/2016] [Indexed: 12/16/2022] Open
Abstract
Enumeration of circulating tumor cells (CTCs) in peripheral blood with the gold standard CellSearchTM has proven prognostic value for tumor recurrence and progression of metastatic disease. Therefore, the further molecular characterization of isolated CTCs might have clinical relevance as liquid biopsy for therapeutic decision-making and to monitor disease progression. The direct analysis of systemic cancer appears particularly important in view of the known disparity in expression of therapeutic targets as well as epithelial-to-mesenchymal transition (EMT)-based heterogeneity between primary and systemic tumor cells, which all substantially complicate monitoring and therapeutic targeting at present. Since CTCs are the potential precursor cells of metastasis, their in-depth molecular profiling should also provide a useful resource for target discovery. The present review will discuss the use of systemically spread cancer cells as liquid biopsy and focus on potential target antigens.
Collapse
Affiliation(s)
- Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group Personalized Radiotherapy of Head and Neck Tumors, Helmholtz, Germany
| |
Collapse
|
28
|
Li S, Zhang T, Xu W, Ding J, Yin F, Xu J, Sun W, Wang H, Sun M, Cai Z, Hua Y. Sarcoma-Targeting Peptide-Decorated Polypeptide Nanogel Intracellularly Delivers Shikonin for Upregulated Osteosarcoma Necroptosis and Diminished Pulmonary Metastasis. Am J Cancer Res 2018; 8:1361-1375. [PMID: 29507626 PMCID: PMC5835942 DOI: 10.7150/thno.18299] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
Purpose: Osteosarcoma is the most common primary bone cancer and is notorious for pulmonary metastasis, representing a major threat to pediatric patients. An effective drug targeting osteosarcoma and its lung metastasis is urgently needed. Design: In this study, a sarcoma-targeting peptide-decorated disulfide-crosslinked polypeptide nanogel (STP-NG) was exploited for enhanced intracellular delivery of shikonin (SHK), an extract of a medicinal herb, to inhibit osteosarcoma progression with minimal systemic toxicity. Results: The targeted, loaded nanogel, STP-NG/SHK, killed osteosarcoma cells by inducing RIP1- and RIP3-dependent necroptosis in vitro. Necroptosis is a novel cell death form that could be well adapted as an efficient antitumor strategy, the main obstacle of which is its high toxicity. After intravenous injection, STP-NG/SHK efficiently suppressed tumor growth and reduced pulmonary metastasis, offering greater tumor necrosis and higher RIP1 and RIP3 upregulation compared to free SHK or untargeted NG/SHK in vivo. Additionally, the treatment with NG/SHK or STP-NG/SHK showed minimal toxicity to normal organs, suggesting low systemic toxicity compared to free SHK. Conclusion: The STP-guided intracellular drug delivery system using the necroptosis mechanism showed profound anti-osteosarcoma activity, especially eliminated lung metastasis in vivo. This drug formulation may have great potential for treatment of osteosarcoma.
Collapse
|
29
|
Verhoef EI, Kolijn K, De Herdt MJ, van der Steen B, Hoogland AM, Sleddens HFBM, Looijenga LHJ, van Leenders GJLH. MET expression during prostate cancer progression. Oncotarget 2018; 7:31029-36. [PMID: 27105539 PMCID: PMC5058736 DOI: 10.18632/oncotarget.8829] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/31/2016] [Indexed: 11/25/2022] Open
Abstract
Tyrosine-kinase inhibitors of the hepatocyte growth factor receptor MET are under investigation for the treatment of hormone-refractory prostate cancer (HRPC) metastasis. Analysis of MET protein expression and genetic alterations might contribute to therapeutic stratification of prostate cancer patients. Our objective was to investigate MET on protein, DNA and RNA level in clinical prostate cancer at various stages of progression. Expression of MET was analyzed in hormone-naive primary prostate cancers (N=481), lymph node (N=40) and bone (N=8) metastases, as well as HRPC (N=54) and bone metastases (N=15). MET protein expression was analyzed by immunohistochemistry (D1C2 C-terminal antibody). MET mRNA levels and MET DNA copy numbers were determined by in situ hybridization. None of the hormone-naive primary prostate cancer or lymph node metastases demonstrated MET protein or mRNA expression. In contrast, MET protein was expressed in 12/52 (23%) evaluable HRPC resections. RNA in situ demonstrated cytoplasmic signals in 14/54 (26%) of the HRPC patients, and was associated with MET protein expression (p=0.025, χ2), in absence of MET amplification or polysomy. MET protein expression was present in 7/8 (88%) hormone-naive and 10/15 (67%) HRPC bone metastases, without association of HRPC (p=0.37; χ2), with MET polysomy in 8/13 (61%) evaluable cases. In conclusion, MET was almost exclusively expressed in HRPC and prostate cancer bone metastasis, but was not related to MET amplification or polysomy. Evaluation of MET status could be relevant for therapeutic stratification of late stage prostate cancer.
