1
|
Wang R, Qu Z, Lv Y, Yao L, Qian Y, Zhang X, Xiang L. Important Roles of PI3K/AKT Signaling Pathway and Relevant Inhibitors in Prostate Cancer Progression. Cancer Med 2024; 13:e70354. [PMID: 39485722 PMCID: PMC11529649 DOI: 10.1002/cam4.70354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
Prostate cancer (PCa) is an extremely common malignant tumor of the male genitourinary system, originating from the prostate gland epithelium. Male patients are prone to relapse after treatment, which seriously threatens their health. Phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as Akt) plays an important role in the growth, invasion, and metastasis of PCa. This review aimed to present an overview of the mechanism of action of the PI3K/AKT signaling pathway in PCa and discuss the application prospects of inhibitors of this pathway in treating PCa, providing a theoretical basis and reference for its clinical treatment targets.
Collapse
Affiliation(s)
- Rui Wang
- Department of Clinical MedicineJining Medical UniversityJiningChina
| | - Zhen Qu
- Department of PathologyJining First People's HospitalJiningChina
| | - Ying Lv
- Department of Clinical MedicineJining Medical UniversityJiningChina
| | - Lu Yao
- Department of Clinical MedicineJining Medical UniversityJiningChina
| | - Yang Qian
- Department of Clinical MedicineJining Medical UniversityJiningChina
| | - Xiangyu Zhang
- Department of PathologyJining First People's HospitalJiningChina
| | - Longquan Xiang
- Department of PathologyJining First People's HospitalJiningChina
| |
Collapse
|
2
|
Miller KA, Degan S, Wang Y, Cohen J, Ku SY, Goodrich DW, Gelman IH. PTEN-regulated PI3K-p110 and AKT isoform plasticity controls metastatic prostate cancer progression. Oncogene 2024; 43:22-34. [PMID: 37875657 PMCID: PMC10766561 DOI: 10.1038/s41388-023-02875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
PTEN loss, one of the most frequent mutations in prostate cancer (PC), is presumed to drive disease progression through AKT activation. However, two transgenic PC models with Akt activation plus Rb loss exhibited different metastatic development: Pten/RbPE:-/- mice produced systemic metastatic adenocarcinomas with high AKT2 activation, whereas RbPE:-/- mice deficient for the Src-scaffolding protein, Akap12, induced high-grade prostatic intraepithelial neoplasias and indolent lymph node dissemination, correlating with upregulated phosphotyrosyl PI3K-p85α. Using PC cells isogenic for PTEN, we show that PTEN-deficiency correlated with dependence on both p110β and AKT2 for in vitro and in vivo parameters of metastatic growth or motility, and with downregulation of SMAD4, a known PC metastasis suppressor. In contrast, PTEN expression, which dampened these oncogenic behaviors, correlated with greater dependence on p110α plus AKT1. Our data suggest that metastatic PC aggressiveness is controlled by specific PI3K/AKT isoform combinations influenced by divergent Src activation or PTEN-loss pathways.
Collapse
Affiliation(s)
- Karina A Miller
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
- American Society of Human Genetics, Rockville, MD, 20852, USA
| | - Seamus Degan
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Yanqing Wang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Joseph Cohen
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
- Sequence, Inc., Morrisville, NC, USA
| | - Sheng Yu Ku
- Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - David W Goodrich
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, 14209, USA.
| |
Collapse
|
3
|
Hsa_circ_0000520 Promotes Non-Small Cell Lung Cancer Progression through the miR-1258/AKT3 Axis. JOURNAL OF ONCOLOGY 2022; 2022:3676685. [PMID: 36593867 PMCID: PMC9805391 DOI: 10.1155/2022/3676685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 10/09/2022] [Accepted: 11/05/2022] [Indexed: 12/25/2022]
Abstract
Background There are several previous studies suggesting that circular RNAs (circRNAs) are involved in tumorigenesis of non-small cell lung cancer (NSCLC). Nevertheless, the role of circRNA_0000520 (circ_0000520) in this disease has not yet been studied. Methods circ_0000520, microRNA (miR)-1258, and AKT serine/threonine kinase 3 (AKT3) mRNA expression levels were detected by qPCR. CCK-8, EdU, and Transwell assays were utilized to detect NSCLC cells' malignant biological behaviors. The targeted relationship between miR-1258 and AKT3 3'-UTR or circ_0000520 was verified through the dual-luciferase reporter gene assay. Western blotting was utilized to measure the AKT3 expression after circ_0000520 and miR-1258 were selectively regulated. Results circ_0000520 was upregulated in NSCLC. Highly expressed circ_0000520 is linked to the NSCLC patient's advanced TNM stage and lymph node metastasis. circ_0000520 overexpression facilitated NSCLC cell growth, migration, and invasion. miR-1258 was identified as the downstream target of circ_0000520. miR-1258 overexpression weakened the effect of circ_0000520 overexpression on NSCLC cells. miR-1258 targeted and inhibited AKT3. circ_0000520 positively regulated the AKT3 expression in NSCLC cells by sponging miR-1258. Conclusion circ_0000520 upregulates AKT3 by competitively binding with miR-1258 to facilitate NSCLC progression.
Collapse
|
4
|
Focal cortical dysplasia as a cause of epilepsy: The current evidence of associated genes and future therapeutic treatments. INTERDISCIPLINARY NEUROSURGERY 2022. [DOI: 10.1016/j.inat.2022.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Johnson RP, Ratnacaram CK, Kumar L, Jose J. Combinatorial approaches of nanotherapeutics for inflammatory pathway targeted therapy of prostate cancer. Drug Resist Updat 2022; 64:100865. [PMID: 36099796 DOI: 10.1016/j.drup.2022.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PC) is the most prevalent male urogenital cancer worldwide. PC patients presenting an advanced or metastatic cancer succumb to the disease, even after therapeutic interventions including radiotherapy, surgery, androgen deprivation therapy (ADT), and chemotherapy. One of the hallmarks of PC is evading immune surveillance and chronic inflammation, which is a major challenge towards designing effective therapeutic formulations against PC. Chronic inflammation in PC is often characterized by tumor microenvironment alterations, epithelial-mesenchymal transition and extracellular matrix modifications. The inflammatory events are modulated by reactive nitrogen and oxygen species, inflammatory cytokines and chemokines. Major signaling pathways in PC includes androgen receptor, PI3K and NF-κB pathways and targeting these inter-linked pathways poses a major therapeutic challenge. Notably, many conventional treatments are clinically unsuccessful, due to lack of targetability and poor bioavailability of the therapeutics, untoward toxicity and multidrug resistance. The past decade witnessed an advancement of nanotechnology as an excellent therapeutic paradigm for PC therapy. Modern nanovectorization strategies such as stimuli-responsive and active PC targeting carriers offer controlled release patterns and superior anti-cancer effects. The current review initially describes the classification, inflammatory triggers and major inflammatory pathways of PC, various PC treatment strategies and their limitations. Subsequently, recent advancement in combinatorial nanotherapeutic approaches, which target PC inflammatory pathways, and the mechanism of action are discussed. Besides, the current clinical status and prospects of PC homing nanovectorization, and major challenges to be addressed towards the advancement PC therapy are also addressed.
Collapse
Affiliation(s)
- Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Chandrahas Koumar Ratnacaram
- Cell Signaling and Cancer Biology Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576 104, India
| | - Jobin Jose
- NITTE Deemed-to-be University, NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore 575018, India.
| |
Collapse
|
6
|
Kołat D, Kałuzińska Ż, Bednarek AK, Płuciennik E. Determination of WWOX Function in Modulating Cellular Pathways Activated by AP-2α and AP-2γ Transcription Factors in Bladder Cancer. Cells 2022; 11:cells11091382. [PMID: 35563688 PMCID: PMC9106060 DOI: 10.3390/cells11091382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Following the invention of high-throughput sequencing, cancer research focused on investigating disease-related alterations, often inadvertently omitting tumor heterogeneity. This research was intended to limit the impact of heterogeneity on conclusions related to WWOX/AP-2α/AP-2γ in bladder cancer which differently influenced carcinogenesis. The study examined the signaling pathways regulated by WWOX-dependent AP-2 targets in cell lines as biological replicates using high-throughput sequencing. RT-112, HT-1376 and CAL-29 cell lines were subjected to two stable lentiviral transductions. Following CAGE-seq and differential expression analysis, the most important genes were identified and functionally annotated. Western blot was performed to validate the selected observations. The role of genes in biological processes was assessed and networks were visualized. Ultimately, principal component analysis was performed. The studied genes were found to be implicated in MAPK, Wnt, Ras, PI3K-Akt or Rap1 signaling. Data from pathways were collected, explaining the differences/similarities between phenotypes. FGFR3, STAT6, EFNA1, GSK3B, PIK3CB and SOS1 were successfully validated at the protein level. Afterwards, a definitive network was built using 173 genes. Principal component analysis revealed that the various expression of these genes explains the phenotypes. In conclusion, the current study certified that the signaling pathways regulated by WWOX and AP-2α have more in common than that regulated by AP-2γ. This is because WWOX acts as an EMT inhibitor, AP-2γ as an EMT enhancer while AP-2α as a MET inducer. Therefore, the relevance of AP-2γ in targeted therapy is now more evident. Some of the differently regulated genes can find application in bladder cancer treatment.
