1
|
Ma X, Lu T, Yang Y, Qin D, Tang Z, Cui Y, Wang R. DEAD-box helicase family proteins: emerging targets in digestive system cancers and advances in targeted drug development. J Transl Med 2024; 22:1120. [PMID: 39707322 DOI: 10.1186/s12967-024-05930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
Cancer has become one of the major diseases threatening human health in the twenty-first century due to its incurability. In 2022, new cases of esophageal and gastrointestinal cancers accounted for 17.1% of all newly diagnosed cancer cases worldwide. Despite significant improvements in early cancer screening, clinical diagnostics, and treatments in recent years, the overall prognosis of digestive system cancer patients remains poor. The DEAD-box helicase family, a crucial member of the RNA helicase family, participates in almost every aspect of RNA metabolism, including transcription, splicing, translation, and degradation, and plays a key role in the occurrence and progression of various cancers. This article aims to summarize and discuss the role and potential clinical applications of DEAD-box helicase family proteins in digestive system cancers. The discussion includes the latest progress in the occurrence, development, and treatment of esophageal and gastrointestinal tumors; the main functions of DEAD-box helicase family proteins; their roles in digestive system cancers, including their relationships with clinical factors; effects on cancer proliferation, migration, and invasion; and involved signaling pathways; as well as the existing inhibitory strategies targeting DDX family proteins, are discussed. Additionally, outlooks on future research directions are provided.
Collapse
Affiliation(s)
- Xiaochao Ma
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Tianyu Lu
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Yue Yang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Da Qin
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Ze Tang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Youbin Cui
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China.
| | - Rui Wang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| |
Collapse
|
2
|
Hossain MM, Mishra AK, Yadav AK, Ismail M, Sata TN, Sah AK, Banik A, Sharma G, Venugopal SK. Free fatty acid-induced DDX3 inhibits autophagy via miR-141 upregulation in diet-induced MASLD mice model system. Ann Hepatol 2024; 30:101758. [PMID: 39631458 DOI: 10.1016/j.aohep.2024.101758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/25/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION AND OBJECTIVES Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the primary causes of chronic liver disease and may lead to liver cirrhosis and hepatocellular carcinoma. Recent reports suggested that DEAD-box RNA helicase (DDX3) acts as a sensor of free fat accumulation and may modulate the pathogenesis via miRNAs. Hence, we hypothesized that DDX3 might modulate MASLD progression via miRNA-141-mediated inhibition of Sirt-1 and autophagy. MATERIALS AND METHODS RNA and total protein were isolated from free fatty acid-treated HepG2 cells or CDAA-fed C57BL/6 mice (6 mice per group) for 6, 18, 32, or 54 weeks. The cells were transfected with DDX3 or miR-141 or siRNA to DDX3, and Western blots for autophagy markers were performed. RESULTS The FFAs induced the DDX3 and miRNA-141 expression, while downregulating Sirt-1, beclin-1, Atg7, and LC3-II. Overexpression of DDX3 resulted in increased miRNA-141. Overexpression of DDX3 or miRNA-141 downregulated Sirt-1 expression and autophagy marker proteins, while these effects were reversed with siRNA to DDX3. The expression of both DDX3 and miRNA-141 was significantly increased, while autophagy markers were downregulated in CDAA-fed mice. CONCLUSIONS These results confirmed that FFA-induced DDX3 induced the expression of miRNA-141, which in turn targeted Sirt-1 and decreased autophagy.
Collapse
Affiliation(s)
- Md Musa Hossain
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Amit K Mishra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, USA
| | - Ajay K Yadav
- Department of Medical and Molecular genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Md Ismail
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Teja Naveen Sata
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Amrendra K Sah
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Arnab Banik
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Gopal Sharma
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India
| | - Senthil K Venugopal
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, India.
| |
Collapse
|
3
|
Lai MC, Yu YL, Chen CN, Yu JS, Hung HY, Chan SP. DDX3 participates in miRNA biogenesis and RNA interference through translational control of PACT and interaction with AGO2. FEBS Open Bio 2024. [PMID: 39543456 DOI: 10.1002/2211-5463.13920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
DDX3 is a DEAD-box RNA helicase that plays multiple roles in RNA metabolism, including translation. We previously reported that DDX3 is required for translation of PACT, a binding partner of Dicer, suggesting a role for DDX3 in microRNA (miRNA) biogenesis and RNA interference (RNAi). Emerging evidence suggests that DDX3 plays a vital role in tumorigenesis and cancer progression, however, its underlying mechanism is still not fully understood. Here, we showed that the control of PACT by DDX3 is conserved in human cells and Caenorhabditis elegans. Using a miRNA microarray, we found that DDX3 regulates the expression of a small subset of cancer-related miRNAs. These oncogenic miRNAs were down-regulated by knockdown of DDX3 or PACT and up-regulated by overexpression of DDX3 or PACT in HEK293T cells. Similar results were obtained in human cancer HCT116 and HeLa cells. Dual luciferase reporter assay showed that DDX3 and PACT are required for short hairpin RNA (shRNA)-induced RNAi. We also performed co-immunoprecipitation to confirm the interaction between DDX3 and AGO2, a significant component of the RNA-induced silencing complex, supporting a role for DDX3 in the RNAi pathway. We further examined the effects of DDX3 and PACT on cell proliferation, and stable overexpression of DDX3 in HEK293 cells results in loss of contact inhibition of cell growth. Hence, we propose that DDX3 may participate in cancer development by regulating the RNAi pathway.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Colorectal Surgery, New Taipei Municipal Tucheng Hospital, Taiwan
| | - Yen-Ling Yu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Nung Chen
- Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Yuan Hung
- Department of Colorectal Surgery, New Taipei Municipal Tucheng Hospital, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Winnard PT, Vesuna F, Bol GM, Gabrielson KL, Chenevix-Trench G, Ter Hoeve ND, van Diest PJ, Raman V. Targeting RNA helicase DDX3X with a small molecule inhibitor for breast cancer bone metastasis treatment. Cancer Lett 2024; 604:217260. [PMID: 39306228 DOI: 10.1016/j.canlet.2024.217260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024]
Abstract
Patients who present with breast cancer bone metastasis only have limited palliative treatment strategies and efficacious drug treatments are needed. In breast cancer patient data, high levels of the RNA helicase DDX3 are associated with poor overall survival and bone metastasis. Consequently, our objective was to target DDX3 in a mouse breast cancer bone metastasis model using a small molecule inhibitor of DDX3, RK-33. Histologically confirmed live imaging indicated no bone metastases in the RK-33 treated cohort, as opposed to placebo-treated mice. We generated a cell line from a bone metastatic lesion in mouse and found that it along with a patient-derived bone metastasis cell line gained resistance to conventional chemotherapeutics but not to RK-33. Finally, differential levels of DDX3 were observed in breast cancer patient metastatic bone samples. Overall, this study indicates that DDX3 is a relevant clinical target in breast cancer bone metastasis and that RK-33 can be a safe and effective treatment for these patients.
Collapse
Affiliation(s)
- Paul T Winnard
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Guus M Bol
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Medical Oncology, University Medical Center Utrecht Cancer Center, GA, Utrecht, the Netherlands
| | - Kathleen L Gabrielson
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Georgia Chenevix-Trench
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Locked Bag 2000, Brisbane, QLD, 4029, Australia
| | - Natalie D Ter Hoeve
- Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, the Netherlands
| | - Venu Raman
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Pathology, University Medical Center Utrecht Cancer Center, 3508 GA, Utrecht, the Netherlands; Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Hirth A, Fatti E, Netz E, Acebron SP, Papageorgiou D, Švorinić A, Cruciat CM, Karaulanov E, Gopanenko A, Zhu T, Sinning I, Krijgsveld J, Kohlbacher O, Niehrs C. DEAD box RNA helicases are pervasive protein kinase interactors and activators. Genome Res 2024; 34:952-966. [PMID: 38986579 PMCID: PMC11293542 DOI: 10.1101/gr.278264.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
DEAD box (DDX) RNA helicases are a large family of ATPases, many of which have unknown functions. There is emerging evidence that besides their role in RNA biology, DDX proteins may stimulate protein kinases. To investigate if protein kinase-DDX interaction is a more widespread phenomenon, we conducted three orthogonal large-scale screens, including proteomics analysis with 32 RNA helicases, protein array profiling, and kinome-wide in vitro kinase assays. We retrieved Ser/Thr protein kinases as prominent interactors of RNA helicases and report hundreds of binary interactions. We identified members of ten protein kinase families, which bind to, and are stimulated by, DDX proteins, including CDK, CK1, CK2, DYRK, MARK, NEK, PRKC, SRPK, STE7/MAP2K, and STE20/PAK family members. We identified MARK1 in all screens and validated that DDX proteins accelerate the MARK1 catalytic rate. These findings indicate pervasive interactions between protein kinases and DEAD box RNA helicases, and provide a rich resource to explore their regulatory relationships.
Collapse
Affiliation(s)
- Alexander Hirth
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Edoardo Fatti
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Eugen Netz
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Sergio P Acebron
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Dimitris Papageorgiou
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Andrea Švorinić
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | | | | | - Tianheng Zhu
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany;
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
6
|
She Y, Chen Z, Zhang L, Wang Y. MiR-181a-5p knockdown ameliorates sevoflurane anesthesia-induced neuron injury via regulation of the DDX3X/Wnt/β-catenin signaling axis. Exp Brain Res 2024; 242:571-583. [PMID: 38218948 DOI: 10.1007/s00221-023-06739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/02/2023] [Indexed: 01/15/2024]
Abstract
Sevoflurane is one of the most widely used inhaled anesthetics. MicroRNAs (miRNAs) have been demonstrated to affect sevoflurane anesthesia-induced neuron damage. The purpose of this study was to investigate the role and mechanism of miR-181a-5p in sevoflurane-induced hippocampal neuronal injury. Primary hippocampal neurons were identified using microscopy and immunofluorescence. The viability and apoptosis of sevoflurane anesthesia-induced neurons were detected by cell counting kit-8 (CCK-8) assay and terminal-deoxynucleoitidyl transferase-mediated nick end-labeling (TUNEL) staining assay, respectively. The levels of apoptosis- and oxidative stress-related proteins as well as the markers in the Wnt/β-catenin signaling pathway were examined by immunoblotting. Enzyme-linked immuno-sorbent assays were performed to examine the levels of inflammatory cytokines. Luciferase reporter assay was conducted to validate the combination between miR-181a-5p and DEAD-box helicase 3, X-linked (DDX3X). Sevoflurane exposure led to significantly inhibited hippocampal neuron viability and elevated miR-181a-5p expression. Knockdown of miR-181a-5p alleviated sevoflurane-induced neuron injury by reducing cell apoptosis, inflammatory response, and oxidative stress. Additionally, DDX3X was targeted and negatively regulated by miR-181a-5p. Moreover, miR-181a-5p inhibitor activated the Wnt/β-catenin pathway via DDX3X in sevoflurane-treated cells. Rescue experiments revealed that DDX3X knockdown or overexpression of Wnt antagonist Dickkopf-1 (DKK1) reversed the suppressive effects of miR-181a-5p inhibitor on cell apoptosis, inflammatory response, and oxidative stress in sevoflurane-treated neuronal cells. MiR-181a-5p ameliorated sevoflurane-triggered neuron injury by regulating the DDX3X/Wnt/β-catenin axis, suggesting the potential of miR-181a-5p as a novel and promising therapeutic target for the treatment of sevoflurane-evoked neurotoxicity.