Collapse
Affiliation(s)
- Esther I Verhoef
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Kimberley Kolijn
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Maria J De Herdt
- Othorhinolaryngology and Head and Neck Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Berdine van der Steen
- Othorhinolaryngology and Head and Neck Surgery, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - A Marije Hoogland
- Department of Pathology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
30
|
Konac E, Kiliccioglu I, Sogutdelen E, Dikmen AU, Albayrak G, Bilen CY. Do the expressions of epithelial-mesenchymal transition proteins, periostin, integrin-α4 and fibronectin correlate with clinico-pathological features and prognosis of metastatic castration-resistant prostate cancer? Exp Biol Med (Maywood) 2017; 242:1795-1801. [PMID: 28836852 DOI: 10.1177/1535370217728499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Development of metastatic castration-resistant prostate cancer is a result of the lack of an apoptotic response by the tumor cells and loss of the ability to stick to adjacent cells through epithelial-mesenchymal transition. Although there are several strongly recommended biomarkers for determining prognosis of metastatic castration-resistant prostate cancer, only few of them may help decide the selection of the optimal treatment option. The mode of treatment sequencing in metastatic castration-resistant prostate cancer will be based on the individual characteristics of the patient. In this study, we aimed to explain the correlation between the expression characteristics of periostin, integrin-α4, and fibronectin in metastatic castration-resistant prostate cancer patients and their clinico-pathological data comprising Gleason score, PSA levels, and metastatic sites in the process of epithelial-mesenchymal transition. We evaluated by using Western blotting, periostin, integrin-α4, and fibronectin expressions in peripheral blood samples of metastatic castration-resistant prostate cancer patients ( n = 40), benign prostatic hyperplasia patients ( n = 20), and the healthy control group ( n = 20). Associations between changes in the protein expressions and clinico-pathological parameters were also analyzed in the metastatic castration-resistant prostate cancer group. When comparing BPH and healthy groups with the metastatic castration-resistant prostate cancer group, a reduced expression of integrin-α4 was found in metastatic patients, albeit being statistically insignificant ( P > 0.05). Protein expressions of periostin and fibronectin in the metastatic castration-resistant prostate cancer group were higher than those in the BPH and heathy groups ( P < 0.001). Increased periostin expression in metastatic patients was significantly associated with bone metastasis ( P < 0.05). Elevated periostin and fibronectin levels in metastatic castration-resistant prostate cancer patients may be appropriate targets of therapeutic intervention in the future. Impact statement Prostate cancer is the third most common cancer in the world and the most common cancer among men. Development of metastatic castration-resistant prostate cancer (mCRPC) is a result of the lack of an apoptotic response by the tumor cells and loss of the ability to stick to adjacent cells through epithelial-mesenchymal transition (EMT). The present study analyzes for the first time the expressions of EMT marker proteins - periostin, integrin α4, fibronectin - in mCRPC and in benign prostatic hyperplasia (BPH) with the aim to determine the clinical relevance of changes in these three proteins vis-a-vis the PCa aggressive phenotype. In doing so, it sheds light on the molecular mechanism underlying the disease. We concluded that elevated periostin and fibronectin levels in mCRPC patients may be appropriate targets of therapeutic intervention in the future; hence, adopting methods that target these proteins may help treat prostate cancer effectively.