Collapse
|
7
|
Qin D, Ni C, Tan B, Huang S, Deng B, Huang Z. LINC01207 promotes prostate cancer progression by sponging miR-1182 to upregulate AKT3. Oncol Lett 2022; 23:57. [PMID: 34992689 PMCID: PMC8721855 DOI: 10.3892/ol.2021.13175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PC) is recognized as a common malignancy in male patients. Long non-coding RNA (lncRNA) has been implicated in the development of PC. Recently, long intergenic non-protein coding RNA 1207 (LINC01207) has been reported to regulate the carcinogenesis of multiple cancer types. However, its role in the progression of PC remains to be determined. The aim of the present study was to investigate the expression profile, clinicopathological implication and molecular mechanism of action of LINC01207 in the progression of PC. LINC01207 expression levels were compared between PC tumor and paired normal tissue samples from The Cancer Genome Atlas. The expression of LINC01207 was further analyzed in PC cell lines and a normal prostatic cell line. The role of LINC01207 in proliferation, migration and invasion of PC cells was examined using small interfering RNA-mediated silencing. Western blot analysis was used to investigate the changes in protein levels underlying the mechanism of action of LINC01207. The role of LINC01207 in tumorigenesis was evaluated in a xenograft model. LINC01207 was upregulated in PC tumor samples from TCGA data compared with paired normal tissue. LINC01207 expression was significantly increased in PC cells and tumor tissues compared with in normal prostate cells (RWPE1) and normal prostate tissues, respectively. Furthermore, LINC01207 silencing inhibited PC cell proliferation and colony formation and induced apoptosis. Mechanistic experiments showed that LINC01207 promoted carcinogenesis by sponging miR-1182 to regulate the protein levels of AKT3 in PC cell lines. Thus, the findings of the present study indicated that LINC01207 might play a role in the tumorigenesis of PC and may serve as a therapeutic target for PC treatment.
Collapse
Affiliation(s)
- Daming Qin
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Cheng Ni
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Biyong Tan
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Shengfei Huang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Bingqing Deng
- Department of Ultrasonography, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| | - Zhihua Huang
- Department of Ultrasonography, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi Clinical College of Wuhan University, Enshi, Hubei 445000, P.R. China
| |
Collapse
|
8
|
Luo Y, Zhou Q, Zhu F, Fan L, Bo H, Wang X. Hypomethylation-driven AKT Serine/Threonine Kinase 3 promotes testicular germ cell tumors proliferation and negatively correlates to immune infiltration. Bioengineered 2021; 12:11288-11302. [PMID: 34882061 PMCID: PMC8810072 DOI: 10.1080/21655979.2021.2002621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AKT Serine/Threonine Kinase 3 (AKT3) has been reported to play an important role in different tumors. However, its clinical value, biological function, and molecular mechanism in testicular germ cell tumors (TGCT) remains unclear. In the current study, we applied the Gene Set Cancer Analysis (GSCA), UCSC XENA, Gene Expression Omnibus (GEO), the Human Protein Atlas (HPA), LinkedOmics, DiseaseMeth version 2.0, TISIDB, and other databases for TGCT data mining. Then, we investigated AKT3’s mechanism of action and clinical survival significance via bioinformatics followed by in vitro experiments. We found that AKT3 was upregulated and had frequent copy number amplifications in TGCT, which were associated with poor survival outcomes of patients. On the other hand, mutations that led to AKT3 loss-of-function were correlated to a better prognosis in patients. Moreover, AKT3 silencing significantly inhibited the proliferation, DNA synthesis and colony formation of NCCIT cells (a TGCT cell line). AKT3 might participate in TGCT progression through multiple signaling pathways, such as ErbB, oxidative phosphorylation, and affecting tumor immune infiltration. Also, the upregulation of AKT3 mRNA expression might be driven by the hypomethylation of its promoter region. Overall, AKT3 is a potential TGCT oncogene and can be further used as a therapeutic target.
Collapse
Affiliation(s)
- Yang Luo
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Key Laboratory for Reproductive Medicine of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qianyin Zhou
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Fang Zhu
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Liqing Fan
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Hao Bo
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan, China
| | - Xingming Wang
- Department of Nuclear Medicine (Pet Center), Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Liu C, Cai D, Zeng W, Huang Y. Inferring Differential Networks by Integrating Gene Expression Data With Additional Knowledge. Front Genet 2021; 12:760155. [PMID: 34858477 PMCID: PMC8632038 DOI: 10.3389/fgene.2021.760155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/13/2021] [Indexed: 11/23/2022] Open
Abstract
Evidences increasingly indicate the involvement of gene network rewiring in disease development and cell differentiation. With the accumulation of high-throughput gene expression data, it is now possible to infer the changes of gene networks between two different states or cell types via computational approaches. However, the distribution diversity of multi-platform gene expression data and the sparseness and high noise rate of single-cell RNA sequencing (scRNA-seq) data raise new challenges for existing differential network estimation methods. Furthermore, most existing methods are purely rely on gene expression data, and ignore the additional information provided by various existing biological knowledge. In this study, to address these challenges, we propose a general framework, named weighted joint sparse penalized D-trace model (WJSDM), to infer differential gene networks by integrating multi-platform gene expression data and multiple prior biological knowledge. Firstly, a non-paranormal graphical model is employed to tackle gene expression data with missing values. Then we propose a weighted group bridge penalty to integrate multi-platform gene expression data and various existing biological knowledge. Experiment results on synthetic data demonstrate the effectiveness of our method in inferring differential networks. We apply our method to the gene expression data of ovarian cancer and the scRNA-seq data of circulating tumor cells of prostate cancer, and infer the differential network associated with platinum resistance of ovarian cancer and anti-androgen resistance of prostate cancer. By analyzing the estimated differential networks, we find some important biological insights about the mechanisms underlying platinum resistance of ovarian cancer and anti-androgen resistance of prostate cancer.
Collapse
Affiliation(s)
- Chen Liu
- Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Dehan Cai
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - WuCha Zeng
- Department of Chemotherapy, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yun Huang
- Department of Geriatric Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Cornice J, Capece D, Di Vito Nolfi M, Di Padova M, Compagnoni C, Verzella D, Di Francesco B, Vecchiotti D, Flati I, Tessitore A, Alesse E, Barbato G, Zazzeroni F. Ultrasound-Based Method for the Identification of Novel MicroRNA Biomarkers in Prostate Cancer. Genes (Basel) 2021; 12:genes12111726. [PMID: 34828332 PMCID: PMC8619582 DOI: 10.3390/genes12111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
The detection of circulating microRNA (miRNA)-based biomarkers represents an innovative, non-invasive method for the early detection of cancer. However, the low concentration of miRNAs released in body fluids and the difficult identification of the tumor site have limited their clinical use as effective cancer biomarkers. To evaluate if ultrasound treatment could amplify the release of extracellular cancer biomarkers, we treated a panel of prostate cancer (PCa) cell lines with an ultrasound-based prototype and profiled the release of miRNAs in the extracellular space, with the aim of identifying novel miRNA-based biomarkers that could be used for PCa diagnosis and the monitoring of tumor evolution. We provide evidence that US-mediated sonoporation amplifies the release of miRNAs from both androgen-dependent (AD) and -independent (AI) PCa cells. We identified four PCa-related miRNAs, whose levels in LNCaP and DU145 supernatants were significantly increased following ultrasound treatment: mir-629-5p, mir-374-5p, mir-194-5p, and let-7d-5p. We further analyzed a publicly available dataset of PCa, showing that the serum expression of these novel miRNAs was upregulated in PCa patients compared to controls, thus confirming their clinical relevance. Our findings highlight the potential of using ultrasound to identify novel cell-free miRNAs released from cancer cells, with the aim of developing new biomarkers with diagnostic and predictive value.
Collapse
Affiliation(s)
- Jessica Cornice
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (J.C.); (M.D.V.N.); (M.D.P.); (C.C.); (D.V.); (B.D.F.); (D.V.); (I.F.); (A.T.); (E.A.); (F.Z.)
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (J.C.); (M.D.V.N.); (M.D.P.); (C.C.); (D.V.); (B.D.F.); (D.V.); (I.F.); (A.T.); (E.A.); (F.Z.)
- Correspondence: ; Tel.: +39-0862-433560
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (J.C.); (M.D.V.N.); (M.D.P.); (C.C.); (D.V.); (B.D.F.); (D.V.); (I.F.); (A.T.); (E.A.); (F.Z.)
| | - Monica Di Padova
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (J.C.); (M.D.V.N.); (M.D.P.); (C.C.); (D.V.); (B.D.F.); (D.V.); (I.F.); (A.T.); (E.A.); (F.Z.)
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (J.C.); (M.D.V.N.); (M.D.P.); (C.C.); (D.V.); (B.D.F.); (D.V.); (I.F.); (A.T.); (E.A.); (F.Z.)
| | - Daniela Verzella
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (J.C.); (M.D.V.N.); (M.D.P.); (C.C.); (D.V.); (B.D.F.); (D.V.); (I.F.); (A.T.); (E.A.); (F.Z.)
| | - Barbara Di Francesco
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (J.C.); (M.D.V.N.); (M.D.P.); (C.C.); (D.V.); (B.D.F.); (D.V.); (I.F.); (A.T.); (E.A.); (F.Z.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (J.C.); (M.D.V.N.); (M.D.P.); (C.C.); (D.V.); (B.D.F.); (D.V.); (I.F.); (A.T.); (E.A.); (F.Z.)
