1
|
Herzog M, Verdenik I, Kobal B, Černe K. Higher EpCAM-Positive Extracellular Vesicle Concentration in Ascites Is Associated with Shorter Progression-Free Survival of Patients with Advanced High-Grade Serous Carcinoma. Int J Mol Sci 2024; 25:6780. [PMID: 38928484 PMCID: PMC11204144 DOI: 10.3390/ijms25126780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Platinum-resistant high-grade serous carcinoma (HGSC) is an incurable disease, so biomarkers that could help with timely treatment adjustments and personalized approach are extensively being sought. Tumor-derived extracellular vesicles (EVs) that can be isolated from ascites and blood of HGSC patients are such promising biomarkers. Epithelial cell adhesion molecule (EpCAM) expression is upregulated in most epithelium-derived tumors; however, studies on prognostic value of EpCAM overexpression in ovarian carcinoma have shown contradictory results. The aim of our study was to evaluate the potential of total and EpCAM-positive EVs as prognostic and predictive biomarkers for advanced HGSC. Flow cytometry was used to determine the concentration of total and EpCAM-positive EVs in paired pretreatment ascites and plasma samples of 37 patients with advanced HGSC who underwent different first-line therapy. We found that higher EpCAM-positive EVs concentration in ascites is associated with shorter progression-free survival (PFS) regardless of treatment strategy. We also found a strong correlation of EpCAM-positive EVs concentration between ascites and plasma. Our findings indicate that EpCAM-positive EVs in ascites of patients with advanced HGSC have the potential to serve as prognostic biomarkers for predicting early recurrence and thereby likelihood of more aggressive tumor biology and development of chemoresistance.
Collapse
Affiliation(s)
- Maruša Herzog
- Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (M.H.); (I.V.); (B.K.)
| | - Ivan Verdenik
- Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (M.H.); (I.V.); (B.K.)
| | - Borut Kobal
- Division of Gynecology and Obstetrics, University Medical Centre Ljubljana, SI-1000 Ljubljana, Slovenia; (M.H.); (I.V.); (B.K.)
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Katarina Černe
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition. Biomolecules 2021; 11:biom11070956. [PMID: 34209658 PMCID: PMC8301972 DOI: 10.3390/biom11070956] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein expressed in epithelial tissues. EpCAM forms intercellular, homophilic adhesions, modulates epithelial junctional protein complex formation, and promotes epithelial tissue homeostasis. EpCAM is a target of molecular therapies and plays a prominent role in tumor biology. In this review, we focus on the dynamic regulation of EpCAM expression during epithelial-to-mesenchymal transition (EMT) and the functional implications of EpCAM expression on the regulation of EMT. EpCAM is frequently and highly expressed in epithelial cancers, while silenced in mesenchymal cancers. During EMT, EpCAM expression is downregulated by extracellular signal-regulated kinases (ERK) and EMT transcription factors, as well as by regulated intramembrane proteolysis (RIP). The functional impact of EpCAM expression on tumor biology is frequently dependent on the cancer type and predominant oncogenic signaling pathways, suggesting that the role of EpCAM in tumor biology and EMT is multifunctional. Membrane EpCAM is cleaved in cancers and its intracellular domain (EpICD) is transported into the nucleus and binds β-catenin, FHL2, and LEF1. This stimulates gene transcription that promotes growth, cancer stem cell properties, and EMT. EpCAM is also regulated by epidermal growth factor receptor (EGFR) signaling and the EpCAM ectoderm (EpEX) is an EGFR ligand that affects EMT. EpCAM is expressed on circulating tumor and cancer stem cells undergoing EMT and modulates metastases and cancer treatment responses. Future research exploring EpCAM’s role in EMT may reveal additional therapeutic opportunities.
