1
|
Manjunath M, Ravindran F, Sharma S, Siddiqua H, Raghavan SC, Choudhary B. Disarib, a Specific BCL2 Inhibitor, Induces Apoptosis in Triple-Negative Breast Cancer Cells and Impedes Tumour Progression in Xenografts by Altering Mitochondria-Associated Processes. Int J Mol Sci 2024; 25:6485. [PMID: 38928195 PMCID: PMC11203414 DOI: 10.3390/ijms25126485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Targeted cancer therapy aims to disrupt the functions of proteins that regulate cancer progression, mainly by using small molecule inhibitors (SMIs). SMIs exert their effect by modulating signalling pathways, organelle integrity, chromatin components, and several biosynthetic processes essential for cell division and survival. Antiapoptotic protein BCL2 is highly upregulated in many cancers compared with normal cells, making it an ideal target for cancer therapy. Around 75% of primary breast cancers overexpress BCL2, providing an opportunity to explore BCL2 inhibitors as a therapeutic option. Disarib is an SMI that has been developed as a selective BCL2 inhibitor. Disarib works by disrupting BCL2-BAK interaction and activating intrinsic apoptotic pathways in leukemic cells while sparing normal cells. We investigated the effects of Disarib, a BCL2 specific inhibitor, on breast cancer cells and xenografts. Cytotoxicity and fluorometric assays revealed that Disarib induced cell death by increasing reactive oxygen species and activating intrinsic apoptotic pathways in Triple-Negative Breast Cancer cells (MDA-MB-231 and MDA-MB-468). Disarib also affected the colony-forming properties of these cells. MDA-MB-231- and MDA-MB-468-derived xenografts showed a significant reduction in tumours upon Disarib treatment. Through the transcriptomics approach, we also explored the influence of BCL2 inhibitors on energy metabolism, mitochondrial dynamics, and epithelial-to-mesenchymal transition (EMT). Mitochondrial dynamics and glucose metabolism mainly regulate energy metabolism. The change in energetics regulates tumour growth through epithelial-mesenchymal transition, and angiogenesis. RNA sequencing (RNAseq) analysis revealed that BCL2 inhibitors ABT-199 and Disarib maintain Oxphos levels in MDA-MB-231. However, key glycolytic genes were significantly downregulated. Mitochondrial fission genes were seen to be downregulated both in RNAseq data and semi quantitative real time polymerase chain reaction (qRTPCR) in Disarib-treated TNBC cells and xenografts. Lastly, Disarib inhibited wound healing and epithelial-to-mesenchymal transition. This study showed that Disarib disrupts mitochondrial function, activates the intrinsic apoptotic pathway in breast cancer, and inhibits epithelial-to-mesenchymal transition both in vitro and in vivo. These findings highlight Disarib's potential as a multifaceted therapeutic strategy for patients with Triple-Negative Breast Cancer.
Collapse
Affiliation(s)
- Meghana Manjunath
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
| | - Febina Ravindran
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
| | - Shivangi Sharma
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
- Indian Institute of Science, Bengaluru 560012, India; (H.S.); (S.C.R.)
| | - Humaira Siddiqua
- Indian Institute of Science, Bengaluru 560012, India; (H.S.); (S.C.R.)