Collapse
Affiliation(s)
- Ece Konac
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06510, Turkey
| | - Ilker Kiliccioglu
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06510, Turkey
| | - Emrullah Sogutdelen
- 2 Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
| | - Asiye U Dikmen
- 3 Department of Public Health, Faculty of Medicine, Gazi University, Besevler, Ankara 06510, Turkey
| | - Gulsah Albayrak
- 1 Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06510, Turkey
| | - Cenk Y Bilen
- 2 Department of Urology, Faculty of Medicine, Hacettepe University, Sıhhiye, Ankara 06100, Turkey
| |
Collapse
|
31
|
Renier C, Pao E, Che J, Liu HE, Lemaire CA, Matsumoto M, Triboulet M, Srivinas S, Jeffrey SS, Rettig M, Kulkarni RP, Di Carlo D, Sollier-Christen E. Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology. NPJ Precis Oncol 2017; 1:15. [PMID: 29872702 PMCID: PMC5859469 DOI: 10.1038/s41698-017-0015-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 01/21/2023] Open
Abstract
There has been increased interest in utilizing non-invasive "liquid biopsies" to identify biomarkers for cancer prognosis and monitoring, and to isolate genetic material that can predict response to targeted therapies. Circulating tumor cells (CTCs) have emerged as such a biomarker providing both genetic and phenotypic information about tumor evolution, potentially from both primary and metastatic sites. Currently, available CTC isolation approaches, including immunoaffinity and size-based filtration, have focused on high capture efficiency but with lower purity and often long and manual sample preparation, which limits the use of captured CTCs for downstream analyses. Here, we describe the use of the microfluidic Vortex Chip for size-based isolation of CTCs from 22 patients with advanced prostate cancer and, from an enumeration study on 18 of these patients, find that we can capture CTCs with high purity (from 1.74 to 37.59%) and efficiency (from 1.88 to 93.75 CTCs/7.5 mL) in less than 1 h. Interestingly, more atypical large circulating cells were identified in five age-matched healthy donors (46-77 years old; 1.25-2.50 CTCs/7.5 mL) than in five healthy donors <30 years old (21-27 years old; 0.00 CTC/7.5 mL). Using a threshold calculated from the five age-matched healthy donors (3.37 CTCs/mL), we identified CTCs in 80% of the prostate cancer patients. We also found that a fraction of the cells collected (11.5%) did not express epithelial prostate markers (cytokeratin and/or prostate-specific antigen) and that some instead expressed markers of epithelial-mesenchymal transition, i.e., vimentin and N-cadherin. We also show that the purity and DNA yield of isolated cells is amenable to targeted amplification and next-generation sequencing, without whole genome amplification, identifying unique mutations in 10 of 15 samples and 0 of 4 healthy samples.
Collapse
Affiliation(s)
- Corinne Renier
- Vortex Biosciences Inc., 1490 O’Brien Drive, Suite E, Menlo Park, CA 94025 USA
| | - Edward Pao
- Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, PO Box 951600, Los Angeles, CA 90095 USA
| | - James Che
- Vortex Biosciences Inc., 1490 O’Brien Drive, Suite E, Menlo Park, CA 94025 USA
| | - Haiyan E. Liu
- Vortex Biosciences Inc., 1490 O’Brien Drive, Suite E, Menlo Park, CA 94025 USA
| | | | - Melissa Matsumoto
- Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, PO Box 951600, Los Angeles, CA 90095 USA
| | - Melanie Triboulet
- Department of Surgery, Stanford University School of Medicine, MSLS Bldg, 1201 Welch Road, Stanford, CA 94305 USA
| | - Sandy Srivinas
- Department of Medicine, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, CA 94305 USA
| | - Stefanie S. Jeffrey
- Department of Surgery, Stanford University School of Medicine, MSLS Bldg, 1201 Welch Road, Stanford, CA 94305 USA
| | - Matthew Rettig
- Departments of Medicine Urology, UCLA Medical Center, Los Angeles, CA 90095 USA
- Department of Medicine, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, CA 90073 USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095 USA
| | - Rajan P. Kulkarni
- Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, PO Box 951600, Los Angeles, CA 90095 USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095 USA
- California NanoSystems Institute, 570 Westwood Plaza, Building 114, Los Angeles, CA 90095 USA
- Division of Dermatology, UCLA Medical Center, 52-121 CHS, Los Angeles, CA 90095 USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, 420 Westwood Plaza, 5121 Engineering V, PO Box 951600, Los Angeles, CA 90095 USA
- Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095 USA
- California NanoSystems Institute, 570 Westwood Plaza, Building 114, Los Angeles, CA 90095 USA
| | | |
Collapse
|
32
|
Du L, Ning Z, Zhang H, Liu F. Corepressor metastasis-associated protein 3 modulates epithelial-to-mesenchymal transition and metastasis. CHINESE JOURNAL OF CANCER 2017; 36:28. [PMID: 28279208 PMCID: PMC5345190 DOI: 10.1186/s40880-017-0193-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/22/2017] [Indexed: 02/05/2023]
Abstract
Worldwide, metastasis is the leading cause of more than 90% of cancer-related deaths. Currently, no specific therapies effectively impede metastasis. Metastatic processes are controlled by complex regulatory networks and transcriptional hierarchy. Corepressor metastasis-associated protein 3 (MTA3) has been confirmed as a novel component of nucleosome remodeling and histone deacetylation (NuRD). Increasing evidence supports the theory that, in the recruitment of transcription factors, coregulators function as master regulators rather than passive passengers. As a master regulator, MTA3 governs the target selection for NuRD and functions as a transcriptional repressor. MTA3 dysregulation is associated with tumor progression, invasion, and metastasis in various cancers. MTA3 is also a key regulator of E-cadherin expression and epithelial-to-mesenchymal transition. Elucidating the functions of MTA3 might help to find additional therapeutic approaches for targeting components of NuRD.