Collapse
|
3
|
Sankpal NV, Brown TC, Fleming TP, Herndon JM, Amaravati AA, Loynd AN, Gillanders WE. Cancer-associated mutations reveal a novel role for EpCAM as an inhibitor of cathepsin-L and tumor cell invasion. BMC Cancer 2021; 21:541. [PMID: 33980181 PMCID: PMC8114703 DOI: 10.1186/s12885-021-08239-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/22/2021] [Indexed: 12/17/2022] Open
Abstract
Background EpCAM (Epithelial cell adhesion molecule) is often dysregulated in epithelial cancers. Prior studies implicate EpCAM in the regulation of oncogenic signaling pathways and epithelial-to-mesenchymal transition. It was recently demonstrated that EpCAM contains a thyroglobulin type-1 (TY-1) domain. Multiple proteins with TY-1 domains are known to inhibit cathepsin-L (CTSL), a cysteine protease that promotes tumor cell invasion and metastasis. Analysis of human cancer sequencing studies reveals that somatic EpCAM mutations are present in up to 5.1% of tested tumors. Methods The Catalogue of Somatic Mutations in Cancer (COSMIC) database was queried to tabulate the position and amino acid changes of cancer associated EpCAM mutations. To determine how EpCAM mutations affect cancer biology we studied C66Y, a damaging TY-1 domain mutation identified in liver cancer, as well as 13 other cancer-associated EpCAM mutations. In vitro and in vivo models were used to determine the effect of wild type (WT) and mutant EpCAM on CTSL activity and invasion. Immunoprecipitation and localization studies tested EpCAM and CTSL protein binding and determined compartmental expression patterns of EpCAM mutants. Results We demonstrate that WT EpCAM, but not C66Y EpCAM, inhibits CTSL activity in vitro, and the TY-1 domain of EpCAM is responsible for this inhibition. WT EpCAM, but not C66Y EpCAM, inhibits tumor cell invasion in vitro and lung metastases in vivo. In an extended panel of human cancer cell lines, EpCAM expression is inversely correlated with CTSL activity. Previous studies have demonstrated that EpCAM germline mutations can prevent EpCAM from being expressed at the cell surface. We demonstrate that C66Y and multiple other EpCAM cancer-associated mutations prevent surface expression of EpCAM. Cancer-associated mutations that prevent EpCAM cell surface expression abrogate the ability of EpCAM to inhibit CTSL activity and tumor cell invasion. Conclusions These studies reveal a novel role for EpCAM as a CTSL inhibitor, confirm the functional relevance of multiple cancer-associated EpCAM mutations, and suggest a therapeutic vulnerability in cancers harboring EpCAM mutations. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08239-z.
Collapse
Affiliation(s)
- Narendra V Sankpal
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, Saint Louis, MO, 63110, USA.
| | - Taylor C Brown
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, Saint Louis, MO, 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy P Fleming
- Norton Thoracic Institute, St. Joseph's Hospital and Medical Center, 124 W. Thomas Road, Phoenix, 85013, AZ, USA
| | - John M Herndon
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, Saint Louis, MO, 63110, USA
| | - Anusha A Amaravati
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, Saint Louis, MO, 63110, USA
| | - Allison N Loynd
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, Saint Louis, MO, 63110, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8109, Saint Louis, MO, 63110, USA. .,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Tian S, Cheng SB, Guo YY, Xie M, Zhan N, Zeng Z, Huang WH, Dong WG. High Efficient Isolation of Tumor Cells by a Three Dimensional Scaffold Chip for Diagnosis of Malignant Effusions. ACS APPLIED BIO MATERIALS 2020; 3:2177-2184. [PMID: 35025269 DOI: 10.1021/acsabm.0c00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Shan Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Shi-Bo Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Ying-Yun Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| | - Min Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Na Zhan
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wei-Hua Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei-Guo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
5
|
Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Exp Mol Med 2019; 51:1-9. [PMID: 31735912 PMCID: PMC6859160 DOI: 10.1038/s12276-019-0345-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 01/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are one of the most widely used drug platforms for infectious diseases or cancer therapeutics because they selectively target pathogens, infectious cells, cancerous cells, and even immune cells. In this way, they mediate the elimination of target molecules and cells with fewer side effects than other therapeutic modalities. In particular, cancer therapeutic mAbs can recognize cell-surface proteins on target cells and then kill the targeted cells by multiple mechanisms that are dependent upon a fragment crystallizable (Fc) domain interacting with effector Fc gamma receptors, including antibody-dependent cell-mediated cytotoxicity and antibody-dependent cell-mediated phagocytosis. Extensive engineering efforts have been made toward tuning Fc functions by either reinforcing (e.g. for targeted therapy) or disabling (e.g. for immune checkpoint blockade therapy) effector functions and prolonging the serum half-lives of antibodies, as necessary. In this report, we review Fc engineering efforts to improve therapeutic potency, and propose future antibody engineering directions that can fulfill unmet medical needs. Fine-tuning the function of monoclonal antibodies (mAbs) holds promise for developing new therapeutic agents. Antibodies bind to pathogens or cancer cells, flagging them with Fc (fragment crystallizable) domain for destruction by the immune system. mAbs attached only to specific target cells enable lower side effect than other conventional drugs. Sang Taek Jung at Korea University and Tae Hyun Kang at Kookmin University, both in Seoul, reviewed recent developments in engineering therapeutic potency of mAbs. They report that mAbs can be engineered to activate effective immune cell types to treat a particular disease. Engineering can also increase mAbs’ persistence in the blood, enabling less frequent administration. Antibodies engineered to bind to two different antigens at once can also improve therapeutic efficacy. Applying these techniques could help developing new treatments against cancer, and infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Tae Hyun Kang
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seongbuk-gu, Seoul, 02707, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Yahyazadeh Mashhadi SM, Kazemimanesh M, Arashkia A, Azadmanesh K, Meshkat Z, Golichenari B, Sahebkar A. Shedding light on the EpCAM: An overview. J Cell Physiol 2019; 234:12569-12580. [DOI: 10.1002/jcp.28132] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Seyed Muhammad Yahyazadeh Mashhadi
- Department of Virology Pasteur Institute of Iran Tehran Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Production Expert at Samandaroo 8 (Biotech Pharmaceutical) Co. Mashhad Iran
| | | | - Arash Arashkia
- Department of Virology Pasteur Institute of Iran Tehran Iran
| | | | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences Mashhad Iran
| | - Behrouz Golichenari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
7
|
Fonseca ICCFE, da Luz FAC, Uehara IA, Silva MJB. Cell-adhesion molecules and their soluble forms: Promising predictors of "tumor progression" and relapse in leukemia. Tumour Biol 2018; 40:1010428318811525. [PMID: 30486756 DOI: 10.1177/1010428318811525] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Some surface markers are used to discriminate certain leukemic subpopulations that retain a greater oncogenic potential than others, and, for this reason, they were termed as leukemic stem cells, similar to the concept of cancer stem cells in carcinoma. Among these surface markers are proteins involved in cell-cell adhesion or cell-matrix adhesion, and they may play a role in the relapse of leukemia, similar to metastasis in carcinomas. The most important are epithelial cadherin, neural cadherin, epithelial cell-adhesion molecule, and CD44, which can be cleaved and released, and their soluble forms were found increased in serum levels of cancer patients, being implicated, in some cases, with progression, metastases, and relapse. In this review, we highlighted the role of these four adhesion molecules in carcinomas and hematological malignancies, mainly leukemia, and discuss if the serum levels of soluble forms can be correlated with the surface protein status on the leukemic cells. Accession of the soluble forms looks attractive, but their use as markers in cancer must be studied in association with other parameters, as there are significant changes in levels in other pathological conditions besides cancer. Studies correlating the levels of the forms with the status of the membrane-bound proteins in leukemic (stem) cells and correlating those parameters with relapse in leukemia may afford important knowledge and applicability of those serum markers in clinical practice. For instance, the expression of the membrane-bound forms of these adhesion proteins may have promising clinical use in leukemia and other hematological malignancies.
