1
|
Li Y, Li H, Sun G, Xu S, Tang X, Zhang L, Wan L, Zhang L, Tang M. Integrative analyses of multi-omics data constructing tumor microenvironment and immune-related molecular prognosis model in human colorectal cancer. Heliyon 2024; 10:e32744. [PMID: 38975206 PMCID: PMC11226854 DOI: 10.1016/j.heliyon.2024.e32744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
The increasing prevalence and incidence of colorectal cancer (CRC), particularly in young adults, underscore the imperative to comprehend its fundamental mechanisms, discover novel diagnostic and prognostic markers, and enhance therapeutic strategies. Here, we integrated multi-omics data, including gene expression, somatic mutation data and DNA methylation data, to unravel the intricacies of tumor microenvironment (TME) in CRC and search for novel prognostic markers. By calculating the immune score for each patient from the expression profile, we delineated the differential immune cell fraction, constructed an immune-related multi-omics atlas, and identified molecular characteristics. The entire colorectal dataset (n = 343) was randomly divided into training (n = 249) and testing datasets (n = 94). We screened 144 immune-related genes, 6 mutant genes, and 38 methylation probes associated with overall survival (OS). These makers were then incorporated into a 10-gene prognostic model using Lasso and Cox regression in the training dataset, and the model's performance was evaluated in an independent validation dataset. The model exhibited satisfactory results (average concordance index [C-index] = 0.77), with the average 1-year, 3-year, and 5-year AUCs being 0.79, 0.76, and 0.76 in the training dataset and 0.74, 0.80, and 0.90 in the testing dataset. Furthermore, the prognostic model demonstrated applicability in guiding chemotherapy for CRC patients and exhibited a degree of pan-cancer utility in risk stratification. In conclusion, our integrated analysis of multi-omics data revealed immune-related genetic and epigenetic characteristics of the TME. We propose an integrative prognostic model that can stratify risk and guide chemotherapy for CRC patients. The generalizability of the model in risk stratification across different cancer types was validated in Pan-Cancer cohort.
Collapse
Affiliation(s)
- Yifei Li
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hexin Li
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Gaoyuan Sun
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Siyuan Xu
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xiaokun Tang
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lanxin Zhang
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Li Wan
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Lili Zhang
- Clinical Biobank, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Tang
- Department of Medical Oncology, Institute of Geriatric Medicine, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Mokhtari K, Peymani M, Rashidi M, Hushmandi K, Ghaedi K, Taheriazam A, Hashemi M. Colon cancer transcriptome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 180-181:49-82. [PMID: 37059270 DOI: 10.1016/j.pbiomolbio.2023.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Over the last four decades, methodological innovations have continuously changed transcriptome profiling. It is now feasible to sequence and quantify the transcriptional outputs of individual cells or thousands of samples using RNA sequencing (RNA-seq). These transcriptomes serve as a connection between cellular behaviors and their underlying molecular mechanisms, such as mutations. This relationship, in the context of cancer, provides a chance to unravel tumor complexity and heterogeneity and uncover novel biomarkers or treatment options. Since colon cancer is one of the most frequent malignancies, its prognosis and diagnosis seem to be critical. The transcriptome technology is developing for an earlier and more accurate diagnosis of cancer which can provide better protectivity and prognostic utility to medical teams and patients. A transcriptome is a whole set of expressed coding and non-coding RNAs in an individual or cell population. The cancer transcriptome includes RNA-based changes. The combined genome and transcriptome of a patient may provide a comprehensive picture of their cancer, and this information is beginning to affect treatment decision-making in real-time. A full assessment of the transcriptome of colon (colorectal) cancer has been assessed in this review paper based on risk factors such as age, obesity, gender, alcohol use, race, and also different stages of cancer, as well as non-coding RNAs like circRNAs, miRNAs, lncRNAs, and siRNAs. Similarly, they have been examined independently in the transcriptome study of colon cancer.