Collapse
Affiliation(s)
- Yuqi She
- Department of Anesthesiology, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hebei, China
| | - Zhijun Chen
- Department of Anesthesiology, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hebei, China.
| | - Li Zhang
- Department of Anesthesiology, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hebei, China
| | - Yuan Wang
- Department of Neurosurgery, Wuhan No 1 Hospital, No. 215 Zhongshan Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| |
Collapse
|
7
|
Zheng B, Chen X, Ling Q, Cheng Q, Ye S. Role and therapeutic potential of DEAD-box RNA helicase family in colorectal cancer. Front Oncol 2023; 13:1278282. [PMID: 38023215 PMCID: PMC10654640 DOI: 10.3389/fonc.2023.1278282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed and the second cancer-related death worldwide, leading to more than 0.9 million deaths every year. Unfortunately, this disease is changing rapidly to a younger age, and in a more advanced stage when diagnosed. The DEAD-box RNA helicase proteins are the largest family of RNA helicases so far. They regulate almost every aspect of RNA physiological processes, including RNA transcription, editing, splicing and transport. Aberrant expression and critical roles of the DEAD-box RNA helicase proteins have been found in CRC. In this review, we first summarize the protein structure, cellular distribution, and diverse biological functions of DEAD-box RNA helicases. Then, we discuss the distinct roles of DEAD-box RNA helicase family in CRC and describe the cellular mechanism of actions based on recent studies, with an aim to provide future strategies for the treatment of CRC.
Collapse
Affiliation(s)
- Bichun Zheng
- Department of Anorectal Surgery, The Affiliated People’s Hospital of Ningbo University, Ningbo, China
| | | | | | | | | |
Collapse
|
8
|
Gadek M, Sherr EH, Floor SN. The variant landscape and function of DDX3X in cancer and neurodevelopmental disorders. Trends Mol Med 2023; 29:726-739. [PMID: 37422363 DOI: 10.1016/j.molmed.2023.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
RNA molecules rely on proteins across their life cycle. DDX3X encodes an X-linked DEAD-box RNA helicase with a Y-linked paralog, DDX3Y. DDX3X is central to the RNA life cycle and is implicated in many conditions, including cancer and the neurodevelopmental disorder DDX3X syndrome. DDX3X-linked conditions often exhibit sex differences, possibly due to differences between expression or function of the X- and Y-linked paralogs DDX3X and DDX3Y. DDX3X-related diseases have different mutational landscapes, indicating different roles of DDX3X. Understanding the role of DDX3X in normal and disease states will inform the understanding of DDX3X in disease. We review the function of DDX3X and DDX3Y, discuss how mutation type and sex bias contribute to human diseases involving DDX3X, and review possible DDX3X-targeting treatments.
Collapse
Affiliation(s)
- Margaret Gadek
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA
| | - Elliott H Sherr
- Department of Neurology, University of California, San Francisco, CA 94143, USA
| | - Stephen N Floor
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
9
|
Fatti E, Hirth A, Švorinić A, Günther M, Stier G, Cruciat CM, Acebrón SP, Papageorgiou D, Sinning I, Krijgsveld J, Höfer T, Niehrs C. DEAD box RNA helicases act as nucleotide exchange factors for casein kinase 2. Sci Signal 2023; 16:eabp8923. [PMID: 37098120 DOI: 10.1126/scisignal.abp8923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
DDX RNA helicases promote RNA processing, but DDX3X also activates casein kinase 1 (CK1ε). We show that other DDX proteins also stimulate the protein kinase activity of CK1ε and that this extends to casein kinase 2 (CK2). CK2 enzymatic activity was stimulated by various DDX proteins at high substrate concentrations. DDX1, DDX24, DDX41, and DDX54 were required for full kinase activity in vitro and in Xenopus embryos. Mutational analysis of DDX3X indicated that CK1 and CK2 kinase stimulation engages its RNA binding but not catalytic motifs. Mathematical modeling of enzyme kinetics and stopped-flow spectroscopy showed that DDX proteins function as nucleotide exchange factors toward CK2 and reduce unproductive reaction intermediates and substrate inhibition. Our study reveals protein kinase stimulation by nucleotide exchange as important for kinase regulation and as a generic function of DDX proteins.
Collapse
Affiliation(s)
- Edoardo Fatti
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Alexander Hirth
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
| | - Andrea Švorinić
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Faculty of Biosciences, Ruprecht-Karls University of Heidelberg, 69120 Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Matthias Günther
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gunter Stier
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Sergio P Acebrón
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| | - Dimitris Papageorgiou
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH-Alliance, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
10
|
Arna AB, Patel H, Singh RS, Vizeacoumar FS, Kusalik A, Freywald A, Vizeacoumar FJ, Wu Y. Synthetic lethal interactions of DEAD/H-box helicases as targets for cancer therapy. Front Oncol 2023; 12:1087989. [PMID: 36761420 PMCID: PMC9905851 DOI: 10.3389/fonc.2022.1087989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/26/2023] Open
Abstract
DEAD/H-box helicases are implicated in virtually every aspect of RNA metabolism, including transcription, pre-mRNA splicing, ribosomes biogenesis, nuclear export, translation initiation, RNA degradation, and mRNA editing. Most of these helicases are upregulated in various cancers and mutations in some of them are associated with several malignancies. Lately, synthetic lethality (SL) and synthetic dosage lethality (SDL) approaches, where genetic interactions of cancer-related genes are exploited as therapeutic targets, are emerging as a leading area of cancer research. Several DEAD/H-box helicases, including DDX3, DDX9 (Dbp9), DDX10 (Dbp4), DDX11 (ChlR1), and DDX41 (Sacy-1), have been subjected to SL analyses in humans and different model organisms. It remains to be explored whether SDL can be utilized to identity druggable targets in DEAD/H-box helicase overexpressing cancers. In this review, we analyze gene expression data of a subset of DEAD/H-box helicases in multiple cancer types and discuss how their SL/SDL interactions can be used for therapeutic purposes. We also summarize the latest developments in clinical applications, apart from discussing some of the challenges in drug discovery in the context of targeting DEAD/H-box helicases.
Collapse
Affiliation(s)
- Ananna Bhadra Arna
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hardikkumar Patel
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ravi Shankar Singh
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frederick S. Vizeacoumar
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Anthony Kusalik
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Freywald
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Franco J. Vizeacoumar
- Division of Oncology, College of Medicine, University of Saskatchewan and Saskatchewan Cancer Agency, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada,*Correspondence: Yuliang Wu, ; Franco J. Vizeacoumar,
| |
Collapse
|
11
|
Kwon J, Choi H, Han C. A Dual Role of DDX3X in dsRNA-Derived Innate Immune Signaling. Front Mol Biosci 2022; 9:912727. [PMID: 35874614 PMCID: PMC9299366 DOI: 10.3389/fmolb.2022.912727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
DEAD-Box Helicase 3 X-Linked (DDX3X) is essential for RNA metabolism and participates in various cellular processes involving RNA. DDX3X has been implicated in cancer growth and metastasis. DDX3X is involved in antiviral responses for viral RNAs and contributes to pro- or anti-microbial responses. A better understanding of how human cells regulate innate immune response against the viral “non-self” double-stranded RNAs (dsRNAs) and endogenous viral-like “self” dsRNAs is critical to understanding innate immune sensing, anti-microbial immunity, inflammation, immune cell homeostasis, and developing novel therapeutics for infectious, immune-mediated diseases, and cancer. DDX3X has known for activating the viral dsRNA-sensing pathway and innate immunity. However, accumulating research reveals a more complex role of DDX3X in regulating dsRNA-mediated signaling in cells. Here, we discuss the role of DDX3X in viral dsRNA- or endogenous dsRNA-mediated immune signaling pathways.
Collapse
Affiliation(s)
- Juntae Kwon
- Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States
| | - Hyeongjwa Choi
- Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Cecil Han
- Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States.,Lombardi Comprehensive Cancer Center, Washington, DC, United States
| |
Collapse
|
12
|
Lahiri V, Metur SP, Hu Z, Song X, Mari M, Hawkins WD, Bhattarai J, Delorme-Axford E, Reggiori F, Tang D, Dengjel J, Klionsky DJ. Post-transcriptional regulation of ATG1 is a critical node that modulates autophagy during distinct nutrient stresses. Autophagy 2022; 18:1694-1714. [PMID: 34836487 PMCID: PMC9298455 DOI: 10.1080/15548627.2021.1997305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved nutrient-recycling pathway that eukaryotes utilize to combat diverse stresses including nutrient depletion. Dysregulation of autophagy disrupts cellular homeostasis leading to starvation susceptibility in yeast and disease development in humans. In yeast, the robust autophagy response to starvation is controlled by the upregulation of ATG genes, via regulatory processes involving multiple levels of gene expression. Despite the identification of several regulators through genetic studies, the predominant mechanism of regulation modulating the autophagy response to subtle differences in nutrient status remains undefined. Here, we report the unexpected finding that subtle changes in nutrient availability can cause large differences in autophagy flux, governed by hitherto unknown post-transcriptional regulatory mechanisms affecting the expression of the key autophagyinducing kinase Atg1 (ULK1/ULK2 in mammals). We have identified two novel post-transcriptional regulators of ATG1 expression, the kinase Rad53 and the RNA-binding protein Ded1 (DDX3 in mammals). Furthermore, we show that DDX3 regulates ULK1 expression post-transcriptionally, establishing mechanistic conservation and highlighting the power of yeast biology in uncovering regulatory mechanisms that can inform therapeutic approaches.