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (J.C.); (M.D.V.N.); (M.D.P.); (C.C.); (D.V.); (B.D.F.); (D.V.); (I.F.); (A.T.); (E.A.); (F.Z.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (J.C.); (M.D.V.N.); (M.D.P.); (C.C.); (D.V.); (B.D.F.); (D.V.); (I.F.); (A.T.); (E.A.); (F.Z.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (J.C.); (M.D.V.N.); (M.D.P.); (C.C.); (D.V.); (B.D.F.); (D.V.); (I.F.); (A.T.); (E.A.); (F.Z.)
| | - Gaetano Barbato
- Inno-Sol srl, Via della Ricerca Scientifica snc, ed. PP1, 00133 Rome, Italy;
- Department of Biology, School of Pharmacy, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, 67100 L’Aquila, Italy; (J.C.); (M.D.V.N.); (M.D.P.); (C.C.); (D.V.); (B.D.F.); (D.V.); (I.F.); (A.T.); (E.A.); (F.Z.)
| |
Collapse
|
11
|
Takahashi H, Rokudai S, Kawabata-Iwakawa R, Sakakura K, Oyama T, Nishiyama M, Chikamatsu K. AKT3 is a key regulator of head and neck squamous cell carcinoma. Cancer Sci 2021; 112:2325-2334. [PMID: 33811778 PMCID: PMC8177780 DOI: 10.1111/cas.14911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/24/2022] Open
Abstract
The phosphatidylinositol 3‐kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway plays a vital role in cell proliferation, apoptosis, metabolism, and angiogenesis in various human cancers, including head and neck squamous cell carcinoma (HNSCC). In the present study, we aimed to clarify the role of AKT, which is a major downstream effector of the PI3K‐AKT‐mTOR pathway, in HNSCC. We first investigated the mRNA expression of AKT isoforms using RNA‐sequencing data from The Cancer Genome Atlas database. We observed a specific elevation of AKT3 expression in HNSCC tissues when compared with that in normal tissues. Furthermore, AKT3 expression correlated with genes related to the immunosuppressive microenvironment more than the other AKT isoforms and PIK3CA. Accordingly, we focused on AKT3 and performed a knockdown approach using an HNSCC cell line. AKT3 knockdown cells exhibited impaired proliferation, a shift in the cell cycle from G2/M to G1/G0 phase, an increase in apoptotic cells, and downregulation of gene expression related to immunosuppression, as well as the knockdown of its upstream regulator PIK3CA. We also performed immunohistochemistry for both AKT3 and PIK3CA using surgical specimens from 72 patients with HNSCC. AKT3 expression in tumor cells correlated with immune cell infiltration and unfavorable prognosis when compared with PIK3CA. These findings suggested that AKT3 expression is a potential biomarker for predicting the immunoreactivity and prognosis of HNSCC. Furthermore, the isoform‐specific inhibition of AKT3 could be developed as a novel cancer therapy that efficiently suppresses the PI3K‐AKT‐mTOR pathway.
Collapse
Affiliation(s)
- Hideyuki Takahashi
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Susumu Rokudai
- Department of Molecular Pharmacology and Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrate Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Koichi Sakakura
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahiko Nishiyama
- Division of Integrate Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Kazuaki Chikamatsu
- Department of Otolaryngology-Head and Neck Surgery, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
12
|
Mallela K, Shivananda S, Gopinath KS, Kumar A. Oncogenic role of MiR-130a in oral squamous cell carcinoma. Sci Rep 2021; 11:7787. [PMID: 33833339 PMCID: PMC8032739 DOI: 10.1038/s41598-021-87388-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Aberrant activation of the PI3K/AKT/mTOR pathway is attributed to the pathogenesis of oral squamous cell carcinoma (OSCC). In recent years, increasing evidence suggests the involvement of microRNAs (miRNAs) in oral carcinogenesis by acting as tumor suppressors or oncogenes. TSC1, as a component of the above pathway, regulates several cellular functions such as cell proliferation, apoptosis, migration and invasion. Downregulation of TSC1 is reported in oral as well as several other cancers and is associated with an unfavourable clinical outcome in patients. Here we show that oncogenic miR-130a binds to the 3′UTR of TSC1 and represses its expression. MiR-130a-mediated repression of TSC1 increases cell proliferation, anchorage independent growth and invasion of OSCC cells, which is dependent on the presence of the 3′UTR in TSC1. We observe an inverse correlation between the expression levels of miR-130a and TSC1 in OSCC samples, suggesting that their interaction is physiologically relevant. Delivery of antagomiR-130a to OSCC cells results in a significant decrease in xenograft size. Taken together, the findings of the study indicate that miR-130a-mediated TSC1 downregulation is not only a novel mechanism in OSCC, but also the restoration of TSC1 levels by antagomiR-130a may be a potential therapeutic strategy for the treatment of OSCC.
Collapse
Affiliation(s)
- Karthik Mallela
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | | | | | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
13
|
Mallela K, Kumar A. Role of TSC1 in physiology and diseases. Mol Cell Biochem 2021; 476:2269-2282. [PMID: 33575875 DOI: 10.1007/s11010-021-04088-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Since its initial discovery as the gene altered in Tuberous Sclerosis Complex (TSC), an autosomal dominant disorder, the interest in TSC1 (Tuberous Sclerosis Complex 1) has steadily risen. TSC1, an essential component of the pro-survival PI3K/AKT/MTOR signaling pathway, plays an important role in processes like development, cell growth and proliferation, survival, autophagy and cilia development by co-operating with a variety of regulatory molecules. Recent studies have emphasized the tumor suppressive role of TSC1 in several human cancers including liver, lung, bladder, breast, ovarian, and pancreatic cancers. TSC1 perceives inputs from various signaling pathways, including TNF-α/IKK-β, TGF-β-Smad2/3, AKT/Foxo/Bim, Wnt/β-catenin/Notch, and MTOR/Mdm2/p53 axis, thereby regulating cancer cell proliferation, metabolism, migration, invasion, and immune regulation. This review provides a first comprehensive evaluation of TSC1 and illuminates its diverse functions apart from its involvement in TSC genetic disorder. Further, we have summarized the physiological functions of TSC1 in various cellular events and conditions whose dysregulation may lead to several pathological manifestations including cancer.
Collapse
Affiliation(s)
- Karthik Mallela
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - Arun Kumar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
14
|
Wiesehöfer M, Czyrnik ED, Spahn M, Ting S, Reis H, Dankert JT, Wennemuth G. Increased Expression of AKT3 in Neuroendocrine Differentiated Prostate Cancer Cells Alters the Response Towards Anti-Androgen Treatment. Cancers (Basel) 2021; 13:578. [PMID: 33540707 PMCID: PMC7867287 DOI: 10.3390/cancers13030578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/20/2023] Open
Abstract
Patients with advanced prostate carcinoma are often treated with an androgen deprivation therapy but long-term treatment can result in a metastatic castration-resistant prostate cancer. This is a more aggressive, untreatable tumor recurrence often containing areas of neuroendocrine differentiated prostate cancer cells. Using an in vitro model of NE-like cancer cells, it could previously be shown that neuroendocrine differentiation of LNCaP cells leads to a strong deregulation of mRNA and miRNA expression. We observe elevated RNA and protein levels of AKT Serine/Threonine Kinase 3 (AKT3) in neuroendocrine-like LNCaP cells. We used prostate resections from patients with neuroendocrine prostate cancer to validate these results and detect a co-localization of neuroendocrine marker genes with AKT3. Analysis of downstream target genes FOXO3A and GSK3 strengthens the assumption AKT3 may play a role in neuroendocrine differentiation. Overexpression of AKT3 shows an increased survival rate of LNCaP cells after apoptosis induction, which in turn reflects the significance in vivo or for treatment. Furthermore, miR-17, -20b and -106b, which are decreased in neuroendocrine-like LNCaP cells, negatively regulate AKT3 biosynthesis. Our findings demonstrate AKT3 as a potential therapeutic target and diagnostic tool in advanced neuroendocrine prostate cancer and a new mRNA-miRNA interaction with a potential role in neuroendocrine differentiation of prostate cancer.
Collapse
Affiliation(s)
- Marc Wiesehöfer
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany; (M.W.); (E.D.C.); (J.T.D.)
| | - Elena Dilara Czyrnik
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany; (M.W.); (E.D.C.); (J.T.D.)
| | - Martin Spahn
- Department of Urology, Lindenhofspital Bern, CHE-3012 Bern, Switzerland;
- Institute of Urology, University Duisburg-Essen, D-45147 Essen, Germany
| | - Saskia Ting
- Institute of Pathology, University Duisburg-Essen, D-45147 Essen, Germany; (S.T.); (H.R.)
| | - Henning Reis
- Institute of Pathology, University Duisburg-Essen, D-45147 Essen, Germany; (S.T.); (H.R.)
| | - Jaroslaw Thomas Dankert
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany; (M.W.); (E.D.C.); (J.T.D.)
| | - Gunther Wennemuth
- Department of Anatomy, University Duisburg-Essen, D-45147 Essen, Germany; (M.W.); (E.D.C.); (J.T.D.)
| |
Collapse
|
15
|
Lemos C, Schulze VK, Baumgart SJ, Nevedomskaya E, Heinrich T, Lefranc J, Bader B, Christ CD, Briem H, Kuhnke LP, Holton SJ, Bömer U, Lienau P, von Nussbaum F, Nising CF, Bauser M, Hägebarth A, Mumberg D, Haendler B. The potent AMPK inhibitor BAY-3827 shows strong efficacy in androgen-dependent prostate cancer models. Cell Oncol (Dordr) 2021; 44:581-594. [PMID: 33492659 DOI: 10.1007/s13402-020-00584-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE 5' adenosine monophosphate-activated kinase (AMPK) is an essential regulator of cellular energy homeostasis and has been associated with different pathologies, including cancer. Precisely defining the biological role of AMPK necessitates the availability of a potent and selective inhibitor. METHODS High-throughput screening and chemical optimization were performed to identify a novel AMPK inhibitor. Cell proliferation and mechanistic assays, as well as gene expression analysis and chromatin immunoprecipitation were used to investigate the cellular impact as well as the crosstalk between lipid metabolism and androgen signaling in prostate cancer models. Also, fatty acid turnover was determined by examining lipid droplet formation. RESULTS We identified BAY-3827 as a novel and potent AMPK inhibitor with additional activity against ribosomal 6 kinase (RSK) family members. It displays strong anti-proliferative effects in androgen-dependent prostate cancer cell lines. Analysis of genes involved in AMPK signaling revealed that the expression of those encoding 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), fatty acid synthase (FASN) and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), all of which are involved in lipid metabolism, was strongly upregulated by androgen in responsive models. Chromatin immunoprecipitation DNA-sequencing (ChIP-seq) analysis identified several androgen receptor (AR) binding peaks in the HMGCR and PFKFB2 genes. BAY-3827 strongly down-regulated the expression of lipase E (LIPE), cAMP-dependent protein kinase type II-beta regulatory subunit (PRKAR2B) and serine-threonine kinase AKT3 in responsive prostate cancer cell lines. Also, the expression of members of the carnitine palmitoyl-transferase 1 (CPT1) family was inhibited by BAY-3827, and this was paralleled by impaired lipid flux. CONCLUSIONS The availability of the potent inhibitor BAY-3827 will contribute to a better understanding of the role of AMPK signaling in cancer, especially in prostate cancer.