Collapse
Affiliation(s)
- Liang Du
- Cancer Research Center, Shantou University Medical College, Shantou, 515031 Guangdong P. R. China
| | - Zhifeng Ning
- Basic Medicine College, Hubei University of Science and Technology, Xianning, 437100 Hubei P. R. China
| | - Hao Zhang
- Cancer Research Center, Shantou University Medical College, Shantou, 515031 Guangdong P. R. China
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou, 515031 Guangdong P. R. China
| | - Fuxing Liu
- Basic Medicine College, Hubei University of Science and Technology, Xianning, 437100 Hubei P. R. China
| |
Collapse
|
33
|
Anti-androgen 2-hydroxyflutamide modulates cadherin, catenin and androgen receptor phosphorylation in androgen-sensitive LNCaP and androgen-independent PC3 prostate cancer cell lines acting via PI3K/Akt and MAPK/ERK1/2 pathways. Toxicol In Vitro 2017; 40:324-335. [PMID: 28163245 DOI: 10.1016/j.tiv.2017.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/22/2016] [Accepted: 01/25/2017] [Indexed: 01/04/2023]
Abstract
This study aimed to investigate rapid effect of anti-androgen 2-hydroxyflutamide (HF) on cadherin/catenin complex and androgen receptor (AR) phosphorylation in prostate cancer cell lines. In addition, a role of PI3K/Akt and MAPK/ERK1/2 pathways in mediating these effects was explored. We have demonstrated that in androgen-sensitive LNCaP cells HF induced rapid increase of E-cadherin phosphorylation at Ser 838/840 (p<0.05) in MAPK/ERK1/2-dependent manner, whereas phosphorylation of β-catenin at Tyr 654 was unchanged. Concomitantly, the reduction of the level of AR phosphorylated at Ser210/213 was found (p<0.01). In androgen-independent PC3 cells HF decreased Tyr 860 N-cadherin and Tyr 645 β-catenin phosphorylation (p<0.01), acting via both MAPK/ERK1/2 and PI3K/Akt pathways. Further, we evidenced that MAPK/ERK1/2 and PI3K/Akt pathways were differentially influenced by HF in LNCaP and PC3 cells. In LNCaP cells, both Akt (p<0.01) and ERK1/2 (p<0.001) phosphorylation were negatively regulated and this effect was mediated by Raf-1 (p<0.05). In contrast, in PC3 cells HF stimulated Akt (p<0.001) and ERK1/2 (p<0.001) activation, but had no effect on the crosstalk between PI3K/Akt and MEK/ERK1/2 pathways at the Raf-1 kinase level. Our findings expand the role of anti-androgen into non-genomic signaling, creating a link between anti-androgen action and phosphorylation of adherens junction proteins in prostate cancer cells.