Collapse
Affiliation(s)
- Vikramjit Lahiri
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Shree Padma Metur
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zehan Hu
- Department of Biology, University of Fribourg, FribourgSwitzerland
| | - Xinxin Song
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Muriel Mari
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, GroningenThe Netherlands
| | - Wayne D. Hawkins
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Janakraj Bhattarai
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, GroningenThe Netherlands
| | - Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joern Dengjel
- Department of Biology, University of Fribourg, FribourgSwitzerland
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
13
|
A feedback loop between GATA2-AS1 and GATA2 promotes colorectal cancer cell proliferation, invasion, epithelial-mesenchymal transition and stemness via recruiting DDX3X. J Transl Med 2022; 20:287. [PMID: 35752837 PMCID: PMC9233859 DOI: 10.1186/s12967-022-03483-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a common malignant tumor with a high risk of metastasis. Long non-coding RNAs (lncRNAs) have been reported to be implicated in cancer progression via regulating its nearby gene. Herein, we investigated the function of GATA binding protein 2 (GATA2) and lncRNA GATA2 antisense RNA 1 (GATA2-AS1) in CRC and the mechanism underlying their interaction. METHODS Colony formation assay, flow cytometry analysis and transwell assay were implemented to detect cell proliferation, apoptosis and invasion. Western blot analysis and sphere formation assay were conducted to assess epithelial-mesenchymal transition (EMT) and cancer stemness of CRC cells. RNA pull down, RNA-binding protein immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and luciferase reporter assays were implemented to investigate the regulatory mechanism between GATA2-AS1 and GATA2. RESULTS GATA2-AS1 and GATA2 were highly expressed in CRC cells. Knockdown of GATA2-AS1 and GATA2 impeded CRC cell proliferation, invasion, EMT and cancer stemness, and induced cell apoptosis. GATA2-AS1 expression was positively correlated with GATA2. GATA2-AS1 recruited DEAD-box helicase 3 X-linked (DDX3X) to stabilize GATA2 mRNA. GATA2 combined with GATA2-AS1 promoter to enhance GATA2-AS1 expression. CONCLUSION Our study confirmed that a feedback loop between GATA2-AS1 and GATA2 promotes CRC progression, which might offer novel targets for CRC treatment.
Collapse
|
14
|
Samir P, Kanneganti TD. DEAD/H-Box Helicases in Immunity, Inflammation, Cell Differentiation, and Cell Death and Disease. Cells 2022; 11:1608. [PMID: 35626643 PMCID: PMC9139286 DOI: 10.3390/cells11101608] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 12/21/2022] Open
Abstract
DEAD/H-box proteins are the largest family of RNA helicases in mammalian genomes, and they are present in all kingdoms of life. Since their discovery in the late 1980s, DEAD/H-box family proteins have been a major focus of study. They have been found to play central roles in RNA metabolism, gene expression, signal transduction, programmed cell death, and the immune response to bacterial and viral infections. Aberrant functions of DEAD/H-box proteins have been implicated in a wide range of human diseases that include cancer, neurodegeneration, and inherited genetic disorders. In this review, we provide a historical context and discuss the molecular functions of DEAD/H-box proteins, highlighting the recent discoveries linking their dysregulation to human diseases. We will also discuss the state of knowledge regarding two specific DEAD/H-box proteins that have critical roles in immune responses and programmed cell death, DDX3X and DDX58, also known as RIG-I. Given their importance in homeostasis and disease, an improved understanding of DEAD/H-box protein biology and protein-protein interactions will be critical for informing strategies to counteract the pathogenesis associated with several human diseases.
Collapse
|
15
|
Jin Y, Yang S, Gao X, Chen D, Luo T, Su S, Shi Y, Yang G, Dong L, Liang J. DEAD-Box Helicase 27 Triggers Epithelial to Mesenchymal Transition by Regulating Alternative Splicing of Lipoma-Preferred Partner in Gastric Cancer Metastasis. Front Genet 2022; 13:836199. [PMID: 35601484 PMCID: PMC9114675 DOI: 10.3389/fgene.2022.836199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
DEAD-box helicase 27 (DDX27) was previously identified as an important mediator during carcinogenesis, while its role in gastric cancer (GC) is not yet fully elucidated. Here, we aimed to investigate the mechanism and clinical significance of DDX27 in GC. Public datasets were analyzed to determine DDX27 expression profiling. The qRT-PCR, Western blot, and immunohistochemistry analyses were employed to investigate the DDX27 expression in GC cell lines and clinical samples. The role of DDX27 in GC metastasis was explored in vitro and in vivo. Mass spectrometry, RNA-seq, and alternative splicing analysis were conducted to demonstrate the DDX27-mediated molecular mechanisms in GC. We discovered that DDX27 was highly expressed in GCs, and a high level of DDX27 indicated poor prognosis. An increased DDX27 expression could promote GC metastasis, while DDX27 knockdown impaired GC aggressiveness. Mechanically, the LLP expression was significantly altered after DDX27 downregulation, and further results indicated that LPP may be regulated by DDX27 via alternative splicing. In summary, our study indicated that DDX27 contributed to GC malignant progression via a prometastatic DDX27/LPP/EMT regulatory axis.
Collapse
Affiliation(s)
- Yirong Jin
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Suzhen Yang
- Department of Digestive Disease and Gastrointestinal Motility Research Room, Xi’an Jiaotong University, Xi’an, China
| | - Xiaoliang Gao
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Di Chen
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Tingting Luo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China
| | - Song Su
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Yanting Shi
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Gang Yang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
| | - Lei Dong
- Department of Digestive Disease and Gastrointestinal Motility Research Room, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Lei Dong, ; Jie Liang,
| | - Jie Liang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, Air Force Military Medical University, Xi’an, China
- *Correspondence: Lei Dong, ; Jie Liang,
| |
Collapse
|
16
|
Tabassum S, Ghosh MK. DEAD-box RNA helicases with special reference to p68: Unwinding their biology, versatility, and therapeutic opportunity in cancer. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Rampogu S, Lee G, Park JS, Lee KW, Kim MO. Molecular Docking and Molecular Dynamics Simulations Discover Curcumin Analogue as a Plausible Dual Inhibitor for SARS-CoV-2. Int J Mol Sci 2022; 23:1771. [PMID: 35163692 PMCID: PMC8836015 DOI: 10.3390/ijms23031771] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/16/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Recently, the world has been witnessing a global pandemic with no effective therapeutics yet, while cancer continues to be a major disease claiming many lives. The natural compound curcumin is bestowed with multiple medicinal applications in addition to demonstrating antiviral and anticancer activities. In order to elucidate the impact of curcumin on COVID-19 and cancer, the current investigation has adapted several computational techniques to unfold its possible inhibitory activity. Accordingly, curcumin and similar compounds and analogues were retrieved and assessed for their binding affinities at the binding pocket of SARS-CoV-2 main protease and DDX3. The best binding pose was escalated to molecular dynamics simulation (MDS) studies to assess the time dependent stability. Our findings have rendered one compound that has demonstrated good molecular dock score complemented by key residue interactions and have shown stable MDS results inferred by root mean square deviation (RMSD), radius of gyration (Rg), binding mode, hydrogen bond interactions, and interaction energy. Essential dynamics results have shown that the systemadapts minimum energy conformation to attain a stable state. The discovered compound (curA) could act as plausible inhibitor against SARS-CoV-2 and DDX3. Furthermore, curA could serve as a chemical scaffold for designing and developing new compounds.
Collapse
Affiliation(s)
- Shailima Rampogu
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (G.L.)
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Gihwan Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (G.L.)
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea;
| | - Keun Woo Lee
- Division of Life Sciences, Division of Applied Life Science (BK21 Plus), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea; (S.R.); (G.L.)
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea;
| |
Collapse
|
18
|
Lai MC, Chen YP, Li DA, Yu JS, Hung HY, Tarn WY. DDX3 interacts with USP9X and participates in deubiquitination of the anti-apoptotic protein MCL1. FEBS J 2021; 289:1043-1061. [PMID: 34606682 DOI: 10.1111/febs.16219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/26/2021] [Accepted: 10/01/2021] [Indexed: 01/19/2023]
Abstract
Here, we describe a novel interaction between the RNA helicase DDX3 and the deubiquitinase ubiquitin-specific peptidase 9 X-linked (USP9X) in human cells. Domain mapping studies reveal that the C-terminal region of DDX3 interacted with the N terminus of USP9X. USP9X was predominantly localized in the cytoplasm where the interaction between DDX3 and USP9X occurred. USP9X was not visibly enriched in cytoplasmic stress granules (SGs) under oxidative stress conditions, whereas overexpression of GFP-DDX3 induced SG formation and recruited USP9X to SGs in HeLa cells. Luciferase reporter assays showed that depletion of USP9X had no significant effect on DDX3-mediated translation. Given that DDX3 is not ubiquitinated upon ubiquitin overexpression, it is unlikely that DDX3 serves as a substrate of USP9X. Importantly, we found that ubiquitinated MCL1 was accumulated upon depletion of USP9X and/or DDX3 in MG132-treated cells, suggesting that USP9X and DDX3 play a role in regulating MCL1 protein stability and anti-apoptotic function. This study indicates that DDX3 exerts anti-apoptotic effects probably by coordinating with USP9X in promoting MCL1 deubiquitination.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Department of Colorectal Surgery, New Taipei Municipal Tucheng Hospital, Taiwan
| | - Yi-Pin Chen
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Ding-An Li
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Yuan Hung
- Department of Colorectal Surgery, New Taipei Municipal Tucheng Hospital, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
19
|
Sergeeva O, Abakumova T, Kurochkin I, Ialchina R, Kosyreva A, Prikazchikova T, Varlamova V, Shcherbinina E, Zatsepin T. Level of Murine DDX3 RNA Helicase Determines Phenotype Changes of Hepatocytes In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22136958. [PMID: 34203429 PMCID: PMC8269429 DOI: 10.3390/ijms22136958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 11/26/2022] Open
Abstract
DDX3 RNA helicase is intensively studied as a therapeutic target due to participation in the replication of some viruses and involvement in cancer progression. Here we used transcriptome analysis to estimate the primary response of hepatocytes to different levels of RNAi-mediated knockdown of DDX3 RNA helicase both in vitro and in vivo. We found that a strong reduction of DDX3 protein (>85%) led to similar changes in vitro and in vivo—deregulation of the cell cycle and Wnt and cadherin pathways. Also, we observed the appearance of dead hepatocytes in the healthy liver and a decrease of cell viability in vitro after prolonged treatment. However, more modest downregulation of the DDX3 protein (60–65%) showed discordant results in vitro and in vivo—similar changes in vitro as in the case of strong knockdown and a different phenotype in vivo. These results demonstrate that the level of DDX3 protein can dramatically influence the cell phenotype in vivo and the decrease of DDX3, for more than 85% leads to cell death in normal tissues, which should be taken into account during the drug development of DDX3 inhibitors.