Collapse
Affiliation(s)
- Clara Lemos
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Volker K Schulze
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Simon J Baumgart
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Bayer US LLC, Cambridge, MA, USA
| | | | - Tobias Heinrich
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Julien Lefranc
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Nuvisan Innovation Campus Berlin, Berlin, Germany
| | - Benjamin Bader
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Nuvisan Innovation Campus Berlin, Berlin, Germany
| | - Clara D Christ
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Hans Briem
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Lara P Kuhnke
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Simon J Holton
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Nuvisan Innovation Campus Berlin, Berlin, Germany
| | - Ulf Bömer
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Nuvisan Innovation Campus Berlin, Berlin, Germany
| | - Philip Lienau
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Franz von Nussbaum
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Nuvisan Innovation Campus Berlin, Berlin, Germany
| | - Carl F Nising
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Marcus Bauser
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.,Janssen Pharmaceuticals, Beerse, Belgium
| | - Andrea Hägebarth
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Dominik Mumberg
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany
| | - Bernard Haendler
- Bayer AG, Research and Development, Pharmaceuticals, Berlin, Germany.
| |
Collapse
|
16
|
Wang Z, Liu Z, Yang Y, Kang L. Identification of biomarkers and pathways in hypertensive nephropathy based on the ceRNA regulatory network. BMC Nephrol 2020; 21:476. [PMID: 33176720 PMCID: PMC7659166 DOI: 10.1186/s12882-020-02142-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/30/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Hypertensive nephropathy (HTN) is a kind of renal injury caused by chronic hypertension, which seriously affect people's life. The purpose of this study was to identify the potential biomarkers of HTN and understand its possible mechanisms. METHODS The dataset numbered GSE28260 related to hypertensive and normotensive was downloaded from NCBI Gene Expression Omnibus. Then, the differentially expressed RNAs (DERs) were screened using R limma package, and functional analyses of DE-mRNA were performed by DAVID. Afterwards, a ceRNA network was established and KEGG pathway was analyzed based on the Gene Set Enrichment Analysis (GSEA) database. Finally, a ceRNA regulatory network directly associated with HTN was proposed. RESULTS A total of 947 DERs were identified, including 900 DE-mRNAs, 20 DE-lncRNAs and 27 DE-miRNAs. Based on these DE-mRNAs, they were involved in biological processes such as fatty acid beta-oxidation, IRE1-mediated unfolded protein response, and transmembrane transport, and many KEGG pathways like glycine, serine and threonine metabolism, carbon metabolism. Subsequently, lncRNAs KCTD21-AS1, LINC00470 and SNHG14 were found to be hub nodes in the ceRNA regulatory network. KEGG analysis showed that insulin signaling pathway, glycine, serine and threonine metabolism, pathways in cancer, lysosome, and apoptosis was associated with hypertensive. Finally, insulin signaling pathway was screened to directly associate with HTN and was regulated by mRNAs PPP1R3C, PPKAR2B and AKT3, miRNA has-miR-107, and lncRNAs SNHG14, TUG1, ZNF252P-AS1 and MIR503HG. CONCLUSIONS Insulin signaling pathway was directly associated with HTN, and miRNA has-miR-107 and lncRNAs SNHG14, TUG1, ZNF252P-AS1 and MIR503HG were the biomarkers of HTN. These results would improve our understanding of the occurrence and development of HTN.
Collapse
Affiliation(s)
- Zhen Wang
- Nephrology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Road, Dongcheng District, Beijing, 100700, China
| | - Zhongjie Liu
- Nephrology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Road, Dongcheng District, Beijing, 100700, China
| | - Yingxia Yang
- Nephrology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Road, Dongcheng District, Beijing, 100700, China
| | - Lei Kang
- Neurology Department, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, No.5 Haiyuncang Road, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
17
|
Turnham DJ, Bullock N, Dass MS, Staffurth JN, Pearson HB. The PTEN Conundrum: How to Target PTEN-Deficient Prostate Cancer. Cells 2020; 9:E2342. [PMID: 33105713 PMCID: PMC7690430 DOI: 10.3390/cells9112342] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Loss of the tumor suppressor phosphatase and tensin homologue deleted on chromosome 10 (PTEN), which negatively regulates the PI3K-AKT-mTOR pathway, is strongly linked to advanced prostate cancer progression and poor clinical outcome. Accordingly, several therapeutic approaches are currently being explored to combat PTEN-deficient tumors. These include classical inhibition of the PI3K-AKT-mTOR signaling network, as well as new approaches that restore PTEN function, or target PTEN regulation of chromosome stability, DNA damage repair and the tumor microenvironment. While targeting PTEN-deficient prostate cancer remains a clinical challenge, new advances in the field of precision medicine indicate that PTEN loss provides a valuable biomarker to stratify prostate cancer patients for treatments, which may improve overall outcome. Here, we discuss the clinical implications of PTEN loss in the management of prostate cancer and review recent therapeutic advances in targeting PTEN-deficient prostate cancer. Deepening our understanding of how PTEN loss contributes to prostate cancer growth and therapeutic resistance will inform the design of future clinical studies and precision-medicine strategies that will ultimately improve patient care.
Collapse
Affiliation(s)
- Daniel J. Turnham
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - Nicholas Bullock
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Manisha S. Dass
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| | - John N. Staffurth
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Helen B. Pearson
- The European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Cardiff CF24 4HQ, UK; (D.J.T.); (N.B.); (M.S.D.)
| |
Collapse
|
18
|
Kerslake R, Hall M, Randeva HS, Spandidos DA, Chatha K, Kyrou I, Karteris E. Co‑expression of peripheral olfactory receptors with SARS‑CoV‑2 infection mediators: Potential implications beyond loss of smell as a COVID‑19 symptom. Int J Mol Med 2020; 46:949-956. [PMID: 32705281 PMCID: PMC7388840 DOI: 10.3892/ijmm.2020.4646] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome (SARS) coronavirus‑2 (SARS‑CoV‑2) enters into human host cells via mechanisms facilitated mostly by angiotensin‑converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2). New loss of smell (anosmia/hyposmia) is now recognized as a COVID‑19 related symptom, which may be caused by SARS‑CoV‑2 infection and damage of the olfactory receptor (OR) cells in the nasal neuro‑epithelium and/or central involvement of the olfactory bulb. ORs are also expressed peripherally (e.g., in tissues of the gastrointestinal and respiratory systems) and it is possible that their local functions could also be impaired by SARS‑CoV‑2 infection of these tissues. Using Gene Expression Profiling Interactive Analysis, The Cancer Genome Atlas, Genotype‑Tissue Expression, cBioPortal and Shiny Methylation Analysis Resource Tool, we highlight the expression of peripheral ORs in both healthy and malignant tissues, and describe their co‑expression with key mediators of SARS‑CoV‑2 infection, such as ACE2 and TMPRSS2, as well as cathepsin L (CTSL; another cellular protease mediating SARS‑CoV‑2 infection of host cells). A wide expression profile of peripheral ORs was noted, particularly in tissues such as the prostate, testis, thyroid, brain, liver, kidney and bladder, as well as tissues with known involvement in cardio‑metabolic disease (e.g., the adipose tissue, pancreas and heart). Among these, OR51E2, in particular, was significantly upregulated in prostate adenocarcinoma (PRAD) and co‑expressed primarily with TMPRSS2. Functional networks of this OR were further analysed using the GeneMANIA interactive tool, showing that OR51E2 interacts with a plethora of genes related to the prostate. Further in vitro and clinical studies are clearly required to elucidate the role of ORs, both at the olfactory level and the periphery, in the context of COVID‑19.