Collapse
|
34
|
Nakazawa M, Kyprianou N. Epithelial-mesenchymal-transition regulators in prostate cancer: Androgens and beyond. J Steroid Biochem Mol Biol 2017; 166:84-90. [PMID: 27189666 DOI: 10.1016/j.jsbmb.2016.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/20/2016] [Accepted: 05/07/2016] [Indexed: 12/16/2022]
Abstract
Castration resistant prostate cancer (CRPC) remains one of the leading causes of cancer deaths among men. Conventional therapies targeting androgen signaling driven tumor growth have provided limited survival benefit in patients. Recent identification of the critical molecular and cellular events surrounding tumor progression, invasion, and metastasis to the bone as well as other sites provide new insights in targeting advanced disease. Epithelial mesenchymal transition (EMT) is a process via which epithelial cells undergo morphological changes to a motile mesenchymal phenotype, a phenomenon implicated in cancer metastasis but also therapeutic resistance. Therapeutic targeting of EMT has the potential to open a new avenue in the treatment paradigm of CRPC through the reversion of the invasive mesenchymal phenotype to the well differentiated tumor epithelial tumor phenotype. Overcoming therapeutic resistance in metastatic prostate cancer is an unmet need in today's clinical management of advanced disease. This review outlines our current understanding of the contribution of EMT and its reversal to MET in prostate cancer progression and therapeutic resistance, and the impact of selected targeting of mechanisms of resistance via EMT towards a therapeutic benefit in patients with CRPC.
Collapse
Affiliation(s)
- Mary Nakazawa
- Departments of Urology, Biochemistry, Pathology and Toxicology & Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States, United States
| | - Natasha Kyprianou
- Departments of Urology, Biochemistry, Pathology and Toxicology & Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, United States, United States.
| |
Collapse
|
35
|
Figiel S, Vasseur C, Bruyere F, Rozet F, Maheo K, Fromont G. Clinical significance of epithelial-mesenchymal transition markers in prostate cancer. Hum Pathol 2016; 61:26-32. [PMID: 27818287 DOI: 10.1016/j.humpath.2016.10.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023]
Abstract
The process of epithelial-to-mesenchymal transition (EMT) contributes to cancer progression, with activation of transcription factors leading to loss of epithelial characteristics and acquirement of mesenchymal properties. We analyzed in human prostate cancer (PCa) the expression of EMT markers at the different stages of PCa natural history, and evaluated its clinical significance. The expression of the key EMT transcription factor Zeb1, together with E-cadherin, vimentin, and N-cadherin, was evaluated by immunohistochemistry on tissue microarrays containing samples of normal prostate (n = 58), clinically localized cancer (CLC) (n = 242), castration-resistant PCa (CRPC) (n = 48), and metastases (n = 43). Zeb 1 expression was not found in normal tissues, and significantly increased with disease progression from pT2 (20% of cases) to pT3 tumors (34%), and then from CLC to metastases and CRPC (62% and 92%). The expression of EMT target genes was more fluctuant according to disease stages, although in CLC N-cadherin was closely associated with Zeb1 staining. In CLC, after adjusting for classical prognostic markers, only vimentin expression was significantly predictive of shorter recurrence-free survival. In CRPC, preserved E-cadherin staining was associated with longer overall survival, and Zeb1 expression in metastases was predictive of decreased survival. Although Zeb1 expression increased according to the different steps of PCa progression, the expression of its target genes does not seem to follow the same kinetics. However, the potential clinical interest of these EMT markers at several stages of the disease is strongly suggested by their predictive value on both recurrence-free and overall survival.
Collapse
Affiliation(s)
| | - Caroline Vasseur
- Department of Pathology, CHU-Universite de Tours, 37000 Tours, France
| | - Franck Bruyere
- Department of Urology, CHU-Universite de Tours, Tours, France
| | - Francois Rozet
- Department of Urology, Institut Mutualiste Montsouris, 75014 Paris, France
| | | | - Gaelle Fromont
- Inserm U1069, 37000 Tours, France; Department of Pathology, CHU-Universite de Tours, 37000 Tours, France.
| |
Collapse
|
36
|
Santoni M, Piva F, Scarpelli M, Cheng L, Lopez-Beltran A, Massari F, Iacovelli R, Berardi R, Santini D, Montironi R. The origin of prostate metastases: emerging insights. Cancer Metastasis Rev 2016; 34:765-73. [PMID: 26363603 DOI: 10.1007/s10555-015-9597-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The outcome of patients with prostate cancer (PCa) is mainly dependent on the presence or absence of distant metastases. Although several advances have been made in understanding the biological basis of this tumor, the mechanisms underlying PCa metastatic spread are not fully clear. The lack of a clear origin for PCa metastasis may be partially due to the evidence of PCa heterogeneity between primary tumor and metastases and among different metastatic sites. Cross-metastatic seeding and the de novo monoclonal seeding of daughter metastases have been proposed as crucial events during metastasis. This process requires the contribution of tumor environment, which modulates cancer cell homing and growth, and involves several components including cancer stem cells (CSCs), tumor secreted microvesicles, circulating tumor cells (CTCs), and immune cells. In this review, we have focused on the recent findings on the origin of prostate metastasis, showing the contribution of tumor microenvironment to this evolutionary process.