Collapse
Affiliation(s)
- Olga Sergeeva
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
- Correspondence: ; Tel.: +7-926-388-0865
| | - Tatiana Abakumova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Ilia Kurochkin
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Renata Ialchina
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Anna Kosyreva
- Research Institute of Human Morphology, 117418 Moscow, Russia;
| | - Tatiana Prikazchikova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Varvara Varlamova
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Evgeniya Shcherbinina
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
| | - Timofei Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia; (T.A.); (I.K.); (R.I.); (T.P.); (V.V.); (E.S.); (T.Z.)
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
20
|
DEAD-Box RNA Helicases in Cell Cycle Control and Clinical Therapy. Cells 2021; 10:cells10061540. [PMID: 34207140 PMCID: PMC8234093 DOI: 10.3390/cells10061540] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cell cycle is regulated through numerous signaling pathways that determine whether cells will proliferate, remain quiescent, arrest, or undergo apoptosis. Abnormal cell cycle regulation has been linked to many diseases. Thus, there is an urgent need to understand the diverse molecular mechanisms of how the cell cycle is controlled. RNA helicases constitute a large family of proteins with functions in all aspects of RNA metabolism, including unwinding or annealing of RNA molecules to regulate pre-mRNA, rRNA and miRNA processing, clamping protein complexes on RNA, or remodeling ribonucleoprotein complexes, to regulate gene expression. RNA helicases also regulate the activity of specific proteins through direct interaction. Abnormal expression of RNA helicases has been associated with different diseases, including cancer, neurological disorders, aging, and autosomal dominant polycystic kidney disease (ADPKD) via regulation of a diverse range of cellular processes such as cell proliferation, cell cycle arrest, and apoptosis. Recent studies showed that RNA helicases participate in the regulation of the cell cycle progression at each cell cycle phase, including G1-S transition, S phase, G2-M transition, mitosis, and cytokinesis. In this review, we discuss the essential roles and mechanisms of RNA helicases in the regulation of the cell cycle at different phases. For that, RNA helicases provide a rich source of targets for the development of therapeutic or prophylactic drugs. We also discuss the different targeting strategies against RNA helicases, the different types of compounds explored, the proposed inhibitory mechanisms of the compounds on specific RNA helicases, and the therapeutic potential of these compounds in the treatment of various disorders.
Collapse
|
21
|
Sun Z, Xia W, Lyu Y, Song Y, Wang M, Zhang R, Sui G, Li Z, Song L, Wu C, Liew CC, Yu L, Cheng G, Cheng C. Immune-related gene expression signatures in colorectal cancer. Oncol Lett 2021; 22:543. [PMID: 34079596 PMCID: PMC8157333 DOI: 10.3892/ol.2021.12804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/11/2021] [Indexed: 12/24/2022] Open
Abstract
The immune system is crucial in regulating colorectal cancer (CRC) tumorigenesis. Identification of immune-related transcriptomic signatures derived from the peripheral blood of patients with CRC would provide insights into CRC pathogenesis, and suggest novel clues to potential immunotherapy strategies for the disease. The present study collected blood samples from 59 patients with CRC and 62 healthy control patients and performed whole blood gene expression profiling using microarray hybridization. Immune-related gene expression signatures for CRC were identified from immune gene datasets, and an algorithmic predictive model was constructed for distinguishing CRC from controls. Model performance was characterized using an area under the receiver operating characteristic curve (ROC AUC). Functional categories for CRC-specific gene expression signatures were determined using gene set enrichment analyses. A Kaplan-Meier plotter survival analysis was also performed for CRC-specific immune genes in order to characterize the association between gene expression and CRC prognosis. The present study identified five CRC-specific immune genes [protein phosphatase 3 regulatory subunit Bα (PPP3R1), amyloid β precursor protein, cathepsin H, proteasome activator subunit 4 and DEAD-Box Helicase 3 X-Linked]. A predictive model based on this five-gene panel showed good discriminatory power (independent test set sensitivity, 83.3%; specificity, 94.7%, accuracy, 89.2%; ROC AUC, 0.96). The candidate genes were involved in pathways associated with ‘adaptive immune responses’, ‘innate immune responses’ and ‘cytokine signaling’. The survival analysis found that a high level of PPP3R1 expression was associated with a poor CRC prognosis. The present study identified five CRC-specific immune genes that were potential diagnostic biomarkers for CRC. The biological function analysis indicated a close association between CRC pathogenesis and the immune system, and may reveal more information about the immunogenic and pathogenic mechanisms driving CRC in the future. Overall, the association between PPP3R1 expression and survival of patients with CRC revealed potential new targets for CRC immunotherapy.
Collapse
Affiliation(s)
- Zhenqing Sun
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Yali Lyu
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Yanan Song
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Min Wang
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Ruirui Zhang
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Guode Sui
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhenlu Li
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Li Song
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Changliang Wu
- Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Choong-Chin Liew
- Golden Health Diagnostics Inc., Yan Cheng, Jiangsu 224000, P.R. China.,Department of Clinical Pathology and Laboratory Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lei Yu
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| | - Guang Cheng
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Changming Cheng
- R&D Department, Huaxia Bangfu Technology Incorporated, Beijing 100000, P.R. China
| |
Collapse
|
22
|
van der Pol CC, Moelans CB, Manson QF, Batenburg MCT, van der Wall E, Borel Rinkes I, Verkooijen L, Raman V, van Diest PJ. Cytoplasmic DDX3 as prognosticator in male breast cancer. Virchows Arch 2021; 479:647-655. [PMID: 33974127 PMCID: PMC8516781 DOI: 10.1007/s00428-021-03107-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022]
Abstract
Male breast cancer (MBC) is a rare disease. Due to its rarity, treatment is still directed by data mainly extrapolated from female breast cancer (FBC) treatment, despite the fact that it has recently become clear that MBC has its own molecular characteristics. DDX3 is a RNA helicase with tumor suppressor and oncogenic potential that was described as a prognosticator in FBC and can be targeted by small molecule inhibitors of DDX3. The aim of this study was to evaluate if DDX3 is a useful prognosticator for MBC patients. Nuclear as well as cytoplasmic DDX3 expression was studied by immunohistochemistry in a Dutch retrospective cohort of 106 MBC patients. Differences in 10-year survival by DDX3 expression were analyzed using log-rank test. The association between clinicopathologic variables, DDX3 expression, and survival was tested in uni- and multivariate Cox-regression analysis. High cytoplasmic DDX3 was associated with high androgen receptor (AR) expression while low nuclear DDX3 was associated with negative lymph node status. Nuclear and cytoplasmic DDX3 were not associated with each other. In a univariate analysis, high cytoplasmic DDX3 (p = 0.045) was significantly associated with better 10-year overall survival. In multivariate analyses, cytoplasmic DDX3 had independent prognostic value (p = 0.017). In conclusion, cytoplasmic DDX3 expression seems to be a useful prognosticator in MBC, as high cytoplasmic DDX3 indicated better 10-year survival.
Collapse
Affiliation(s)
- Carmen C van der Pol
- Department of Surgical Oncology, Alrijne Hospital Leiderdorp, Leiderdorp, The Netherlands
| | - Cathy B Moelans
- Departments of Pathology, University Medical Center Utrecht Cancer Center, PO Box 85500, 3508 GA, Utrecht, The Netherlands
| | - Quirine F Manson
- Department of Surgical Oncology, Alrijne Hospital Leiderdorp, Leiderdorp, The Netherlands
| | - Marilot C T Batenburg
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elsken van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inne Borel Rinkes
- Department of Surgical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lenny Verkooijen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Venu Raman
- Departments of Pathology, University Medical Center Utrecht Cancer Center, PO Box 85500, 3508 GA, Utrecht, The Netherlands.,Department of Radiology and Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paul J van Diest
- Departments of Pathology, University Medical Center Utrecht Cancer Center, PO Box 85500, 3508 GA, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Selective cell death in HIV-1-infected cells by DDX3 inhibitors leads to depletion of the inducible reservoir. Nat Commun 2021; 12:2475. [PMID: 33931637 PMCID: PMC8087668 DOI: 10.1038/s41467-021-22608-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
An innovative approach to eliminate HIV-1-infected cells emerging out of latency, the major hurdle to HIV-1 cure, is to pharmacologically reactivate viral expression and concomitantly trigger intracellular pro-apoptotic pathways in order to selectively induce cell death (ICD) of infected cells, without reliance on the extracellular immune system. In this work, we demonstrate the effect of DDX3 inhibitors on selectively inducing cell death in latent HIV-1-infected cell lines, primary CD4+ T cells and in CD4+ T cells from cART-suppressed people living with HIV-1 (PLWHIV). We used single-cell FISH-Flow technology to characterise the contribution of viral RNA to inducing cell death. The pharmacological targeting of DDX3 induced HIV-1 RNA expression, resulting in phosphorylation of IRF3 and upregulation of IFNβ. DDX3 inhibition also resulted in the downregulation of BIRC5, critical to cell survival during HIV-1 infection, and selectively induced apoptosis in viral RNA-expressing CD4+ T cells but not bystander cells. DDX3 inhibitor treatment of CD4+ T cells from PLWHIV resulted in an approximately 50% reduction of the inducible latent HIV-1 reservoir by quantitation of HIV-1 RNA, by FISH-Flow, RT-qPCR and TILDA. This study provides proof of concept for pharmacological reversal of latency coupled to induction of apoptosis towards the elimination of the inducible reservoir.
Collapse
|
24
|
Modelling single-molecule kinetics of helicase translocation using high-resolution nanopore tweezers (SPRNT). Essays Biochem 2021; 65:109-127. [PMID: 33491732 DOI: 10.1042/ebc20200027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/23/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Single-molecule picometer resolution nanopore tweezers (SPRNT) is a technique for monitoring the motion of individual enzymes along a nucleic acid template at unprecedented spatiotemporal resolution. We review the development of SPRNT and the application of single-molecule kinetics theory to SPRNT data to develop a detailed model of helicase motion along a single-stranded DNA substrate. In this review, we present three examples of questions SPRNT can answer in the context of the Superfamily 2 helicase Hel308. With Hel308, SPRNT's spatiotemporal resolution enables resolution of two distinct enzymatic substates, one which is dependent upon ATP concentration and one which is ATP independent. By analyzing dwell-time distributions and helicase back-stepping, we show, in detail, how SPRNT can be used to determine the nature of these observed steps. We use dwell-time distributions to discern between three different possible models of helicase backstepping. We conclude by using SPRNT's ability to discern an enzyme's nucleotide-specific location along a DNA strand to understand the nature of sequence-specific enzyme kinetics and show that the sequence within the helicase itself affects both step dwell-time and backstepping probability while translocating on single-stranded DNA.