Collapse
Affiliation(s)
- Rachel Kerslake
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH
| | - Marcia Hall
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH
- Mount Vernon Cancer Centre, Northwood HA6 2RN
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Kamaljit Chatha
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Department of Biochemistry and Immunology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Emmanouil Karteris
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH
| |
Collapse
|
19
|
Protein-Related Circular RNAs in Human Pathologies. Cells 2020; 9:cells9081841. [PMID: 32781555 PMCID: PMC7463956 DOI: 10.3390/cells9081841] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
Circular RNAs (circRNAs) are a distinct family of RNAs derived from alternative splicing which play a crucial role in regulating gene expression by acting as microRNA (miRNA) and RNA binding protein (RBP) sponges. However, recent studies have also reported the multifunctional potential of these particles. Under different conditions, circRNAs not only regulate protein synthesis, destination, and degradation but can serve as protein scaffolds or recruiters and are also able to produce short peptides with active biological functions. circRNAs are under ongoing investigation because of their close association with the development of diseases. Some circRNAs are reportedly expressed in a tissue- and development stage-specific manner. Furthermore, due to other features of circRNAs, including their stability, conservation, and high abundance in bodily fluids, they are believed to be potential biomarkers for various diseases, including cancers. In this review, we focus on providing a summary of the current knowledge on circRNA-protein interactions. We present the properties and functions of circRNAs, the possible mechanisms of their translation abilities, and the emerging functions of circRNA-derived peptides in human pathologies.
Collapse
|
20
|
Ozdemir Kutbay N, Biray Avci C, Sarer Yurekli B, Caliskan Kurt C, Shademan B, Gunduz C, Erdogan M. Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells. J Biochem Mol Toxicol 2020; 34:e22547. [PMID: 32589349 DOI: 10.1002/jbt.22547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Anaplastic cancer constitutes 1% of thyroid cancers, and it is one of the most aggressive cancers. Treatment options are external radiation therapy and/or chemotherapy. The success rate with these treatment modalities is not satisfactory. We aimed to evaluate the effects of metformin (MET) and pioglitazone (PIO) combination on apoptosis and AMP-activated protein kinase/mammalian target of rapamycin (mTOR) signaling pathway in human anaplastic thyroid cancer cells. In this study, we evaluated the effects of MET and PIO individually and the combination of the two drugs on the cellular lines SW1736 and C643 ATC. Genes contained in the mTOR signaling pathway were examined using human mTOR Signalization RT2 Profiler PCR Array. In C643 and SW1736 cell lines, IC50 doses of MET and PIO were found out as 17.69 mM, 11.64 mM, 27.12 µM, and 23.17 µM. Also, the combination of MET and PIO was determined as an additive according to isobologram analyses. We have found the downregulation of the expression levels of oncogenic genes: AKT3, CHUK, CDC42, EIF4E, HIF1A, IKBKB, ILK, MTOR, PIK3CA, PIK3CG, PLD1, PRKCA, and RICTOR genes, in the MET and PIO combination-treated cells. In addition, expression levels of tumor suppressor genes, DDIT4, DDIT4L, EIF4EBP1, EIF4EBP2, FKBP1A, FKBP8, GSK3B, MYO1C, PTEN, ULK1, and ULK2, were found to have increased significantly. The MET + PIO combination was first applied to thyroid cancer cells, and significant reductions in the level of oncogenic genes were detected. The decreases, particularly, in AKT3, DEPTOR, EIF4E, ILK, MTOR, PIK3C, and PRKCA expressions indicate that progression can be prevented in thyroid cancer cells and these genes could be selected as therapeutic targets.
Collapse
Affiliation(s)
- Nilufer Ozdemir Kutbay
- Department of Endocrinology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | - Banu Sarer Yurekli
- Department of Endocrinology, Ege University Medical School, Izmir, Turkey
| | | | - Behrouz Shademan
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | - Cumhur Gunduz
- Department of Medical Biology, Ege University Medical School, Izmir, Turkey
| | - Mehmet Erdogan
- Department of Endocrinology, Ege University Medical School, Izmir, Turkey
| |
Collapse
|
21
|
Zhao J, Yang T, Ji J, Zhao F, Li C, Han X. RHPN1-AS1 promotes cell proliferation and migration via miR-665/Akt3 in ovarian cancer. Cancer Gene Ther 2020; 28:33-41. [PMID: 32457485 DOI: 10.1038/s41417-020-0180-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 11/09/2022]
Abstract
Recent efforts have revealed that long non-coding RNAs exert crucial roles in cancer initiation and progression. RHPN1-AS1 is a 2030 bp transcript from human chromosome 8q24, and involved in tumorigenesis in uveal melanoma and non-small cell lung cancer, but it remains unknown in ovarian cancer. This study focused on the role of RHPN1-AS1 in ovarian cancer and found that RHPN1-AS1 was up-regulated in ovarian cancer tissues and cell lines. Overexpression of RHPN1-AS1 promoted ovarian cancer cell proliferation, migration, and invasion. Mechanistically, overexpression of RHPN1-AS1 decreased the expression of miR-665 and subsequently promoted the expression of Akt3 at posttranscriptional level. Taken together, RHPN1-AS1 positively regulated the expression of Akt3 through sponging miR-665, and exerted an oncogenic role in ovarian cancer progression, and indicates that RHPN1-AS1 may be a potential therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi' an Jiaotong University, 710061, Xi' an, China
| | - Ting Yang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi' an Jiaotong University, 710061, Xi' an, China
| | - Jing Ji
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi' an Jiaotong University, 710061, Xi' an, China
| | - Fan Zhao
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi' an Jiaotong University, 710061, Xi' an, China
| | - Chen Li
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi' an Jiaotong University, 710061, Xi' an, China
| | - Xiaobing Han
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Xi' an Jiaotong University, 710061, Xi' an, China.
| |
Collapse
|
22
|
Wang R, Xu C, Zhong H, Hu B, Wei L, Liu N, Zhang Y, Shi Q, Wang C, Qi M, Gu Y, Shen X, Tian Y, Liu Y, Cao P, Chen H, Yuan W. Inflammatory-sensitive CHI3L1 protects nucleus pulposus via AKT3 signaling during intervertebral disc degeneration. FASEB J 2020; 34:3554-3569. [PMID: 31997395 DOI: 10.1096/fj.201902096r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/06/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
Abstract
Intervertebral disc degeneration (IDD) is the main cause of low back pain and the mechanism of which is far from fully revealed. Although inflammation directed nucleus pulposus (NP) extracellular matrix metabolism dysregulation is known to be the main cause of the degeneration process, few is known about the protective factors. Using high-throughput label-free proteomics, we found that inflammation-related autocrine factor Chitinase-3-like protein 1 (CHI3L1, or YKL-40) is highly expressed in the NP cells during degeneration. Immunohistochemical analysis show that the expression of CHI3L1 is NP tissue specific, and increase significantly during degeneration. Overexpression of CHI3L1 significantly decrease the catabolism, and increase the anabolism of extracellular matrix. Knockdown of CHI3L1 using siRNAs show the opposite results, which imply that the protective role of CHI3L1 in IDD. Using high-throughput RNA sequencing and functional analyses, we find that AKT3 expression and its phosphorylation is mainly regulated by CHI3L1. And lastly, the mechanism of which is also validated using human and mouse degenerated NP tissues. In summary, our findings show that the inflammation-related autocrine factor CHI3L1 is NP specific, and it protects IDD by promoting the AKT3 signaling, which may serve as a potential therapeutic target in intervertebral disc degeneration.
Collapse
Affiliation(s)
- Ruizhe Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Chen Xu
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Huajian Zhong
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Leixin Wei
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Ning Liu
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Yizhi Zhang
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Qianghui Shi
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Chen Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Min Qi
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Yifei Gu
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Xiaolong Shen
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Ye Tian
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Yang Liu
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Peng Cao
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Wen Yuan
- Spine Center, Department of Orthopedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
MiR-16-5p inhibits breast cancer by reducing AKT3 to restrain NF-κB pathway. Biosci Rep 2019; 39:BSR20191611. [PMID: 31383783 PMCID: PMC6706597 DOI: 10.1042/bsr20191611] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Breast cancer endangers the life of women and has become the major cause of deaths among them. MiRNAs are found to exert a regulatory effect on the migration, proliferation and apoptosis of breast cancer cells. This research aims at investigating the miR-16-5p expression and its effect on the pathogenesis of breast cancer. Methods: Their clinical data were analyzed with qRT-PCR. CCK8, EdU and Transwell was performed to explore the function of miR-16-5p in cell migration and proliferation of breast cancer cells. Dual-luciferase reporter assay, immunohistochemistry and Western blotting were carried out to explore the relation between miR-16-5p and AKT3. Results: It was discovered that miR-16-5p was lowly expressed in breast cancer patients. Meanwhile, breast cancer patients with under-expressed miR-16-5p had a lower survival rate than those with highly expressed miR-16-5p. Furthermore, decreased miR-16-5p in cell and animal models enhanced migration and proliferation of breast cancer cells, stimulated cell cycle and reduced cell apoptosis. Finally, we found miR-16-5p restrained the NF-κB pathway and decreased AKT3 gene, thereby suppressing the breast cancer development. Conclusion: It can be seen that miR-16-5p exhibits a low expression in breast cancer tissues, which can inhibit breast cancer by restraining the NF-κB pathway and elevating reducing AKT3.