Collapse
Affiliation(s)
- Khatere Mokhtari
- Department of Modern Biology, ACECR Institute of Higher Education (Isfahan Branch), Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Identification of the Antigens Recognised by Colorectal Cancer Patients Using Sera from Patients Who Exhibit a Crohn's-like Lymphoid Reaction. Biomolecules 2022; 12:biom12081058. [PMID: 36008952 PMCID: PMC9406176 DOI: 10.3390/biom12081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023] Open
Abstract
A Crohn’s-like lymphoid reaction (CLR) is observed in about 15% of colorectal cancer (CRC) patients and is associated with favourable outcomes. To identify the immune targets recognised by CRC CLR patient sera, we immunoscreened a testes cDNA library with sera from three patients. Immunoscreening of the 18 antigens identified by SEREX with sera from normal donors showed that only the heavy chain of IgG3 (IGHG3) and a novel antigen we named UOB-COL-7, were solely recognised by sera from CRC CLR patients. ELISA showed an elevation in IgG3 levels in patients with CRC (p = 0.01). To extend our studies we analysed the expression of our SEREX-identified antigens using the RNA-sequencing dataset (GSE5206). We found that the transcript levels of multiple IGHG probesets were highly significant (p < 0.001) in their association with clinical features of CRC while above median levels of DAPK1 (p = 0.005) and below median levels of GTF2H5 (p = 0.004) and SH3RF2 (p = 0.02) were associated with improved overall survival. Our findings demonstrate the potential of SEREX-identified CRC CLR antigens to act as biomarkers for CRC and provide a rationale for their further characterization and validation.
Collapse
|
4
|
Chen HM, MacDonald JA. Death-associated protein kinases and intestinal epithelial homeostasis. Anat Rec (Hoboken) 2022; 306:1062-1087. [PMID: 35735750 DOI: 10.1002/ar.25022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 12/15/2022]
Abstract
The family of death-associated protein kinases (DAPKs) and DAPK-related apoptosis-inducing protein kinases (DRAKs) act as molecular switches for a multitude of cellular processes, including apoptotic and autophagic cell death events. This review summarizes the mechanisms for kinase activity regulation and discusses recent molecular investigations of DAPK and DRAK family members in the intestinal epithelium. In general, recent literature convincingly supports the importance of this family of protein kinases in the homeostatic processes that govern the proper function of the intestinal epithelium. Each of the DAPK family of proteins possesses distinct biochemical properties, and we compare similarities in the information available as well as those cases where functional distinctions are apparent. As the prototypical member of the family, DAPK1 is noteworthy for its tumor suppressor function and association with colorectal cancer. In the intestinal epithelium, DAPK2 is associated with programmed cell death, potential tumor-suppressive functions, and a unique influence on granulocyte biology. The impact of the DRAKs in the epithelium is understudied, but recent studies support a role for DRAK1 in inflammation-mediated tumor growth and metastasis. A commentary is provided on the potential importance of DAPK3 in facilitating epithelial restitution and wound healing during the resolution of colitis. An update on efforts to develop selective pharmacologic effectors of individual DAPK members is also supplied.
Collapse
Affiliation(s)
- Huey-Miin Chen
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Motoo I, Nanjo S, Ando T, Yamashita S, Ushijima T, Yasuda I. Methylation silencing of ULK2 via epithelial-mesenchymal transition causes transformation to poorly differentiated gastric cancers. Gastric Cancer 2022; 25:325-335. [PMID: 34554345 DOI: 10.1007/s10120-021-01250-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Diffuse-type gastric cancers (DGC) typically have a poor prognosis related to their invasion and metastasis, in which the epithelial-mesenchymal transition (EMT) is the initiation step. ULK2 plays a role in the autophagy initiation, which might provide a survival advantage in cancer cells. Although knock-down of ULK2 reportedly induces autophagy and EMT in a lung cancer cell line, the mechanism of EMT via the down-regulation of ULK2, as well as its clinical significance, remains yet unclear. The present study, therefore, aims at clarifying this mechanism and its clinical significance in gastric cancers. METHODS We examined ULK2 mRNA expression in gastric cancer tissues and normal gastric tissues of healthy people. The effects of knock-downed ULK2 were examined in two gastric cancer cells, which were investigated in terms of their gene expression changes by the mRNA microarray. RESULTS ULK2 was strongly expressed in intestinal-type cancers but was scarcely expressed in DGC by immunohistochemical staining. Furthermore, we found that ULK2 was methylated in DGC and was unmethylated in corresponding adjacent normal tissues. Then, we validated whether knock-down of ULK2 could induce autophagy, cell migration, and EMT in NUGC3 and MKN45 cells. Using mRNA microarray analysis, we confirmed that knock-down of ULK2 changed expressions of oncogenic genes associated with cell migration and EMT. Autophagy inhibitor suppressed cell migration and EMT induced by knock-down of ULK2 in NUGC3 and MKN45. CONCLUSION Methylation silencing of ULK2 could induce cell migration and EMT by means of autophagy induction, causing transformation to poorly differentiated cancers.