| | | | - Bibha Choudhary
- Department of Biotechnology and Applied Bioinformatics, Institute of Bioinformatics and Applied Biotechnology, Electronic City Phase 1, Bengaluru 560100, India
| |
Collapse
|
2
|
Man S, Lu Y, Yin L, Cheng X, Ma L. Potential and promising anticancer drugs from adenosine and its analogs. Drug Discov Today 2021; 26:1490-1500. [PMID: 33639248 DOI: 10.1016/j.drudis.2021.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
In recent years, many studies have shown that adenosine has efficacy for treating cancer. More importantly, some adenosine analogs have been successfully marketed to fulfill anticancer purposes. In this review, we summarize the anticancer effects of adenosine and its analogs in clinical trials and preclinical studies, with focus on their anticancer mechanisms. In addition, we link the anticancer activities of adenosine analogs with their structures through structure-activity relationship (SAR) analysis, and highlight additional promising anticancer drug candidates. We hope that this review will be of help in understanding the importance of adenosine and its analogs with anticancer activities and directing future research and development of such compounds.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingying Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
3
|
Visnjic D, Dembitz V, Lalic H. The Role of AMPK/mTOR Modulators in the Therapy of Acute Myeloid Leukemia. Curr Med Chem 2019; 26:2208-2229. [PMID: 29345570 DOI: 10.2174/0929867325666180117105522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
Differentiation therapy of acute promyelocytic leukemia with all-trans retinoic acid represents the most successful pharmacological therapy of acute myeloid leukemia (AML). Numerous studies demonstrate that drugs that inhibit mechanistic target of rapamycin (mTOR) and activate AMP-kinase (AMPK) have beneficial effects in promoting differentiation and blocking proliferation of AML. Most of these drugs are already in use for other purposes; rapalogs as immunosuppressants, biguanides as oral antidiabetics, and 5-amino-4-imidazolecarboxamide ribonucleoside (AICAr, acadesine) as an exercise mimetic. Although most of these pharmacological modulators have been widely used for decades, their mechanism of action is only partially understood. In this review, we summarize the role of AMPK and mTOR in hematological malignancies and discuss the possible role of pharmacological modulators in proliferation and differentiation of leukemia cells.
Collapse
Affiliation(s)
- Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| | - Hrvoje Lalic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10 000 Zagreb, Croatia
| |
Collapse
|
4
|
Drug-based perturbation screen uncovers synergistic drug combinations in Burkitt lymphoma. Sci Rep 2018; 8:12046. [PMID: 30104685 PMCID: PMC6089937 DOI: 10.1038/s41598-018-30509-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023] Open
Abstract
Burkitt lymphoma (BL) is a highly aggressive B-cell lymphoma associated with MYC translocation. Here, we describe drug response profiling of 42 blood cancer cell lines including 17 BL to 32 drugs targeting key cancer pathways and provide a systematic study of drug combinations in BL cell lines. Based on drug response, we identified cell line specific sensitivities, i.e. to venetoclax driven by BCL2 overexpression and partitioned subsets of BL driven by response to kinase inhibitors. In the combination screen, including BET, BTK and PI3K inhibitors, we identified synergistic combinations of PI3K and BTK inhibition with drugs targeting Akt, mTOR, BET and doxorubicin. A detailed comparison of PI3K and BTKi combinations identified subtle differences, in line with convergent pathway activity. Most synergistic combinations were identified for the BET inhibitor OTX015, which showed synergistic effects for 41% of combinations including inhibitors of PI3K/AKT/mTOR signalling. The strongest synergy was observed for the combination of the CDK 2/7/9 inhibitor SNS032 and OTX015. Our data provide a landscape of drug combination effects in BL and suggest that targeting CDK and BET could provide a novel vulnerability of BL.