Collapse
|
24
|
Zhang B, Ban D, Gou X, Zhang Y, Yang L, Chamba Y, Zhang H. Genome-wide DNA methylation profiles in Tibetan and Yorkshire pigs under high-altitude hypoxia. J Anim Sci Biotechnol 2019; 10:25. [PMID: 30867905 PMCID: PMC6397503 DOI: 10.1186/s40104-019-0316-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Background Tibetan pigs, which inhabit the Tibetan Plateau, exhibit distinct phenotypic and physiological characteristics from those of lowland pigs and have adapted well to the extreme conditions at high altitude. However, the genetic and epigenetic mechanisms of hypoxic adaptation in animals remain unclear. Methods Whole-genome DNA methylation data were generated for heart tissues of Tibetan pigs grown in the highland (TH, n = 4) and lowland (TL, n = 4), as well as Yorkshire pigs grown in the highland (YH, n = 4) and lowland (YL, n = 4), using methylated DNA immunoprecipitation sequencing. Results We obtained 480 million reads and detected 280679, 287224, 259066, and 332078 methylation enrichment peaks in TH, YH, TL, and YL, respectively. Pairwise TH vs. YH, TL vs. YL, TH vs. TL, and YH vs. YL comparisons revealed 6829, 11997, 2828, and 1286 differentially methylated regions (DMRs), respectively. These DMRs contained 384, 619, 192, and 92 differentially methylated genes (DMGs), respectively. DMGs that were enriched in the hypoxia-inducible factor 1 signaling pathway and pathways involved in cancer and hypoxia-related processes were considered to be important candidate genes for high-altitude adaptation in Tibetan pigs. Conclusions This study elucidates the molecular and epigenetic mechanisms involved in hypoxic adaptation in pigs and may help further understand human hypoxia-related diseases.
Collapse
Affiliation(s)
- Bo Zhang
- 1National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Dongmei Ban
- 1National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Xiao Gou
- 2College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Yawen Zhang
- 1National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Lin Yang
- 1National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| | - Yangzom Chamba
- 3College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, 860000 Tibet China
| | - Hao Zhang
- 1National Engineering Laboratory for Animal Breeding, Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
25
|
Singh S, Asal R, Bhagat S. Multifunctional antioxidant nanoliposome-mediated delivery of PTEN plasmids restore the expression of tumor suppressor protein and induce apoptosis in prostate cancer cells. J Biomed Mater Res A 2018; 106:3152-3164. [PMID: 30194716 DOI: 10.1002/jbm.a.36510] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/29/2018] [Accepted: 07/12/2018] [Indexed: 11/08/2022]
Abstract
Prostate cancer is the second leading cause of cancer death in men and about one in nine will be diagnosed in his lifetime. Loss of PTEN has been considered as one of the major factors leading to the origin of prostate cancer through modulating PI3K/AKT signaling pathways. In this study, we have prepared a multifunctional antioxidant nanoliposome containing PTEN plasmid and cerium oxide nanoparticles (CeNPs). The efficient delivery of PTEN plasmid to human prostate cancer cells (PC-3) leads to restoration of the expression of lost PTEN protein in the cell cytoplasm. The delivered superoxide dismutase (SOD)-mimetic CeNPs were also found to decrease the cytoplasmic free radical levels in prostate cancer cells. The above two activities induced DNA fragmentation and micronucleus formation in prostate cancer cells. Furthermore, it was also found that these multifunctional antioxidant nanoliposomes inhibit the PI3K/AKT signaling pathway to negatively regulate the cell viability of prostate cancer cells. The mRNA expression pattern of other relevant proteins predominantly involved in cancer cell proliferation and apoptosis suggested that the high PTEN expression could control the synthesis of oncogenic proteins. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3152-3164, 2018.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Biological and Life Science, School of Arts and Science, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
| | - Raghu Asal
- Division of Biological and Life Science, School of Arts and Science, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
| | - Stuti Bhagat
- Division of Biological and Life Science, School of Arts and Science, Ahmedabad University, Ahmedabad, 380009, Gujarat, India
| |
Collapse
|
26
|
Jia X, Liu X, Li M, Zeng Y, Feng Z, Su X, Huang Y, Chen M, Yang X. Potential tumor suppressing role of microRNA-545 in epithelial ovarian cancer. Oncol Lett 2018; 15:6386-6392. [PMID: 29616112 PMCID: PMC5876444 DOI: 10.3892/ol.2018.8130] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 01/05/2018] [Indexed: 12/29/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most common type of ovarian cancer, which exhibits invasive traits. MicroRNAs (miRNAs/miRs) have been demonstrated to serve important functions in the pathogenesis of EOC. However, the function of miR-545 in EOC remains unknown. In the present study, the function of miR-545 in EOC was analyzed and it was identified that miR-545 is downregulated in EOC tissues and cell lines. Additionally, a low level of miR-545 expression was associated with a low survival rate of patients with EOC. Furthermore, overexpression of miR-545 inhibited cell growth and promoted apoptosis. Suppression of miR-545 promoted cell growth and inhibited apoptosis. Additionally, the RAC-γ serine/threonine-protein kinase gene was targeted by miR-545. Thus, it may be concluded that miR-545 exhibited antitumor traits in EOC.
Collapse
Affiliation(s)
- Xibiao Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaogang Liu
- Department of Obstetrics and Gynaecology, People's Hospital of Yuxi, Yuxi, Yunnan 653100, P.R. China
| | - Ming Li
- Centre for Disease Prevention and Control, Chengdu Military Region, Chengdu, Sichuan 610021, P.R. China
| | - Yu Zeng
- Centre for Disease Prevention and Control, Chengdu Military Region, Chengdu, Sichuan 610021, P.R. China
| | - Zaoming Feng
- Department of Gastroenterology, The People's Liberation Army 452 Hospital, Chengdu, Sichuan 610021, P.R. China
| | - Xian Su
- Department of Internal Medicine, The Third People's Hospital, Chengdu, Sichuan 610021, P.R. China
| | - Yan Huang
- Department of Neurology, The Third People's Hospital, Chengdu, Sichuan 610031, P.R. China
| | - Maomao Chen
- Centre for Disease Prevention and Control, Chengdu Military Region, Chengdu, Sichuan 610021, P.R. China
| | - Xueyi Yang
- Department of Inspection and Pharmacy, Jiangsu College of Nursing, Huaian, Jiangsu 223001, P.R. China
| |
Collapse
|
27
|
Tseng JC, Lin CY, Su LC, Fu HH, Yang SD, Chuu CP. CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling. Oncotarget 2018; 7:38010-38024. [PMID: 27191743 PMCID: PMC5122368 DOI: 10.18632/oncotarget.9380] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/01/2016] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer (PCa) was the fifth most common cancer overall in the world. More than 80% of patients died from PCa developed bone metastases. Caffeic acid phenethyl ester (CAPE) is a main bioactive component of honeybee hive propolis. Transwell and wound healing assays demonstrated that CAPE treatment suppressed the migration and invasion of PC-3 and DU-145 PCa cells. Gelatin zymography and Western blotting indicated that CAPE treatment reduced the abundance and activity of MMP-9 and MMP-2. Analysis using Micro-Western Array (MWA), a high-throughput antibody-based proteomics platform with 264 antibodies detecting signaling proteins involved in important pathways indicated that CAPE treatment induced receptor tyrosine kinase-like orphan receptor 2 (ROR2) in non-canonical Wnt signaling pathway but suppressed abundance of β-catenin, NF-κB activity, PI3K-Akt signaling, and epithelial-mesenchymal transition (EMT). Overexpression or knockdown of ROR2 suppressed or enhanced cell migration of PC-3 cells, respectively. TCF-LEF promoter binding assay revealed that CAPE treatment reduced canonical Wnt signaling. Intraperitoneal injection of CAPE reduced the metastasis of PC-3 xenografts in tail vein injection nude mice model. Immunohistochemical staining demonstrated that CAPE treatment increased abundance of ROR2 and Wnt5a but decreased protein expression of Ki67, Frizzle 4, NF-κB p65, MMP-9, Snail, β-catenin, and phosphorylation of IκBα. Clinical evidences suggested that genes affected by CAPE treatment (CTNNB1, RELA, FZD5, DVL3, MAPK9, SNAl1, ROR2, SMAD4, NFKBIA, DUSP6, and PLCB3) correlate with the aggressiveness of PCa. Our study suggested that CAPE may be a potential therapeutic agent for patients with advanced PCa.
Collapse
Affiliation(s)
- Jen-Chih Tseng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.,Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Ching-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Liang-Chen Su
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan
| | - Hsiao-Hui Fu
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shiaw-Der Yang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli County, Taiwan.,Graduate Program for Aging, China Medical University, Taichung City, Taiwan
| |
Collapse
|
28
|
Panchoo M, Lacko A. Scavenger receptor class B type 1 regulates neuroblastoma cell proliferation, migration and invasion. Biochem Biophys Res Commun 2018; 495:614-620. [DOI: 10.1016/j.bbrc.2017.10.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 10/29/2017] [Indexed: 12/18/2022]
|
29
|
Suyama K, Yao J, Liang H, Benard O, Loudig OD, Amgalan D, McKimpson WM, Phillips GR, Segall J, Wang Y, Fineberg S, Norton L, Kitsis RN, Hazan RB. An Akt3 Splice Variant Lacking the Serine 472 Phosphorylation Site Promotes Apoptosis and Suppresses Mammary Tumorigenesis. Cancer Res 2017; 78:103-114. [PMID: 29038347 DOI: 10.1158/0008-5472.can-15-1462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/05/2017] [Accepted: 10/10/2017] [Indexed: 12/29/2022]
Abstract
The Akt pathway is a well-known promoter of tumor malignancy. Akt3 is expressed as two alternatively spliced variants, one of which lacks the key regulatory serine 472 phosphorylation site. Whereas the function of full-length Akt3 isoform (Akt3/+S472) is well-characterized, that of Akt3/-S472 isoform remains unknown. Despite being expressed at a substantially lower level than Akt3/+S472 in triple-negative breast cancer cells, specific ablation of Akt3/-S472 enhanced, whereas overexpression, suppressed mammary tumor growth, consistent with a significant association with patient survival duration relative to Akt3/+S472. These effects were due to striking induction of apoptosis, which was mediated by Bim upregulation, leading to conformational activation of Bax and caspase-3 processing. Bim accumulation was caused by marked endocytosis of EGF receptors with concomitant ERK attenuation, which stabilizes BIM. These findings demonstrate an unexpected function of an endogenously expressed Akt isoform in promoting, as opposed to suppressing, apoptosis, underscoring that Akt isoforms may exert dissonant functions in malignancy.Significance: These results illuminate an unexpected function for an endogenously expressed Akt isoform in promoting apoptosis, underscoring the likelihood that different Akt isoforms exert distinct functions in human cancer. Cancer Res; 78(1); 103-14. ©2017 AACR.