Collapse
|
25
|
The DEAD-box protein family of RNA helicases: sentinels for a myriad of cellular functions with emerging roles in tumorigenesis. Int J Clin Oncol 2021; 26:795-825. [PMID: 33656655 DOI: 10.1007/s10147-021-01892-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023]
Abstract
DEAD-box RNA helicases comprise a family within helicase superfamily 2 and make up the largest group of RNA helicases. They are a profoundly conserved family of RNA-binding proteins, carrying a generic Asp-Glu-Ala-Asp (D-E-A-D) motif that gives the family its name. Members of the DEAD-box family of RNA helicases are engaged in all facets of RNA metabolism from biogenesis to decay. DEAD-box proteins ordinarily function as constituents of enormous multi-protein complexes and it is believed that interactions with other components in the complexes might be answerable for the various capacities ascribed to these proteins. Therefore, their exact function is probably impacted by their interacting partners and to be profoundly context dependent. This may give a clarification to the occasionally inconsistent reports proposing that DEAD-box proteins have both pro- and anti-proliferative functions in cancer. There is emerging evidence that DEAD-box family of RNA helicases play pivotal functions in various cellular processes and in numerous cases have been embroiled in cellular proliferation and/or neoplastic transformation. In various malignancy types, DEAD-box RNA helicases have been reported to possess pro-proliferation or even oncogenic roles as well as anti-proliferative or tumor suppressor functions. Clarifying the exact function of DEAD-box helicases in cancer is probably intricate, and relies upon the cellular milieu and interacting factors. This review aims to summarize the current data on the numerous capacities that have been ascribed to DEAD-box RNA helicases. It also highlights their diverse actions upon malignant transformation in the various tumor types.
Collapse
|
26
|
Abstract
The DEAD-box helicase family member DDX3X (DBX, DDX3) functions in nearly all stages of RNA metabolism and participates in the progression of many diseases, including virus infection, inflammation, intellectual disabilities and cancer. Over two decades, many studies have gradually unveiled the role of DDX3X in tumorigenesis and tumour progression. In fact, DDX3X possesses numerous functions in cancer biology and is closely related to many well-known molecules. In this review, we describe the function of DDX3X in RNA metabolism, cellular stress response, innate immune response, metabolic stress response in pancreatic β cells and embryo development. Then, we focused on the role of DDX3X in cancer biology and systematically demonstrated its functions in various aspects of tumorigenesis and development. To provide a more intuitive understanding of the role of DDX3X in cancer, we summarized its functions and specific mechanisms in various types of cancer and presented its involvement in cancer-related signalling pathways.
Collapse
|
27
|
Perfetto M, Xu X, Lu C, Shi Y, Yousaf N, Li J, Yien YY, Wei S. The RNA helicase DDX3 induces neural crest by promoting AKT activity. Development 2021; 148:dev.184341. [PMID: 33318149 DOI: 10.1242/dev.184341] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/02/2020] [Indexed: 01/02/2023]
Abstract
Mutations in the RNA helicase DDX3 have emerged as a frequent cause of intellectual disability in humans. Because many individuals carrying DDX3 mutations have additional defects in craniofacial structures and other tissues containing neural crest (NC)-derived cells, we hypothesized that DDX3 is also important for NC development. Using Xenopus tropicalis as a model, we show that DDX3 is required for normal NC induction and craniofacial morphogenesis by regulating AKT kinase activity. Depletion of DDX3 decreases AKT activity and AKT-dependent inhibitory phosphorylation of GSK3β, leading to reduced levels of β-catenin and Snai1: two GSK3β substrates that are crucial for NC induction. DDX3 function in regulating these downstream signaling events during NC induction is likely mediated by RAC1, a small GTPase whose translation depends on the RNA helicase activity of DDX3. These results suggest an evolutionarily conserved role of DDX3 in NC development by promoting AKT activity, and provide a potential mechanism for the NC-related birth defects displayed by individuals harboring mutations in DDX3 and its downstream effectors in this signaling cascade.
Collapse
Affiliation(s)
- Mark Perfetto
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.,Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaolu Xu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Congyu Lu
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yu Shi
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Natasha Yousaf
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA
| | - Jiejing Li
- Department of Biology, West Virginia University, Morgantown, WV 26506, USA.,Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming 650032, China
| | - Yvette Y Yien
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
28
|
Legrand N, Dixon DA, Sobolewski C. Stress granules in colorectal cancer: Current knowledge and potential therapeutic applications. World J Gastroenterol 2020; 26:5223-5247. [PMID: 32994684 PMCID: PMC7504244 DOI: 10.3748/wjg.v26.i35.5223] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023] Open
Abstract
Stress granules (SGs) represent important non-membrane cytoplasmic compartments, involved in cellular adaptation to various stressful conditions (e.g., hypoxia, nutrient deprivation, oxidative stress). These granules contain several scaffold proteins and RNA-binding proteins, which bind to mRNAs and keep them translationally silent while protecting them from harmful conditions. Although the role of SGs in cancer development is still poorly known and vary between cancer types, increasing evidence indicate that the expression and/or the activity of several key SGs components are deregulated in colorectal tumors but also in pre-neoplastic conditions (e.g., inflammatory bowel disease), thus suggesting a potential role in the onset of colorectal cancer (CRC). It is therefore believed that SGs formation importantly contributes to various steps of colorectal tumorigenesis but also in chemoresistance. As CRC is the third most frequent cancer and one of the leading causes of cancer mortality worldwide, development of new therapeutic targets is needed to offset the development of chemoresistance and formation of metastasis. Abolishing SGs assembly may therefore represent an appealing therapeutic strategy to re-sensitize colon cancer cells to anti-cancer chemotherapies. In this review, we summarize the current knowledge on SGs in colorectal cancer and the potential therapeutic strategies that could be employed to target them.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Medicine, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Lawrence, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
29
|
Yasmin R, Kaur I, Tuteja R. Plasmodium falciparum DDX55 is a nucleocytoplasmic protein and a 3'-5' direction-specific DNA helicase. PROTOPLASMA 2020; 257:1049-1067. [PMID: 32125511 DOI: 10.1007/s00709-020-01495-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Malaria is one of the major causes of mortality as well as morbidity in many tropical and subtropical countries around the world. Although artemisinin combination therapies (ACTs) are contributing to substantial decline in the worldwide malaria burden, it is becoming vulnerable by the emergence of artemisinin resistance in Plasmodium falciparum leading to clinical failure of ACTs in Southeast Asia. Helicases play important role in nucleic acid metabolic processes and have been also identified as therapeutic drug target for different diseases. Previously, it has been reported that P. falciparum contains a group of DEAD-box family of helicases which are homologous to Has1 family of yeast. Here, we present the characterization of a member of Has1 family (PlasmoDB number PF3D7_1419100) named as PfDDX55. The biochemical characterization of PfDDX55C revealed that it contains both DNA- and RNA-dependent ATPase activity. PfDDX55C unwinds partially duplex DNA in 3' to 5' direction and utilizes mainly ATP or dATP for its activity. The immunofluorescence assay and q-RT PCR analysis show that PfDDX55 is a nucleocytoplasmic protein expressed in all the intraerythrocytic development of P. falciparum 3D7 strain with maximum expression level in trophozoite stage. The LC-MS/MS experiment results and STRING analysis show that PfDDX55 interacts with AAA-ATPase which has been shown to be involved in ribosomal biogenesis.
Collapse
Affiliation(s)
- Rahena Yasmin
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Inderjeet Kaur
- Malaria Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, P. O. Box 10504, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
30
|
Zhu C, Zhang X, Kourkoumelis N, Shen Y, Huang W. Integrated Analysis of DEAD-Box Helicase 56: A Potential Oncogene in Osteosarcoma. Front Bioeng Biotechnol 2020; 8:588. [PMID: 32671031 PMCID: PMC7332757 DOI: 10.3389/fbioe.2020.00588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Osteosarcoma is a solid tumor common in the musculoskeletal system. The DEAD-box helicase (DDX) families play an important role in tumor genesis and proliferation. Objective:To screen potential molecular targets in osteosarcoma and elucidate its relationship with DDX56. Methods: We employed the Gene Expression Omnibus and The Cancer Genome Atlas datasets for preliminary screening. DDX56 expression was measured by RT-qPCR in three osteosarcoma cell lines. Biological roles of DDX56 were explored by Gene ontology, Kyoto Encyclopedia of Genes and Genomes and Ingenuity Pathway Analysis. Cell proliferation, cycle, and apoptosis assays were performed using Lentivirus™ knockdown technique. Results: It was found that DDX56 expression was regularly upregulated in osteosarcoma tissue and cell lines, while DDX56 knockdown inhibited cell proliferation and promoted cell apoptosis. Conclusions: The findings suggest DDX56 as a potential therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Chen Zhu
- Division of Life Sciences and Medicine, Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Xianzuo Zhang
- Division of Life Sciences and Medicine, Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Nikolaos Kourkoumelis
- Department of Medical Physics, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, Neurodegenerative Disorder Research Center, University of Science and Technology of China, Hefei, China
| | - Wei Huang
- Division of Life Sciences and Medicine, Department of Orthopedics, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| |
Collapse
|
31
|
A Computational Approach with Biological Evaluation: Combinatorial Treatment of Curcumin and Exemestane Synergistically Regulates DDX3 Expression in Cancer Cell Lines. Biomolecules 2020; 10:biom10060857. [PMID: 32512851 PMCID: PMC7355417 DOI: 10.3390/biom10060857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023] Open
Abstract
DDX3 belongs to RNA helicase family that demonstrates oncogenic properties and has gained wider attention due to its role in cancer progression, proliferation and transformation. Mounting reports have evidenced the role of DDX3 in cancers making it a promising target to abrogate DDX3 triggered cancers. Dual pharmacophore models were generated and were subsequently validated. They were used as 3D queries to screen the InterBioScreen database, resulting in the selection of curcumin that was escalated to molecular dynamics simulation studies. In vitro anti-cancer analysis was conducted on three cell lines such as MCF-7, MDA-MB-231 and HeLa, which were evaluated along with exemestane. Curcumin was docked into the active site of the protein target (PDB code 2I4I) to estimate the binding affinity. The compound has interacted with two key residues and has displayed stable molecular dynamics simulation results. In vitro analysis has demonstrated that both the candidate compounds have reduced the expression of DDX3 in three cell lines. However, upon combinatorial treatment of curcumin (10 and 20 μM) and exemestane (50 μM) a synergism was exhibited, strikingly downregulating the DDX3 expression and has enhanced apoptosis in three cell lines. The obtained results illuminate the use of curcumin as an alternative DDX3 inhibitor and can serve as a chemical scaffold to design new small molecules.