Collapse
Affiliation(s)
| | - Felipe Andrés Cordero da Luz
- 1 Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
- 2 Nucleus of Cancer Prevention and Research, Cancer Hospital, Federal University of Uberlândia, Uberlândia, Brazil
| | - Isadora Akemi Uehara
- 1 Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Marcelo José Barbosa Silva
- 1 Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
8
|
Pan M, Schinke H, Luxenburger E, Kranz G, Shakhtour J, Libl D, Huang Y, Gaber A, Pavšič M, Lenarčič B, Kitz J, Jakob M, Schwenk-Zieger S, Canis M, Hess J, Unger K, Baumeister P, Gires O. EpCAM ectodomain EpEX is a ligand of EGFR that counteracts EGF-mediated epithelial-mesenchymal transition through modulation of phospho-ERK1/2 in head and neck cancers. PLoS Biol 2018; 16:e2006624. [PMID: 30261040 PMCID: PMC6177200 DOI: 10.1371/journal.pbio.2006624] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/09/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are characterized by outstanding molecular heterogeneity that results in severe therapy resistance and poor clinical outcome. Inter- and intratumoral heterogeneity in epithelial-mesenchymal transition (EMT) was recently revealed as a major parameter of poor clinical outcome. Here, we addressed the expression and function of the therapeutic target epidermal growth factor receptor (EGFR) and of the major determinant of epithelial differentiation epithelial cell adhesion molecule (EpCAM) in clinical samples and in vitro models of HNSCCs. We describe improved survival of EGFRlow/EpCAMhigh HNSCC patients (n = 180) and provide a molecular basis for the observed disparities in clinical outcome. EGF/EGFR have concentration-dependent dual capacities as inducers of proliferation and EMT through differential activation of the central molecular switch phosphorylated extracellular signal–regulated kinase 1/2 (pERK1/2) and EMT transcription factors (EMT-TFs) Snail, zinc finger E-box-binding homeobox 1 (Zeb1), and Slug. Furthermore, soluble ectodomain of EpCAM (EpEX) was identified as a ligand of EGFR that activates pERK1/2 and phosphorylated AKT (pAKT) and induces EGFR-dependent proliferation but represses EGF-mediated EMT, Snail, Zeb1, and Slug activation and cell migration. EMT repression by EpEX is realized through competitive modulation of pERK1/2 activation strength and inhibition of EMT-TFs, which is reflected in levels of pERK1/2 and its target Slug in clinical samples. Accordingly, high expression of pERK1/2 and/or Slug predicted poor outcome of HNSCCs. Hence, EpEX is a ligand of EGFR that induces proliferation but counteracts EMT mediated by the EGF/EGFR/pERK1/2 axis. Therefore, the emerging EGFR/EpCAM molecular cross talk represents a promising target to improve patient-tailored adjuvant treatment of HNSCCs. Head and neck squamous cell carcinomas (HNSCCs) display poor survival, with death rates above 55%. Major factors affecting survival are metastases’ formation and therapy resistance. Phenotypic changes during partial epithelial-mesenchymal transition (EMT) provide tumor cells with increased migration, invasion, and therapy resistance. Understanding molecular mechanisms of EMT, as a central process of the metastatic cascade and the development of therapy resistance, is therefore important. In the present work, we identified molecular cross talk between epidermal growth factor receptor (EGFR) and epithelial cell adhesion molecule (EpCAM) as a novel determinant of clinical outcome in HNSCCs. Low levels of EGFR but high levels of EpCAM (EGFRlow/EpCAMhigh) were associated with favorable prognosis, with survival rates above 90%, whereas EGFRhigh/EpCAMlow correlated with poor survival, below 10%. EGFR was shown to have a concentration-dependent capacity to induce proliferation and EMT. Proteolytic cleavage of the extracellular domain of EpCAM (EpEX) produces a ligand of EGFR that induces EGFR-dependent proliferation but counteracts EGF-induced EMT. We delineate an EGFR/extracellular signal–regulated kinase 1/2 (ERK1/2)/EpCAM signaling axis that may be a promising therapeutic target for HNSCCs.