Collapse
Affiliation(s)
- Matteo Santoni
- Medical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi, Ancona, Italy.
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Francesco Massari
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Piazzale L.A. Scuro 10, 37124, Verona, Italy
| | - Roberto Iacovelli
- Medical Oncology Unit of Urogenital and Head & Neck Tumors, European Institute of Oncology
- , Via Ripamonti 435, 20141, Milan, Italy
| | - Rossana Berardi
- Medical Oncology, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti Umberto I, GM Lancisi, G Salesi, Ancona, Italy
| | - Daniele Santini
- Department of Medical Oncology, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 200, 00128, Rome, Italy
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| |
Collapse
|
37
|
Nguyen T, Mège RM. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations. Eur J Cell Biol 2016; 95:415-426. [PMID: 27320194 DOI: 10.1016/j.ejcb.2016.05.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - René Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France.
| |
Collapse
|
38
|
Verrill C, Cerundolo L, Mckee C, White M, Kartsonaki C, Fryer E, Morris E, Brewster S, Ratnayaka I, Marsden L, Lilja H, Muschel R, Lu X, Hamdy F, Bryant RJ. Altered expression of epithelial-to-mesenchymal transition proteins in extraprostatic prostate cancer. Oncotarget 2016; 7:1107-19. [PMID: 26701730 PMCID: PMC4811447 DOI: 10.18632/oncotarget.6689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/05/2015] [Indexed: 01/09/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT) of cancer cells involves loss of epithelial polarity and adhesiveness, and gain of invasive and migratory mesenchymal behaviours. EMT occurs in prostate cancer (PCa) but it is unknown whether this is in specific areas of primary tumours. We examined whether any of eleven EMT-related proteins have altered expression or subcellular localisation within the extraprostatic extension component of locally advanced PCa compared with other localisations, and whether similar changes may occur in in vitro organotypic PCa cell cultures and in vivo PCa models. Expression profiles of three proteins (E-cadherin, Snail, and α-smooth muscle actin) were significantly different in extraprostatic extension PCa compared with intra-prostatic tumour, and 18/27 cases had an expression change of at least one of these three proteins. Of the three significantly altered EMT proteins in pT3 samples, one showed similar significantly altered expression patterns in in vitro organotypic culture models, and two in in vivo Pten-/- model samples. These results suggest that changes in EMT protein expression can be observed in the extraprostatic extension component of locally invasive PCa. The biology of some of these changes in protein expression may be studied in certain in vitro and in vivo PCa models.
Collapse
Affiliation(s)
- Clare Verrill
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Lucia Cerundolo
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Chad Mckee
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington, Oxford, UK
| | - Michael White
- Ludwig Institute for Cancer Research Ltd, University of Oxford, Nuffield Department of Clinical Medicine, Headington, Oxford, UK
| | | | - Eve Fryer
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Headington, Oxford, UK
| | - Emma Morris
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
- Ludwig Institute for Cancer Research Ltd, University of Oxford, Nuffield Department of Clinical Medicine, Headington, Oxford, UK
| | - Simon Brewster
- Department of Urology, Churchill Hospital, Headington, Oxford, UK
| | - Indrika Ratnayaka
- Ludwig Institute for Cancer Research Ltd, University of Oxford, Nuffield Department of Clinical Medicine, Headington, Oxford, UK
| | - Luke Marsden
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Hans Lilja
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
- Departments of Surgery (Urology Service), Laboratory Medicine (Clinical Chemistry Service) and Medicine (Genitourinary Oncology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Laboratory Medicine and Clinical Sciences in Malmö, Lund University, Skåne University Hospital, Malmö, Sweden
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland
| | - Ruth Muschel
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington, Oxford, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research Ltd, University of Oxford, Nuffield Department of Clinical Medicine, Headington, Oxford, UK
| | - Freddie Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
| | - Richard J. Bryant
- Nuffield Department of Surgical Sciences, University of Oxford, Headington, Oxford, UK
- Ludwig Institute for Cancer Research Ltd, University of Oxford, Nuffield Department of Clinical Medicine, Headington, Oxford, UK
| |
Collapse
|