Collapse
|
32
|
DEAD-box RNA Helicase DDX3: Functional Properties and Development of DDX3 Inhibitors as Antiviral and Anticancer Drugs. Molecules 2020; 25:molecules25041015. [PMID: 32102413 PMCID: PMC7070539 DOI: 10.3390/molecules25041015] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/05/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
This short review is focused on enzymatic properties of human ATP-dependent RNA helicase DDX3 and the development of antiviral and anticancer drugs targeting cellular helicases. DDX3 belongs to the DEAD-box proteins, a large family of RNA helicases that participate in all aspects of cellular processes, such as cell cycle progression, apoptosis, innate immune response, viral replication, and tumorigenesis. DDX3 has a variety of functions in the life cycle of different viruses. DDX3 helicase is required to facilitate both the Rev-mediated export of unspliced/partially spliced human immunodeficiency virus (HIV) RNA from nucleus and Tat-dependent translation of viral genes. DDX3 silencing blocks the replication of HIV, HCV, and some other viruses. On the other hand, DDX displays antiviral effect against Dengue virus and hepatitis B virus through the stimulation of interferon beta production. The role of DDX3 in different types of cancer is rather controversial. DDX3 acts as an oncogene in one type of cancer, but demonstrates tumor suppressor properties in other types. The human DDX3 helicase is now considered as a new attractive target for the development of novel pharmaceutical drugs. The most interesting inhibitors of DDX3 helicase and the mechanisms of their actions as antiviral or anticancer drugs are discussed in this short review.
Collapse
|
33
|
RK-33 Is a Broad-Spectrum Antiviral Agent That Targets DEAD-Box RNA Helicase DDX3X. Cells 2020; 9:cells9010170. [PMID: 31936642 PMCID: PMC7016805 DOI: 10.3390/cells9010170] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 01/17/2023] Open
Abstract
Viral disease is one of the greatest burdens for human health worldwide, with an urgent need for efficacious antiviral strategies. While antiviral drugs are available, in many cases, they are prone to the development of drug resistance. A way to overcome drug resistance associated with common antiviral therapies is to develop antivirals targeting host cellular co-factors critical to viral replication, such as DEAD-box helicase 3 X-linked (DDX3X), which plays key roles in RNA metabolism and the antiviral response. Here, we use biochemical/biophysical approaches and infectious assays to show for the first time that the small molecule RK-33 has broad-spectrum antiviral action by inhibiting the enzymatic activities of DDX3X. Importantly, we show that RK-33 is efficacious at low micromolar concentrations in limiting infection by human parainfluenza virus type 3 (hPIV-3), respiratory syncytial virus (RSV), dengue virus (DENV), Zika virus (ZIKV) or West Nile virus (WNV)—for all of which, no Food and Drug Administration (FDA)-approved therapeutic is widely available. These findings establish for the first time that RK-33 is a broad-spectrum antiviral agent that blocks DDX3X’s catalytic activities in vitro and limits viral replication in cells.
Collapse
|
34
|
Lin TC. DDX3X Multifunctionally Modulates Tumor Progression and Serves as a Prognostic Indicator to Predict Cancer Outcomes. Int J Mol Sci 2019; 21:ijms21010281. [PMID: 31906196 PMCID: PMC6982152 DOI: 10.3390/ijms21010281] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/22/2022] Open
Abstract
DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-Linked (DDX3X), also known as DDX3, is one of the most widely studied and evolutionarily conserved members of the DEAD-box RNA helicase subfamily, and has been reported to participate in several cytosolic steps of mRNA metabolism. DDX3X facilitates the translation of specific targets via its helicase activity and regulates factors of the translation initiation complex. Emerging evidence illustrates the biological activities of DDX3X beyond its originally identified functions. The nonconventional regulatory effects include acting as a signaling adaptor molecule independent of enzymatic RNA remodeling, and DDX3X exhibits abnormal expression in cancers. DDX3X interacts with specific components to perform both oncogenic and tumor-suppressive roles in modulating tumor proliferation, migration, invasion, drug resistance, and cancer stemness in many types of cancers, indicating the need to unravel the associated molecular mechanisms. In this review article, we summarized and integrated current findings relevant to DDX3X in cancer research fields, cytokines and compounds modulating DDX3X's functions, and the released transcriptomic information and cancer patient clinical data from public databases. We found evidence for DDX3X having multiple impacts on cancer progression, and evaluated DDX3X expression levels in a pancancer panel and its associations with patient survival in each cancer-type cohort.
Collapse
Affiliation(s)
- Tsung-Chieh Lin
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
35
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|
36
|
Liao SE, Kandasamy SK, Zhu L, Fukunaga R. DEAD-box RNA helicase Belle posttranscriptionally promotes gene expression in an ATPase activity-dependent manner. RNA (NEW YORK, N.Y.) 2019; 25:825-839. [PMID: 30979781 PMCID: PMC6573787 DOI: 10.1261/rna.070268.118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Drosophila Belle (human ortholog DDX3) is a conserved DEAD-box RNA helicase implicated in regulating gene expression. However, the molecular mechanisms by which Belle/DDX3 regulates gene expression are poorly understood. Here we performed systematic mutational analysis to determine the contributions of conserved motifs within Belle to its in vivo function. We found that Belle RNA-binding and RNA-unwinding activities and intrinsically disordered regions (IDRs) are required for Belle in vivo function. Expression of Belle ATPase mutants that cannot bind, hydrolyze, or release ATP resulted in dominant toxic phenotypes. Mechanistically, we discovered that Belle up-regulates reporter protein level when tethered to reporter mRNA, without corresponding changes at the mRNA level, indicating that Belle promotes translation of mRNA that it binds. Belle ATPase activity and amino-terminal IDR were required for this translational promotion activity. We also found that ectopic ovary expression of dominant Belle ATPase mutants decreases levels of cyclin proteins, including Cyclin B, without corresponding changes in their mRNA levels. Finally, we found that Belle binds endogenous cyclin B mRNA. We propose that Belle promotes translation of specific target mRNAs, including cyclin B mRNA, in an ATPase activity-dependent manner.
Collapse
Affiliation(s)
- Susan E Liao
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Suresh K Kandasamy
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Li Zhu
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
37
|
Long noncoding RNA LINC00673-v4 promotes aggressiveness of lung adenocarcinoma via activating WNT/β-catenin signaling. Proc Natl Acad Sci U S A 2019; 116:14019-14028. [PMID: 31235588 PMCID: PMC6628810 DOI: 10.1073/pnas.1900997116] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study uncovers a long noncoding RNA (lncRNA)-mediated mechanism underlying lung adenocarcinoma (LAD) metastasis. We here report that lncRNA LINC00673-v4 expression is up-regulated in LAD and is associated with disease progression. At the molecular level, LINC00673-v4 acts as a scaffold molecule that promotes the interaction between DDX3 and CK1ε and thus the phosphorylation of dishevelled, which subsequently activates WNT/β-catenin signaling and consequently causes aggressiveness of LAD. Treatment with antisense oligonucleotides against LINC00673-v4 strongly suppresses LAD metastasis in vivo. It is well recognized that metastasis can occur early in the course of lung adenocarcinoma (LAD) development, and yet the molecular mechanisms driving this capability of rapid metastasis remain incompletely understood. Here we reported that a long noncoding RNA, LINC00673, was up-regulated in LAD cells. Of note, we first found that LINC00673-v4 was the most abundant transcript of LINC00673 in LAD cells and its expression was associated with adverse clinical outcome of LAD. In vitro and in vivo experiments demonstrated that LINC00673-v4 enhanced invasiveness, migration, and metastasis of LAD cells. Mechanistically, LINC00673-v4 augmented the interaction between DDX3 and CK1ε and thus the phosphorylation of dishevelled, which subsequently activated WNT/β-catenin signaling and consequently caused aggressiveness of LAD. Antagonizing LINC00673-v4 suppressed LAD metastasis in vivo. Together, our data suggest that LINC00673-v4 is a driver molecule for metastasis via constitutively activating WNT/β-catenin signaling in LAD and may represent a potential therapeutic target against the metastasis of LAD.
Collapse
|
38
|
From the magic bullet to the magic target: exploiting the diverse roles of DDX3X in viral infections and tumorigenesis. Future Med Chem 2019; 11:1357-1381. [PMID: 30816053 DOI: 10.4155/fmc-2018-0451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
DDX3X is an ATPase/RNA helicase of the DEAD-box family and one of the most multifaceted helicases known up to date, acting in RNA metabolism, cell cycle control, apoptosis, stress response and innate immunity. Depending on the virus or the viral cycle stage, DDX3X can act either in a proviral fashion or as an antiviral factor. Similarly, in different cancer types, it can act either as an oncogene or a tumor-suppressor gene. Accumulating evidence indicated that DDX3X can be considered a promising target for anticancer and antiviral chemotherapy, but also that its exploitation requires a deeper understanding of the molecular mechanisms underlying its dual role in cancer and viral infections. In this Review, we will summarize the known roles of DDX3X in different tumor types and viral infections, and the different inhibitors available, illustrating the possible advantages and potential caveats of their use as anticancer and antiviral drugs.
Collapse
|
39
|
Kerr CL, Bol GM, Vesuna F, Raman V. Targeting RNA helicase DDX3 in stem cell maintenance and teratoma formation. Genes Cancer 2019; 10:11-20. [PMID: 30899416 PMCID: PMC6420792 DOI: 10.18632/genesandcancer.187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DDX3 is an RNA helicase that has antiapoptotic properties, and promotes proliferation and transformation. Besides the role of DDX3 in transformed cells, there is evidence to indicate that DDX3 expression is at its highest levels during early embryonic development and is also expressed in germ cells of adults. Even though there is a distinct pattern of DDX3 expression during embryonic development and in adults, very little is known regarding its role in embryonic stem cells and pluripotency. In this work, we examined the relationship between DDX3 and human embryonic stem cells and its differentiated lineages. DDX3 expression was analyzed by immunohistochemistry in human embryonic stem cells and embryonal carcinoma cells. From the data obtained, it was evident that DDX3 was overexpressed in undifferentiated stem cells compared to differentiated cells. Moreover, when DDX3 expression was abrogated in multiple stem cells, proliferation was decreased, but differentiation was facilitated. Importantly, this resulted in reduced potency to induce teratoma formation. Taken together, these findings indicate a distinct role for DDX3 in stem cell maintenance.