Collapse
|
5
|
Chen L, Miao Y, Liu M, Zeng Y, Gao Z, Peng D, Hu B, Li X, Zheng Y, Xue Y, Zuo Z, Xie Y, Ren J. Pan-Cancer Analysis Reveals the Functional Importance of Protein Lysine Modification in Cancer Development. Front Genet 2018; 9:254. [PMID: 30065750 PMCID: PMC6056651 DOI: 10.3389/fgene.2018.00254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Large-scale tumor genome sequencing projects have revealed a complex landscape of genomic mutations in multiple cancer types. A major goal of these projects is to characterize somatic mutations and discover cancer drivers, thereby providing important clues to uncover diagnostic or therapeutic targets for clinical treatment. However, distinguishing only a few somatic mutations from the majority of passenger mutations is still a major challenge facing the biological community. Fortunately, combining other functional features with mutations to predict cancer driver genes is an effective approach to solve the above problem. Protein lysine modifications are an important functional feature that regulates the development of cancer. Therefore, in this work, we have systematically analyzed somatic mutations on seven protein lysine modifications and identified several important drivers that are responsible for tumorigenesis. From published literature, we first collected more than 100,000 lysine modification sites for analysis. Another 1 million non-synonymous single nucleotide variants (SNVs) were then downloaded from TCGA and mapped to our collected lysine modification sites. To identify driver proteins that significantly altered lysine modifications, we further developed a hierarchical Bayesian model and applied the Markov Chain Monte Carlo (MCMC) method for testing. Strikingly, the coding sequences of 473 proteins were found to carry a higher mutation rate in lysine modification sites compared to other background regions. Hypergeometric tests also revealed that these gene products were enriched in known cancer drivers. Functional analysis suggested that mutations within the lysine modification regions possessed higher evolutionary conservation and deleteriousness. Furthermore, pathway enrichment showed that mutations on lysine modification sites mainly affected cancer related processes, such as cell cycle and RNA transport. Moreover, clinical studies also suggested that the driver proteins were significantly associated with patient survival, implying an opportunity to use lysine modifications as molecular markers in cancer diagnosis or treatment. By searching within protein-protein interaction networks using a random walk with restart (RWR) algorithm, we further identified a series of potential treatment agents and therapeutic targets for cancer related to lysine modifications. Collectively, this study reveals the functional importance of lysine modifications in cancer development and may benefit the discovery of novel mechanisms for cancer treatment.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanyan Miao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mengni Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanru Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zijun Gao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Peng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bosu Hu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xu Li
- Spine Center, Department of Orthopaedics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, China
| | - Yueyuan Zheng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Xue
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Grant S. Rational combination strategies to enhance venetoclax activity and overcome resistance in hematologic malignancies. Leuk Lymphoma 2018; 59:1292-1299. [PMID: 28838268 PMCID: PMC5826810 DOI: 10.1080/10428194.2017.1366999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Venetoclax (ABT-199) is a Bcl-2-specific BH3-mimetic that has shown significant promise in certain subtypes of CLL as well as in several other hematologic malignancies. As in the case of essentially all targeted agents, intrinsic or acquired resistance to this agent generally occurs, prompting the search for new strategies capable of circumventing this problem. A logical approach to this challenge involves rational combination strategies designed to disable preexisting or induced compensatory survival pathways. Many of these strategies involve downregulation of Mcl-1, a pro-survival Bcl-2 family member that is not targeted by venetoclax, and which often confers resistance to this agent. Given encouraging clinical results involving venetoclax in both lymphoid and myeloid malignancies, it is likely that such combination approaches will be incorporated into the therapeutic armamentarium for multiple hematologic malignancies in the near future.
Collapse
Affiliation(s)
- Steven Grant
- Department of Medicine, Biochemistry, Pharmacology, and Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Translational Research, Developmental Therapeutics Program, Massey Cancer Center, Richmond, VA, USA
- Shirley Carter and Sture Gordon Olsson Professor of Oncology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| |
Collapse
|
7
|
McCubrey JA, Abrams SL, Lertpiriyapong K, Cocco L, Ratti S, Martelli AM, Candido S, Libra M, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Steelman LS. Effects of berberine, curcumin, resveratrol alone and in combination with chemotherapeutic drugs and signal transduction inhibitors on cancer cells-Power of nutraceuticals. Adv Biol Regul 2018; 67:190-211. [PMID: 28988970 DOI: 10.1016/j.jbior.2017.09.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Over the past fifty years, society has become aware of the importance of a healthy diet in terms of human fitness and longevity. More recently, the concept of the beneficial effects of certain components of our diet and other compounds, that are consumed often by different cultures in various parts of the world, has become apparent. These "healthy" components of our diet are often referred to as nutraceuticals and they can prevent/suppress: aging, bacterial, fungal and viral infections, diabetes, inflammation, metabolic disorders and cardiovascular diseases and have other health-enhancing effects. Moreover, they are now often being investigated because of their anti-cancer properties/potentials. Understanding the effects of various natural products on cancer cells may enhance their usage as anti-proliferative agents which may be beneficial for many health problems. In this manuscript, we discuss and demonstrate how certain nutraceuticals may enhance other anti-cancer drugs to suppress proliferation of cancer cells.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA.
| | - Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA; Center of Comparative Medicine and Pathology, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medicine and the Hospital for Special Surgery, New York City, New York, USA
| | - Lucio Cocco
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Alberto M Martelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Oncological, Clinical and General Pathology Section, University of Catania, Catania, Italy
| | - Ramiro M Murata
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale Delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| |
Collapse
|
8
|
Tang YL, Zhou Y, Cheng LL, Su YZ, Wang CB. BCL2/Ki-67 index predict survival in germinal center B-cell-like diffuse large B-cell lymphoma. Oncol Lett 2017; 14:3767-3773. [PMID: 28927145 PMCID: PMC5588076 DOI: 10.3892/ol.2017.6577] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/14/2017] [Indexed: 02/06/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. BCL2 apoptosis regulator (BCL2) and marker of proliferation Ki-67 (Ki-67) are established prognostic markers, which have traditionally been assessed separately in DLBCL. However, no studies have evaluated the prognostic value of the combination of BCL2 and Ki-67 index. Thus, the present study aimed to analyze the prognostic value of combination of these two markers. Immunohistochemical analysis was used to assess the expression of BCL2 and Ki-67 in 274 cases of DLBCL. The BCL2/Ki-67 index demonstrated a significant association with decreased overall and progression free survival of patients with DLBCL, particularly for the germinal center B-cell-like subtype of DLBCL. Following multivariate analysis, the BCL2/Ki-67 index retained prognostic significance. Patients with coexpression of BCL2 and Ki-67 constituted a unique group with poor survival, thus novel therapies targeting BCL2 protein and high proliferative activity may improve the outcome of these patients.
Collapse
Affiliation(s)
- Yun-Long Tang
- Department of Hematology and Oncology, The Affiliated Hospital of Southeast University, The Third People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Yan Zhou
- Department of Hematology and Oncology, The Affiliated Hospital of Southeast University, The Third People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| | - Ling-Ling Cheng
- Department of Oncology, Yancheng Hospital of Traditional Chinese Medicine, Yancheng, Jiangsu 224000, P.R. China
| | - Yong-Zhong Su
- Department of Hematology, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, P.R. China
| | - Chun-Bin Wang
- Department of Hematology and Oncology, The Affiliated Hospital of Southeast University, The Third People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
- Correspondence to: Dr Chun-Bin Wang, Department of Hematology and Oncology, The Affiliated Hospital of Southeast University, The Third People's Hospital of Yancheng, 75 Ju Chang Road, Yancheng, Jiangsu 224000, P.R. China, E-mail:
| |
Collapse
|
9
|
Abstract
B-cell lymphoma-2 (BCL-2) family dysfunction and impairment of apoptosis are common in most B-cell lymphoid malignancies. Venetoclax (Venclexta™, formerly ABT-199, GDC-0199) is a highly selective BCL-2 inhibitor, which mimics its BCL-2 homology 3-domain to induce apoptosis. It was approved for treatment of previously treated chronic lymphocytic leukemia (CLL) patients with 17p deletion early in 2016. It has also been in clinical trials for other B-cell lymphoid malignancies. Unlike the other recently approved targeted agents idelalisib and ibrutinib, so far there has been no relapse reported in some patients. Also, unlike the other targeted agents, it is effective against tumor cells that reside in the blood marrow. Despite its promising outcome in CLL, preclinical data have already uncovered mechanistic insights underlying venetoclax resistance, such as upregulation of MCL-1 or BCL-xL expression and protective signaling from the microenvironment. In this review, we describe the role of the BCL-2 family in the pathogenesis of B-cell lymphoid malignancies, the development of venetoclax, and its current clinical outcome in CLL and other B-cell malignancies. We also discuss the resistance mechanisms that develop following venetoclax therapy, potential strategies to overcome them, and how this knowledge can be translated into clinical applications.
Collapse
Affiliation(s)
- Huayuan Zhu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, People’s Republic of China
| | - Alexandru Almasan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|