Collapse
Affiliation(s)
- Min Pan
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Henrik Schinke
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Elke Luxenburger
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Gisela Kranz
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Julius Shakhtour
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Darko Libl
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Yuanchi Huang
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Ljubljana, Slovenia
| | - Julia Kitz
- Institute of Pathology, University Medical Center, Göttingen, Germany
| | - Mark Jakob
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Sabina Schwenk-Zieger
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Julia Hess
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Kristian Unger
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Philipp Baumeister
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Munich, Germany
- Clinical Cooperation Group “Personalized Radiotherapy in Head and Neck Cancer“, Helmholtz Zentrum München, Research Center for Environmental Health (GmbH), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
9
|
Boesch M, Spizzo G, Seeber A. Concise Review: Aggressive Colorectal Cancer: Role of Epithelial Cell Adhesion Molecule in Cancer Stem Cells and Epithelial-to-Mesenchymal Transition. Stem Cells Transl Med 2018; 7:495-501. [PMID: 29667344 PMCID: PMC5980125 DOI: 10.1002/sctm.17-0289] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. In spite of various attempts to ameliorate outcome by escalating treatment, significant improvement is lacking particularly in the adjuvant setting. It has been proposed that cancer stem cells (CSCs) and the epithelial‐to‐mesenchymal transition (EMT) are at least partially responsible for therapy resistance in CRC. The epithelial cell adhesion molecule (EpCAM) was one of the first CSC antigens to be described. Furthermore, an EpCAM‐specific antibody (edrecolomab) has the merit of having launched the era of monoclonal antibody treatment in oncology in the 1990s. However, despite great initial enthusiasm, monoclonal antibody treatment has not proven successful in the adjuvant treatment of CRC patients. In the meantime, new insights into the function of EpCAM in CRC have emerged and new drugs targeting various epitopes have been developed. In this review article, we provide an update on the role of EpCAM in CSCs and EMT, and emphasize the potential predictive selection criteria for novel treatment strategies and refined clinical trial design. stemcellstranslationalmedicine2018;7:495–501
Collapse
Affiliation(s)
- Maximilian Boesch
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Gilbert Spizzo
- Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Andreas Seeber
- Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| |
Collapse
|
10
|
Cortez AJ, Tudrej P, Kujawa KA, Lisowska KM. Advances in ovarian cancer therapy. Cancer Chemother Pharmacol 2018; 81:17-38. [PMID: 29249039 PMCID: PMC5754410 DOI: 10.1007/s00280-017-3501-8] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/11/2017] [Indexed: 02/06/2023]
Abstract
Epithelial ovarian cancer is typically diagnosed at an advanced stage. Current state-of-the-art surgery and chemotherapy result in the high incidence of complete remissions; however, the recurrence rate is also high. For most patients, the disease eventually becomes a continuum of symptom-free periods and recurrence episodes. Different targeted treatment approaches and biological drugs, currently under development, bring the promise of turning ovarian cancer into a manageable chronic disease. In this review, we discuss the current standard in the therapy for ovarian cancer, major recent studies on the new variants of conventional therapies, and new therapeutic approaches, recently approved and/or in clinical trials. The latter include anti-angiogenic therapies, polyADP-ribose polymerase (PARP) inhibitors, inhibitors of growth factor signaling, or folate receptor inhibitors, as well as several immunotherapeutic approaches. We also discuss cost-effectiveness of some novel therapies and the issue of better selection of patients for personalized treatment.
Collapse
Affiliation(s)
- Alexander J Cortez
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-100, Poland
| | - Patrycja Tudrej
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-100, Poland
| | - Katarzyna A Kujawa
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-100, Poland
| | - Katarzyna M Lisowska
- Maria Skłodowska-Curie Institute - Oncology Center, Gliwice Branch, Wybrzeże Armii Krajowej 15, Gliwice, 44-100, Poland.