Collapse
Affiliation(s)
- Candace L Kerr
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guus M Bol
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, University Medical Center Utrecht Cancer Center, GA Utrecht, The Netherlands
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, University Medical Center Utrecht Cancer Center, GA Utrecht, The Netherlands
| | - Venu Raman
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, University Medical Center Utrecht Cancer Center, GA Utrecht, The Netherlands
| |
Collapse
|
40
|
DDX3 Participates in Translational Control of Inflammation Induced by Infections and Injuries. Mol Cell Biol 2018; 39:MCB.00285-18. [PMID: 30373933 DOI: 10.1128/mcb.00285-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/10/2018] [Indexed: 12/28/2022] Open
Abstract
Recent studies have suggested that DDX3 functions in antiviral innate immunity, but the underlying mechanism remains elusive. We previously identified target mRNAs whose translation is controlled by DDX3. Pathway enrichment analysis of these targets indicated that DDX3 is involved in various infections and inflammation. Using immunoblotting, we confirmed that PACT, STAT1, GNB2, Rac1, TAK1, and p38 mitogen-activated protein kinase (MAPK) proteins are downregulated by DDX3 knockdown in human monocytic THP-1 cells and epithelial HeLa cells. Polysome profiling revealed that DDX3 knockdown reduces the translational efficiency of target mRNAs. We further demonstrated DDX3-mediated translational control of target mRNAs by luciferase reporter assays. To examine the effects of DDX3 knockdown on macrophage migration and phagocytosis, we performed in vitro cell migration assay and flow cytometry analysis of the uptake of green fluorescent protein-expressing Escherichia coli in THP-1 cells. The DDX3 knockdown cells exhibited impaired macrophage migration and phagocytosis. Moreover, we used a human cytokine antibody array to identify the cytokines affected by DDX3 knockdown. Several chemokines were decreased considerably in DDX3 knockdown THP-1 cells after lipopolysaccharide or poly(I·C) stimulation. Lastly, we demonstrated that DDX3 is crucial for the recruitment of phagocytes to the site of inflammation in transgenic zebrafish.
Collapse
|
41
|
Targeting DDX3 in Medulloblastoma Using the Small Molecule Inhibitor RK-33. Transl Oncol 2018; 12:96-105. [PMID: 30292066 PMCID: PMC6171097 DOI: 10.1016/j.tranon.2018.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 02/08/2023] Open
Abstract
Medulloblastoma is the most common malignant tumor that arises from the cerebellum of the central nervous system. Clinically, medulloblastomas are treated by surgery, radiation, and chemotherapy, all of which result in toxicity and morbidity. Recent reports have identified that DDX3, a member of the RNA helicase family, is mutated in medulloblastoma. In this study, we demonstrate the role of DDX3 in driving medulloblastoma. With the use of a small molecule inhibitor of DDX3, RK-33, we could inhibit growth and promote cell death in two medulloblastoma cell lines, DAOY and UW228, with IC50 values of 2.5 μM and 3.5 μM, respectively. Treatment of DAOY and UW228 cells with RK-33 caused a G1 arrest, resulted in reduced TCF reporter activity, and reduced mRNA expression levels of downstream target genes of the WNT pathway, such as Axin2, CCND1, MYC, and Survivin. In addition, treatment of DAOY and UW228 cells with a combination of RK-33 and radiation exhibited a synergistic effect. Importantly, the combination of RK-33 and 5 Gy radiation caused tumor regression in a mouse xenograft model of medulloblastoma. Using immunohistochemistry, we observed DDX3 expression in both pediatric (55%) and adult (66%) medulloblastoma patients. Based on these results, we conclude that RK-33 is a promising radiosensitizing agent that inhibits DDX3 activity and down-regulates WNT/β-catenin signaling and could be used as a frontline therapeutic strategy for DDX3-expressing medulloblastomas in combination with radiation.
Collapse
|
42
|
You S, Wang F, Hu Q, Li P, Zhang C, Yu Y, Zhang Y, Li Q, Bao Q, Liu P, Li J. Abnormal expression of YEATS4 associates with poor prognosis and promotes cell proliferation of hepatic carcinoma cell by regulation the TCEA1/DDX3 axis. Am J Cancer Res 2018; 8:2076-2087. [PMID: 30416857 PMCID: PMC6220140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023] Open
Abstract
YEATS domain containing 4 (YEATS4) is usually amplified and functions as an oncogene in several malignancies, such as colorectum, ovarian, breast and lung. However, the biological role of YEATS4 in hepatocellular carcinoma (HCC) has not yet been discussed. Herein, we found that YEATS4 was significantly upregulated in HCC compared to para-cancerous tissues, and was associated with poor prognosis, large tumor size, poor differentiation and distant metastasis. In addition, YEATS4 promoted HCC cell proliferation and colony formation by binding to and increasing the transcriptional activity of the TCEA1 promoter. Concurrently, upregulation of TCEA1 increased the stability of the DDX3 protein, a member of the DEAD box RNA helicase family, and augmented the proliferative and colony forming ability of HCC cells. Furthermore, YEATS4 accelerated tumor growth in vivo in a xenograft HCC model. Taken together, our study provides evidence for the first time on the potential role of the YEATS4/TCEA1/DDX3 axis in regulating HCC progression, and presents YEATS4 as a promising therapeutic target and prognosis maker for HCC.
Collapse
Affiliation(s)
- Song You
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
- Graduate College of Fujian Medical UniversityFuzhou, Fujian, China
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen UniversityXiamen, Fujian, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Qing Hu
- Medicine Clinical Laboratory of Xiamen Xianyue HospitalXiamen, Fujian, China
| | - Pengtao Li
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen UniversityXiamen, Fujian, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Changmao Zhang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
- Graduate College of Fujian Medical UniversityFuzhou, Fujian, China
| | - Yaqi Yu
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Yi Zhang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Qiu Li
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Qing Bao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Pingguo Liu
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen UniversityXiamen, Fujian, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| | - Jie Li
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen UniversityXiamen, Fujian, China
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma (Xiamen University Affiliated Zhongshan Hospital)Xiamen, Fujian, China
| |
Collapse
|
43
|
Cannizzaro E, Bannister AJ, Han N, Alendar A, Kouzarides T. DDX3X RNA helicase affects breast cancer cell cycle progression by regulating expression of KLF4. FEBS Lett 2018; 592:2308-2322. [PMID: 29782654 PMCID: PMC6100109 DOI: 10.1002/1873-3468.13106] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
DDX3X is a multifunctional RNA helicase with documented roles in different cancer types. Here, we demonstrate that DDX3X plays an oncogenic role in breast cancer cells by modulating the cell cycle. Depletion of DDX3X in MCF7 cells slows cell proliferation by inducing a G1 phase arrest. Notably, DDX3X inhibits expression of Kruppel-like factor 4 (KLF4), a transcription factor and cell cycle repressor. Moreover, DDX3X directly interacts with KLF4 mRNA and regulates its splicing. We show that DDX3X-mediated repression of KLF4 promotes expression of S-phase inducing genes in MCF7 breast cancer cells. These findings provide evidence for a novel function of DDX3X in regulating expression and downstream functions of KLF4, a master negative regulator of the cell cycle.
Collapse
Affiliation(s)
- Ester Cannizzaro
- Department of Pathology and Gurdon InstituteUniversity of CambridgeCambridgeUK
| | | | - Namshik Han
- Department of Pathology and Gurdon InstituteUniversity of CambridgeCambridgeUK
| | - Andrej Alendar
- Department of Pathology and Gurdon InstituteUniversity of CambridgeCambridgeUK
| | - Tony Kouzarides
- Department of Pathology and Gurdon InstituteUniversity of CambridgeCambridgeUK
| |
Collapse
|
44
|
Differential miRNA expression profiling reveals miR-205-3p to be a potential radiosensitizer for low- dose ionizing radiation in DLD-1 cells. Oncotarget 2018; 9:26387-26405. [PMID: 29899866 PMCID: PMC5995186 DOI: 10.18632/oncotarget.25405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 04/28/2018] [Indexed: 12/12/2022] Open
Abstract
Enhanced radiosensitivity at low doses of ionizing radiation (IR) (0.2 to 0.6 Gy) has been reported in several cell lines. This phenomenon, known as low doses hyper-radiosensitivity (LDHRS), appears as an opportunity to decrease toxicity of radiotherapy and to enhance the effects of chemotherapy. However, the effect of low single doses IR on cell death is subtle and the mechanism underlying LDHRS has not been clearly explained, limiting the utility of LDHRS for clinical applications. To understand the mechanisms responsible for cell death induced by low-dose IR, LDHRS was evaluated in DLD-1 human colorectal cancer cells and the expression of 80 microRNAs (miRNAs) was assessed by qPCR array. Our results show that DLD-1 cells display an early DNA damage response and apoptotic cell death when exposed to 0.6 Gy. miRNA expression profiling identified 3 over-expressed (miR-205-3p, miR-1 and miR-133b) and 2 down-regulated miRNAs (miR-122-5p, and miR-134-5p) upon exposure to 0.6 Gy. This miRNA profile differed from the one in cells exposed to high-dose IR (12 Gy), supporting a distinct low-dose radiation-induced cell death mechanism. Expression of a mimetic miR-205-3p, the most overexpressed miRNA in cells exposed to 0.6 Gy, induced apoptotic cell death and, more importantly, increased LDHRS in DLD-1 cells. Thus, we propose miR-205-3p as a potential radiosensitizer to low-dose IR.
Collapse
|
45
|
Meier-Stephenson V, Mrozowich T, Pham M, Patel TR. DEAD-box helicases: the Yin and Yang roles in viral infections. Biotechnol Genet Eng Rev 2018; 34:3-32. [PMID: 29742983 DOI: 10.1080/02648725.2018.1467146] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viruses hijack the host cell machinery and recruit host proteins to aid their replication. Several host proteins also play vital roles in inhibiting viral replication. Emerging class of host proteins central to both of these processes are the DEAD-box helicases: a highly conserved family of ATP-dependent RNA helicases, bearing a common D-E-A-D (Asp-Glu-Ala-Asp) motif. They play key roles in numerous cellular processes, including transcription, splicing, miRNA biogenesis and translation. Though their sequences are highly conserved, these helicases have quite diverse roles in the cell. Interestingly, often these helicases display contradictory actions in terms of the support and/or clearance of invading viruses. Increasing evidence highlights the importance of these enzymes, however, little is known about the structural basis of viral RNA recognition by the members of the DEAD-box family. This review summarizes the current knowledge in the field for selected DEAD-box helicases and highlights their diverse actions upon viral invasion of the host cell. We anticipate that through a better understanding of how these helicases are being utilized by viral RNAs and proteins to aid viral replication, it will be possible to address the urgent need to develop novel therapeutic approaches to combat viral infections.