Collapse
Affiliation(s)
- Kimita Suyama
- Department of Pathology and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jiahong Yao
- Department of Pathology and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Huizhi Liang
- Department of Pathology and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Outhiriaradjou Benard
- Department of Pathology and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Olivier D Loudig
- Department of Pathology and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Dulguun Amgalan
- Department of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Wendy M McKimpson
- Department of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Greg R Phillips
- Department of Biology, College of Staten Island, City University of New York, Staten Island, New York
| | - Jeffrey Segall
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Yihong Wang
- Department of Pathology, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Susan Fineberg
- Department of Pathology and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Larry Norton
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Richard N Kitsis
- Department of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York
| | - Rachel B Hazan
- Department of Pathology and Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
30
|
Zhuang J, Ye Y, Wang G, Ni J, He S, Hu C, Xia W, Lv Z. MicroRNA‑497 inhibits cellular proliferation, migration and invasion of papillary thyroid cancer by directly targeting AKT3. Mol Med Rep 2017; 16:5815-5822. [PMID: 28849051 PMCID: PMC5865779 DOI: 10.3892/mmr.2017.7345] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 06/20/2017] [Indexed: 01/01/2023] Open
Abstract
Thyroid cancer is the most common tumor of the endocrine organs. Emerging studies have indicated the critical roles of microRNAs (miRs) in papillary thyroid cancer (PTC) formation and progression through function as tumor suppressors or oncogenes. The present study investigated the expression level and biological roles of miR-497 in PTC and its underlying mechanisms. It was demonstrated that the expression level of miR-497 was reduced in both PTC tissues and cell lines. Enforced expression of miR-497 suppressed PTC cell proliferation, migration and invasion. According to bioinformatics analysis, a luciferase reporter assay, reverse transcription-quantitative polymerase chain reaction and western blotting, RAC-γ serine/threonine-protein kinase (AKT3) was demonstrated to be the direct target gene of miR-497. In addition, AKT3 expression increased in PTC tissues and negatively correlated with miR-497 expression. Furthermore, downregulation of AKT3 also suppressed cell proliferation, migration and invasion of PTC, which had similar roles to miR-497 overexpression in PTC cells. Taken together, these results suggested that this newly identified miR-497/AKT3 signaling pathway may contribute to PTC occurrence and progression. These findings provide novel potential therapeutic targets for the therapy of PTC.
Collapse
Affiliation(s)
- Juhua Zhuang
- Department of Nuclear Medicine, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| | - Ying Ye
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Jing Ni
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Saifei He
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Cuihua Hu
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Tenth People's Hospital of Tongji University, Shanghai 200072, P.R. China
| |
Collapse
|
31
|
Zhang F, Wu Z. Significantly altered expression of miR-511-3p and its target AKT3 has negative prognostic value in human prostate cancer. Biochimie 2017. [PMID: 28624527 DOI: 10.1016/j.biochi.2017.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE In this study, we assessed the expression and functions of microRNA-511-3p (miR-511-3p) in human prostate cancer (CaP). METHODS Gene expressions of miR-511-3p in CaP cells and human CaP tumors were assessed by qPCR. In VCaP and PC3 cells, miR-511-3p was overexpressed by lentivirus. The functions of miR-511-3p upregulation in regulating in vitro cancer proliferation, migration and in vivo cancer growth were assessed by MTT, transwell and transplantation assays, respectively. Downstream target gene of miR-511-3p, AKT3, was verified by dual-luciferase activity and qPCR assays. AKT3 was then overexpressed in miR-511-3p-upregulated CaP cells to assess its functions in miR-511-3p-mediated cancer regulation. RESULTS MiR-511-3p is significantly downregulated in CaP cell lines, and human CaP tumors. MiR-511-3p was further downregulated in T3/T4-staged CaP tumors and closely correlated with shorter overall survival among CaP patients. In VCaP and PC3 cells, lentiviral-induced miR-511-3p upregulation was acting as a tumor suppressor by inhibiting in vitro cancer proliferation, migration and in vivo transplantation. Human AKT3 gene was confirmed to be the downstream target of miR-511-3p in CaP. In miR-511-3p-upregulated VCaP and PC3 cells, forced-overexpression of AKT3 reversed the tumor suppressive effects of miR-511-3p in CaP. CONCLUSION MiR-511-3p may serve as a prognostic factor and tumor suppressor in CaP, very likely through inverse regulation of its downstream target gene of AKT3.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
32
|
Identification of Significant Pathways Induced by PAX5 Haploinsufficiency Based on Protein-Protein Interaction Networks and Cluster Analysis in Raji Cell Line. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5326370. [PMID: 28316978 PMCID: PMC5339483 DOI: 10.1155/2017/5326370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/02/2022]
Abstract
PAX5 encodes a transcription factor essential for B-cell differentiation, and PAX5 haploinsufficiency is involved in tumorigenesis. There were few studies on how PAX5 haploinsufficiency regulated genes expression to promote tumorigenesis. In this study, we constructed the cell model of PAX5 haploinsufficiency using gene editing technology in Raji cells, detected differentially expressed genes in PAX5 haploinsufficiency Raji cells, and used protein-protein interaction networks and cluster analysis to comprehensively investigate the cellular pathways involved in PAX5 haploinsufficiency. The clusters of gene transcription, inflammatory and immune response, and cancer pathways were identified as three important pathways associated with PAX5 haploinsufficiency in Raji cells. These changes hinted that the mechanism of PAX5 haploinsufficiency promoting tumorigenesis may be related to genomic instability, immune tolerance, and tumor pathways.
Collapse
|
33
|
Regulation of PI3K effector signalling in cancer by the phosphoinositide phosphatases. Biosci Rep 2017; 37:BSR20160432. [PMID: 28082369 PMCID: PMC5301276 DOI: 10.1042/bsr20160432] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/24/2022] Open
Abstract
Class I phosphoinositide 3-kinase (PI3K) generates phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) at the plasma membrane in response to growth factors, activating a signalling cascade that regulates many cellular functions including cell growth, proliferation, survival, migration and metabolism. The PI3K pathway is commonly dysregulated in human cancer, and drives tumorigenesis by promoting aberrant cell growth and transformation. PtdIns(3,4,5)P3 facilitates the activation of many pleckstrin homology (PH) domain-containing proteins including the serine/threonine kinase AKT. There are three AKT isoforms that are frequently hyperactivated in cancer through mutation, amplification or dysregulation of upstream regulatory proteins. AKT isoforms have converging and opposing functions in tumorigenesis. PtdIns(3,4,5)P3 signalling is degraded and terminated by phosphoinositide phosphatases such as phosphatase and tensin homologue (PTEN), proline-rich inositol polyphosphate 5-phosphatase (PIPP) (INPP5J) and inositol polyphosphate 4-phosphatase type II (INPP4B). PtdIns(3,4,5)P3 is rapidly hydrolysed by PIPP to generate phosphatidylinositol 3,4-bisphosphate (PtdIns(3,4)P2), which is further hydrolysed by INPP4B to form phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns(3,4)P2 and PtdIns3P are also important signalling molecules; PtdIns(3,4)P2 together with PtdIns(3,4,5)P3 are required for maximal AKT activation and PtdIns3P activates PI3K-dependent serum and glucocorticoid-regulated kinase (SGK3) signalling. Loss of Pten, Pipp or Inpp4b expression or function promotes tumour growth in murine cancer models through enhanced AKT isoform-specific signalling. INPP4B inhibits PtdIns(3,4)P2-mediated AKT activation in breast and prostate cancer; however, INPP4B expression is increased in acute myeloid leukaemia (AML), melanoma and colon cancer where it paradoxically promotes cell proliferation, transformation and/or drug resistance. This review will discuss how PTEN, PIPP and INPP4B distinctly regulate PtdIns(3,4,5)P3 signalling downstream of PI3K and how dysregulation of these phosphatases affects cancer outcomes.
Collapse
|
34
|
Affiliation(s)
- Ching-Yu Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan;; Graduate Institute of Basic Medical Science, China Medical University, Taichung City 40402, Taiwan; Graduate Program for Aging, China Medical University, Taichung City 40402, Taiwan
| |
Collapse
|
35
|
Qin B, Liu J, Liu S, Li B, Ren J. MiR-20b targets AKT3 and modulates vascular endothelial growth factor-mediated changes in diabetic retinopathy. Acta Biochim Biophys Sin (Shanghai) 2016; 48:732-40. [PMID: 27421659 DOI: 10.1093/abbs/gmw065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 05/26/2016] [Indexed: 12/17/2022] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of new-onset blindness. The roles of microRNAs in diabetic retinopathy are largely unknown. The aim of this study is to investigate the role of miR-20b in DR. Transfection of miR-20b mimic in high glucose (HG)-treated human retinal endothelial cells (HRECs) increased miR-20b expression and decreased the expression level of VEGF mRNA, while transfection of miR-20b inhibitor in control HRECs reduced the miR-20b expression with a corresponding increase of VEGF mRNA. In vitro functional assay showed that transfection of miR-20b mimic prevented HG-induced increase in transendothelial permeability and tube formation in HRECs. Transfection of miR-20b inhibitor or treatment of VEGF increased transendothelial permeability and tube formation in control HRECs. Luciferase reported assay showed that AKT3 is a target of miR-20b. Transfection of miR-20b mimic prevented the up-regulation of AKT3 induced by HG without changing the protein levels of other isoforms of AKT, and silencing of AKT3 caused decrease of VEGF mRNA and protein levels as well as prevented HG-induced increase in transendothelial permeability and tube formation. Finally, we showed that miR-20b was down-regulated in the retina and retinal endothelial cells in diabetic rats, with a correlated up-regulation of VEGF and AKT3. Intravitreal injection of miR-20b mimic in the diabetic rat significantly increased the miR-20b expression and decreased the expression levels of AKT3 and VEGF in the retina tissues, and intravitreal delivery of AKT3 siRNA in the diabetic rat significantly decreased the expressions of AKT3 and VEGF. Collectively, miR-20b is important for the regulation of VEGF-mediated changes in HRECs and rat retinal tissues under hyperglycemic conditions possibly via targeting AKT3.