| |
Collapse
|
11
|
Palmirotta R, Silvestris E, D'Oronzo S, Cardascia A, Silvestris F. Ovarian cancer: Novel molecular aspects for clinical assessment. Crit Rev Oncol Hematol 2017; 117:12-29. [PMID: 28807232 DOI: 10.1016/j.critrevonc.2017.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/13/2017] [Accepted: 06/15/2017] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer is a very heterogeneous tumor which has been traditionally characterized according to the different histological subtypes and differentiation degree. In recent years, innovative molecular screening biotechnologies have allowed to identify further subtypes of this cancer based on gene expression profiles, mutational features, and epigenetic factors. These novel classification systems emphasizing the molecular signatures within the broad spectrum of ovarian cancer have not only allowed a more precise prognostic prediction, but also proper therapeutic strategies for specific subgroups of patients. The bulk of available scientific data and the high refinement of molecular classifications of ovarian cancers can today address the research towards innovative drugs with the adoption of targeted therapies tailored for single molecular profiles leading to a better prediction of therapeutic response. Here, we summarize the current state of knowledge on the molecular bases of ovarian cancer, from the description of its molecular subtypes derived from wide high-throughput analyses to the latest discoveries of the ovarian cancer stem cells. The latest personalized treatment options are also presented with recent advances in using PARP inhibitors, anti-angiogenic, anti-folate receptor and anti-cancer stem cells treatment approaches.
Collapse
Affiliation(s)
- Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Erica Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Angela Cardascia
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari 'Aldo Moro', Bari, Italy.
| |
Collapse
|
12
|
Yang L, Zhang Y, Cheng L, Yue D, Ma J, Zhao D, Hou X, Xiang R, Cheng P. Mesenchymal Stem Cells Engineered to Secrete Pigment Epithelium-Derived Factor Inhibit Tumor Metastasis and the Formation of Malignant Ascites in a Murine Colorectal Peritoneal Carcinomatosis Model. Hum Gene Ther 2016; 27:267-77. [PMID: 26756933 DOI: 10.1089/hum.2015.135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The therapeutic effects of conventional treatments for advanced colorectal cancer with colorectal peritoneal carcinomatosis (CRPC) and malignant ascites are not very encouraging. Vascular endothelial growth factor-A/vascular permeability factors (VEGF-A/VPF) play key roles in the formation of malignant ascites. In previous work, we demonstrated that pigment epithelium-derived factor (PEDF) antagonized VEGF-A and could repress tumor growth and suppress metastasis in several cancer types. Thus, PEDF may be a therapeutic candidate for treating malignant ascites. Mesenchymal stem cells (MSCs) are promising tools for delivering therapeutic agents in cancer treatment. In the study, MSCs derived from bone marrow were efficiently engineered to secrete human PEDF by adenoviral transduction. Then, intraperitoneal Ad-PEDF-transduced MSCs were analyzed with respect to CRPC and malignant ascites in a CT26 CRPC model. MSCs engineered to secrete PEDF through adenoviral transduction significantly inhibited tumor metastasis and malignant ascites formation in CT26 CRPC mice. Antitumor mechanisms of MSCs-PEDF (MSCs transduced with Ad-PEDF: MOI 500) were associated with inhibiting tumor angiogenesis, inducing apoptosis, and restoring the VEGF-A/sFLT-1 ratio in ascites. Moreover, MSC-mediated Ad-PEDF delivery reduced production of adenovirus-neutralizing antibodies, prolonged PEDF expression, and induced MSCs-PEDF migration toward tumor cells. As a conclusion, MSCs engineered to secrete PEDF by adenoviral transduction may be a therapeutic approach for suppressing tumor metastasis and inhibiting malignant ascites production in CRPC.
Collapse
Affiliation(s)
- Liping Yang
- 1 Tumor Biotherapy Center/Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Gansu Province, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuwei Zhang
- 2 Division of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Liuliu Cheng
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Dan Yue
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Jinhu Ma
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Da Zhao
- 4 Oncology Medicine Department, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Xiaoming Hou
- 4 Oncology Medicine Department, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Rong Xiang
- 5 School of Medicine/Collaborative Innovation Center for Biotherapy, Nankai University , Tianjin, People's Republic of China
| | - Ping Cheng
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|