Collapse
Affiliation(s)
- Vanessa Meier-Stephenson
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Tyler Mrozowich
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Mimi Pham
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada
| | - Trushar R Patel
- a Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute , University of Lethbridge , Lethbridge , Canada.,b Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine , University of Calgary , Calgary , Canada.,c Faculty of Medicine & Dentistry, DiscoveryLab , University of Alberta , Edmonton , Canada
| |
Collapse
|
46
|
Heerma van Voss MR, Kammers K, Vesuna F, Brilliant J, Bergman Y, Tantravedi S, Wu X, Cole RN, Holland A, van Diest PJ, Raman V. Global Effects of DDX3 Inhibition on Cell Cycle Regulation Identified by a Combined Phosphoproteomics and Single Cell Tracking Approach. Transl Oncol 2018; 11:755-763. [PMID: 29684792 PMCID: PMC6050443 DOI: 10.1016/j.tranon.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/17/2023] Open
Abstract
DDX3 is an RNA helicase with oncogenic properties. The small molecule inhibitor RK-33 is designed to fit into the ATP binding cleft of DDX3 and hereby block its activity. RK-33 has shown potent activity in preclinical cancer models. However, the mechanism behind the antineoplastic activity of RK-33 remains largely unknown. In this study we used a dual phosphoproteomic and single cell tracking approach to evaluate the effect of RK-33 on cancer cells. MDA-MB-435 cells were treated for 24 hours with RK-33 or vehicle control. Changes in phosphopeptide abundance were analyzed with quantitative mass spectrometry using isobaric mass tags (Tandem Mass Tags). At the proteome level we mainly observed changes in mitochondrial translation, cell division pathways and proteins related to cell cycle progression. Analysis of the phosphoproteome indicated decreased CDK1 activity after RK-33 treatment. To further evaluate the effect of DDX3 inhibition on cell cycle progression over time, we performed timelapse microscopy of Fluorescent Ubiquitin Cell Cycle Indicators labeled cells after RK-33 or siDDX3 exposure. Single cell tracking indicated that DDX3 inhibition resulted in a global delay in cell cycle progression in interphase and mitosis. In addition, we observed an increase in endoreduplication. Overall, we conclude that DDX3 inhibition affects cells in all phases and causes a global cell cycle progression delay.
Collapse
Affiliation(s)
- Marise R Heerma van Voss
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kai Kammers
- Division of Biostatistics and Bioinformatics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Farhad Vesuna
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Justin Brilliant
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yehudit Bergman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saritha Tantravedi
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xinyan Wu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Core, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Andrew Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Paul J van Diest
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Venu Raman
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
47
|
Wang X, Wang R, Luo M, Li C, Wang HX, Huan CC, Qu YR, Liao Y, Mao X. (DEAD)-box RNA helicase 3 modulates NF-κB signal pathway by controlling the phosphorylation of PP2A-C subunit. Oncotarget 2018; 8:33197-33213. [PMID: 28402257 PMCID: PMC5464861 DOI: 10.18632/oncotarget.16593] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/17/2017] [Indexed: 01/29/2023] Open
Abstract
Asp-Glu-Ala-Asp (DEAD)-box RNA helicase 3 (DDX3), an ATP-dependent RNA helicase, is associated with RNA splicing, mRNA export, transcription, translation, and RNA decay. Recent studies revealed that DDX3 participates in innate immune response during virus infection by interacting with TBK1 and regulating the production of IFN-β. In our studies, we demonstrated that DDX3 regulated NF-κB signal pathway. We found that DDX3 knockdown reduced the phosphorylation of p65 and IKK-β and ultimately attenuated the production of inflammatory cytokines induced by poly(I:C) or TNF-α stimulation. The regulatory effect of DDX3 on NF-κB signal pathway was not affected by the loss of its ATPase or helicase activity. We further identified PP2A C subunit (PP2A-C) as an interaction partner of DDX3 by co-immunoprecipitation and mass spectrum analysis. We confirmed that DDX3 formed the complex with PP2A-C/IKK-β and regulated the interaction between IKK-β and PP2A-C. Furthermore, we demonstrated that DDX3 modulated the activity of PP2A by controlling the phosphorylation of PP2A-C, which might enable PP2A-C to regulate NF-κB signal pathway by dephosphorylating IKK-β. All these findings suggested DDX3 plays multiple roles in modulating innate immune system.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Rui Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Miao Luo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Chen Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Hua-Xia Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Chang-Chao Huan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Yu-Rong Qu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiang Mao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China.,Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| |
Collapse
|
48
|
Tantravedi S, Vesuna F, Winnard PT, Van Voss MRH, Van Diest PJ, Raman V. Role of DDX3 in the pathogenesis of inflammatory bowel disease. Oncotarget 2017; 8:115280-115289. [PMID: 29383159 PMCID: PMC5777771 DOI: 10.18632/oncotarget.23323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/26/2017] [Indexed: 12/14/2022] Open
Abstract
When crypt stem cells of the gastrointestinal tract become injured, the result is increased synthesis of pro-inflammatory cytokines and matrix metalloproteinases by their progeny – the colonic epithelium. Chronic inflammation of the gastrointestinal tract is a characteristic of inflammatory bowel disease, which includes Crohn’s Disease and Ulcerative Colitis. In our ongoing investigation to decipher the characteristic functions of a RNA helicase gene, DDX3, we identified high DDX3 expression by immunohistochemistry of colon biopsy samples, which included chronic/mild Morbus Crohn, active Morbus Crohn, Chronic/mild Colitis Ulcerosa and active Colitis Ulcerosa in epithelium and stromal compartments. We used a small molecule inhibitor of DDX3, RK-33, on two human colonic epithelial cell lines, HCEC1CT and HCEC2CT and found that RK-33 was able to decrease expression of MMP-1, MMP-2, MMP-3, and MMP-10. Moreover, forced differentiation of a human colonic cancer cell line, HT29, resulted in decreased DDX3 levels, indicating that DDX3 contributes to the modulation of colonic epithelium differentiation. In conclusion, our results revealed novel functions of DDX3 in inflammatory bowel disease and indicate a potential for using RK-33 as a systemic therapy to promote not only differentiation of transformed colonic epithelium but also to reduce MMP expression and thus elicit a decreased inflammatory response.
Collapse
Affiliation(s)
- Saritha Tantravedi
- Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Farhad Vesuna
- Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Paul T Winnard
- Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Marise R Heerma Van Voss
- Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J Van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Venu Raman
- Department of Radiology and Radiological Science, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.,Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Wu DW, Lin PL, Cheng YW, Huang CC, Wang L, Lee H. DDX3 enhances oncogenic KRAS‑induced tumor invasion in colorectal cancer via the β‑catenin/ZEB1 axis. Oncotarget 2017; 7:22687-99. [PMID: 27007150 PMCID: PMC5008392 DOI: 10.18632/oncotarget.8143] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/21/2016] [Indexed: 12/22/2022] Open
Abstract
DDX3 plays a dual role in colorectal cancer; however, the role and underlying mechanism of DDX3 in colorectal tumorigenesis remains unclear. Here, we provide evidence that DDX3 enhances oncogenic KRAS transcription via an increase in SP1 binding to its promoter. Accelerating oncogenic KRAS expression by DDX3 promotes the invasion capability via the ERK/PTEN/AKT/β-catenin cascade. Moreover, the β-catenin/ZEB1 axis is responsible for DDX3-induced cell invasiveness and xenograft lung tumor nodule formation. The xenograft lung tumor nodules induced by DDX3-overexpressing T84 stable clone were nearly suppressed by the inhibitor of AKT (perifosine) or β-catenin (XAV939). Among patients, high KRAS, positive nuclear β-catenin expression and high ZEB1 were more commonly occurred in high-DDX3 tumors than in low-DDX3 tumors. High-DDX3, high-KRAS, positive nuclear β-catenin tumors, and high-ZEB1 exhibited worse overall survival (OS) and relapse free survival (RFS) than their counterparts. In conclusion, DDX3 may play an oncogenic role to promote tumor growth and invasion in colon cancer cells via the β-catenin/ZEB1 axis due to increasing KRAS transcription. We therefore suggest that AKT or β-catenin may potentially act as a therapeutic target to improve tumor regression and outcomes in colorectal cancer patients who harbored high-DDX3 tumors.
Collapse
Affiliation(s)
- De-Wei Wu
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Po-Lin Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ya-Wen Cheng
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| | - Chi-Chou Huang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Division of Colon and Rectum, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Lee Wang
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
50
|
Wang Z, Shen GH, Xie JM, Li B, Gao QG. Rottlerin upregulates DDX3 expression in hepatocellular carcinoma. Biochem Biophys Res Commun 2017; 495:1503-1509. [PMID: 29203243 DOI: 10.1016/j.bbrc.2017.11.198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023]
Abstract
Rottlerin has been reported to exert its anti-tumor activity in various types of human cancers. However, the underlying molecular mechanism has not been fully elucidated. In the current study, we explored whether rottlerin exhibits its tumor suppressive function in hepatocellular carcinoma cells. Our MTT assay results showed that rottlerin inhibited cell growth in hepatocellular carcinoma cells. Moreover, we found that rottlerin induced cell apoptosis and caused cell cycle arrest at G1 phase. Furthermore, our wound healing assay result demonstrated that rottlerin retarded cell migration in hepatocellular carcinoma cells. Additionally, rottlerin suppressed cell migration and invasion. Notably, we found that rottlerin upregulated DDX3 expression and subsequently downregulated Cyclin D1 expression and increased p21 level. Importantly, down-regulation of DDX3 abrogated the rottlerin-mediated tumor suppressive function, whereas overexpression of DDX3 promoted the anti-tumor activity of rottlerin. Our study suggests that rottlerin exhibits its anti-cancer activity partly due to upregulation of DDX3 in hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Zhong Wang
- Department of General Surgery, The First People's Hospital of Wu Jiang, Suzhou, Jiangsu, 215200, China; Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Gen-Hai Shen
- Department of General Surgery, The First People's Hospital of Wu Jiang, Suzhou, Jiangsu, 215200, China
| | - Jia-Ming Xie
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Bin Li
- Department of General Surgery, The First People's Hospital of Wu Jiang, Suzhou, Jiangsu, 215200, China.
| | - Quan-Gen Gao
- Department of General Surgery, The First People's Hospital of Wu Jiang, Suzhou, Jiangsu, 215200, China.
| |
Collapse
|