Collapse
Affiliation(s)
- Bo Qin
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen 518040, China
| | - Jinwen Liu
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen 518040, China
| | - Shenwen Liu
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen 518040, China
| | - Baijun Li
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen 518040, China
| | - Jing Ren
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen 518040, China
| |
Collapse
|
36
|
Gao Y, Yuan CY, Yuan W. Will targeting PI3K/Akt/mTOR signaling work in hematopoietic malignancies? Stem Cell Investig 2016; 3:31. [PMID: 27583254 DOI: 10.21037/sci.2016.07.02] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022]
Abstract
The constitutive activation of phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has been demonstrated to be critical in clinical cancer patients as well as in laboratory cancer models including hematological malignancies. Great efforts have been made to develop inhibitors targeting this pathway in hematological malignancies but so far the efficacies of these inhibitors were not as good as expected. By analyzing existing literatures and datasets available, we found that mutations of genes in the pathway only constitute a very small subset of hematological malignancies. Deep understanding of the function of gene, the pathway and/or its regulators, and the cellular response to inhibitors, may help us design better drugs targeting the hematological malignancies.
Collapse
Affiliation(s)
- Yanan Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Chase Y Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China;; College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
37
|
Zhao YY, Li YG, Yan BQ, Liu ZZ, Qin GT, Sun YJ. Expression of vascular endothelial growth factor 165b in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2016; 24:355-361. [DOI: 10.11569/wcjd.v24.i3.355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of vascular endothelial growth factor 165b (VEGF165b) in hepatocellular carcinoma (HCC), and to investigate the relationship between VEGF165b and HCC.
METHODS: Expression of VEGF165b protein in 28 HCC specimens and 30 normal liver tissue specimens was detected by immunohistochemistry. The expression of VEGF165 and VEGF165b mRNAs was detected by RT-PCR. The expression of VEGF165, VEGF165b, FAK and P-Akt proteins in HCC and normal liver tissues was detected by Western blot.
RESULTS: The positive rate of VEGF165b protein expression in normal liver tissues was significantly higher than that in HCC tissues [96.67% (29/30) vs 21.4% (6/28), P < 0.05]. VEGF165b mRNA and protein expression in HCC tissues was significantly lower than that in normal liver tissues (P < 0.01). The expression of VEGF165 mRNA and protein in HCC tissues was significantly higher than that in normal liver tissues (P < 0.01). The expression of FAK and P-Akt proteins in HCC tissues was significantly higher than that in normal liver tissues (P < 0.01).
CONCLUSION: The expression of VEGF165b in HCC tissues is significantly lower than that in normal liver tissues, and the expression of VEGF165, FAK and P-Akt in HCC tissues is significantly higher than that in normal liver tissues. These findings suggest that VEGF165b may be related to the occurrence and development of HCC possibly by inhibiting the expression of VEGF165, FAK and P-Akt and their effects on angiogenesis and tumor growth.
Collapse
|
38
|
Nitulescu GM, Margina D, Juzenas P, Peng Q, Olaru OT, Saloustros E, Fenga C, Spandidos DΑ, Libra M, Tsatsakis AM. Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review). Int J Oncol 2015; 48:869-85. [PMID: 26698230 PMCID: PMC4750533 DOI: 10.3892/ijo.2015.3306] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/24/2015] [Indexed: 12/31/2022] Open
Abstract
Targeted cancer therapies are used to inhibit the growth, progression, and metastasis of the tumor by interfering with specific molecular targets and are currently the focus of anticancer drug development. Protein kinase B, also known as Akt, plays a central role in many types of cancer and has been validated as a therapeutic target nearly two decades ago. This review summarizes the intracellular functions of Akt as a pivotal point of converging signaling pathways involved in cell growth, proliferation, apoptotis and neo‑angiogenesis, and focuses on the drug design strategies to develop potent anticancer agents targeting Akt. The discovery process of Akt inhibitors has evolved from adenosine triphosphate (ATP)‑competitive agents to alternative approaches employing allosteric sites in order to overcome the high degree of structural similarity between Akt isoforms in the catalytic domain, and considerable structural analogy to the AGC kinase family. This process has led to the discovery of inhibitors with greater specificity, reduced side-effects and lower toxicity. A second generation of Akt has inhibitors emerged by incorporating a chemically reactive Michael acceptor template to target the nucleophile cysteines in the catalytic activation loop. The review outlines the development of several promising drug candidates emphasizing the importance of each chemical scaffold. We explore the pipeline of Akt inhibitors and their preclinical and clinical examination status, presenting the potential clinical application of these agents as a monotherapy or in combination with ionizing radiation, other targeted therapies, or chemotherapy.
Collapse
Affiliation(s)
- George Mihai Nitulescu
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Denisa Margina
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Petras Juzenas
- Department of Pathology, Radiumhospitalet, Oslo University Hospital, 0379 Oslo, Norway
| | - Qian Peng
- Department of Pathology, Radiumhospitalet, Oslo University Hospital, 0379 Oslo, Norway
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, 'Carol Davila' University of Medicine and Pharmacy, Bucharest 020956, Romania
| | - Emmanouil Saloustros
- Oncology Unit, General Hospital of Heraklion 'Venizelio', Heraklion 71409, Greece
| | - Concettina Fenga
- Section of Occupational Medicine, University of Messina, I-98125 Messina, Italy
| | - Demetrios Α Spandidos
- Department of Virology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, General and Clinical Pathology and Oncology Section, University of Catania, I‑95124 Catania, Italy
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, Heraklion 71003, Greece
| |
Collapse
|
39
|
Yu G, Huang B, Chen G, Mi Y. Phosphatidylethanolamine-binding protein 4 promotes lung cancer cells proliferation and invasion via PI3K/Akt/mTOR axis. J Thorac Dis 2015; 7:1806-16. [PMID: 26623104 PMCID: PMC4635298 DOI: 10.3978/j.issn.2072-1439.2015.10.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/11/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND While phosphatidylethanolamine-binding protein 4 (PEBP4) is a key factor in the malignant proliferation and metastasis of tumor cells, the exact regulatory network governing its roles remains unclear. This study was designed to investigate the effect of PEBP4 on PI3K/Akt/mTOR pathway and explore its molecular network that governs the proliferation and metastasis of tumor cells. METHODS After the recombinant plasmid pcDNA3.1-PEBP4 was constructed, the recombinant plasmid pcDNA3.1-PEBP4 and PEBP4-targeting siRNA were transfected into lung cancer HCC827 cell line. The expressions of PI3K/Akt/mTOR pathway components in HCC827 cells in each group were determined using Western blotting. In the HCC827 cells, the effect of PI3K pathway inhibitor LY294002 on the expressions of PI3K/Akt/mTOR pathway components under the effect of PEBP4 was determined using Western blotting, and the effects of LY294002 on the cell viability, proliferation, and migration capabilities under the overexpression of PEBP4 were determined using MTT method, flow cytometry, and Transwell migration assay. Furthermore, the effect of mTOR inhibitor rapamycin (RAPA) on the expressions of PI3K/Akt/mTOR pathway components under the effect of PEBP4 was determined using Western blotting, and the effects of RAPA on the cell viability, proliferation, and migration capabilities under the overexpression of PEBP4 were determined using MTT method, flow cytometry, and Transwell migration assay. RESULTS As shown by Western blotting, the protein expressions of p-Akt and phosphorylated mTOR (p-mTOR) were significantly higher in the pcDNA3.1-PEBP4-transfected group than in the normal control group and PEBP4 siRNA group (P<0.05); furthermore, the protein expressions of p-Akt and p-mTOR significantly decreased in the PEBP4 targeting siRNA-transfected group (P<0.05). Treatment with LY294002 significantly inhibited the protein expressions of p-Akt and p-mTOR in HCC827 cells (P<0.05). In contrast, treatment with RAPA only significantly inhibited the protein expression of p-mTOR (P<0.05). As shown by MTT, flow cytometry, and Transwell migration assay, both LY294002 and RAPA could significantly lower the viability of HCC827 cells and inhibit their proliferation and invasion (P<0.05); meanwhile, they could reverse the effect of PEBP4 in promoting the proliferation and migration of HCC827 cells (P<0.05). CONCLUSIONS The overexpression of PEBP4 increases the phosphorylation levels of Akt and mTOR in lung cancer cells. The PI3K/Akt/mTOR signaling axis may be a key molecular pathway via which PEBP4 promotes the proliferation and invasion of non-small cell lung cancer (NSCLC) cells; also, it may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Guoqiang Chen
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Yedong Mi
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| |
Collapse
|