Collapse
Affiliation(s)
- Iori Motoo
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Sohachi Nanjo
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Takayuki Ando
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Satoshi Yamashita
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Ichiro Yasuda
- Department of Gastroenterology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
6
|
You MH, Lee WK, Jin M, Song DE, Cheng SY, Kim TY, Kim WB, Jeon MJ, Kim WG. Death-Associated Protein Kinase 1 Inhibits Progression of Thyroid Cancer by Regulating Stem Cell Markers. Cells 2021; 10:cells10112994. [PMID: 34831219 PMCID: PMC8616132 DOI: 10.3390/cells10112994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
Abstract
The activation of metastatic reprogramming is vital for cancer metastasis, but little is known about its mechanism. This study investigated the potential role of death-associated protein kinase 1 (DAPK1) in thyroid cancer progression. We generated knockdown (KD) DAPK1 using siRNA or shRNA in 8505C and KTC-1 cell lines, which we transiently or stably overexpressed in MDA-T32 and BCPAP cell lines. DAPK1 KD in 8505C and KTC-1 cells significantly increased cell proliferation and colony formation compared with controls. We observed significant inhibition of cancer cell invasion in cells overexpressing DAPK1, but the opposite effect in KD cells. Tumorsphere formation significantly increased after inhibition of DAPK1 expression in 8505C cells and was significantly suppressed in DAPK1-overexpressing MDA-T32 and BCPAP cells. DAPK1 overexpression inhibited mRNA and protein levels of stem markers (OCT4, Sox2, KLF4, and Nanog). Furthermore, the expression of these markers increased after KD of DAPK1 in 8505C cells. Mechanistic studies suggest that DAPK1 may modulate the expression of stem cell markers through the inhibition of β-catenin pathways. These findings were consistent with the public data and our thyroid tissue analysis, which showed higher DAPK1 expression was associated with advanced-stage papillary thyroid cancer with a higher stemness index and lower disease-free survival.
Collapse
Affiliation(s)
- Mi-Hyeon You
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.-H.Y.); (M.J.); (T.Y.K.); (W.B.K.)
| | - Woo Kyung Lee
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (W.K.L.); (S.-y.C.)
| | - Meihua Jin
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.-H.Y.); (M.J.); (T.Y.K.); (W.B.K.)
| | - Dong Eun Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (W.K.L.); (S.-y.C.)
| | - Tae Yong Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.-H.Y.); (M.J.); (T.Y.K.); (W.B.K.)
| | - Won Bae Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.-H.Y.); (M.J.); (T.Y.K.); (W.B.K.)
| | - Min Ji Jeon
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.-H.Y.); (M.J.); (T.Y.K.); (W.B.K.)
- Correspondence: (M.J.J.); (W.G.K.); Tel.: +82-2-3010-1317 (M.J.J.); +82-2-3010-5883 (W.G.K.); Fax: +82-2-3010-1317 (M.J.J.); +82-2-3010-6962 (W.G.K.)
| | - Won Gu Kim
- Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (M.-H.Y.); (M.J.); (T.Y.K.); (W.B.K.)
- Correspondence: (M.J.J.); (W.G.K.); Tel.: +82-2-3010-1317 (M.J.J.); +82-2-3010-5883 (W.G.K.); Fax: +82-2-3010-1317 (M.J.J.); +82-2-3010-6962 (W.G.K.)
| |
Collapse
|
7
|
Hung CS, Wang YC, Guo JW, Yang RN, Lee CL, Shen MH, Huang CC, Huang CJ, Yang JY, Liu CY. Expression pattern of placenta specific 8 and keratin 20 in different types of gastrointestinal cancer. Mol Med Rep 2019; 21:659-666. [PMID: 31974611 PMCID: PMC6947936 DOI: 10.3892/mmr.2019.10871] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the expression of keratin 20 (KRT20) and placenta specific 8 (PLAC8) in gastrointestinal (GI) cancer with various differentiation phenotypes. The present study retrospectively investigated archived formalin-fixed paraffin-embedded tissue samples from 12 patients at different stages of GI cancer [four with gastric cancer, four with pancreatic cancer and four with colorectal cancer (CRC)]. The stages were pre-determined, according to differentiation phenotypes, by a pathologist of the Department of Pathology at Sijhih Cathay General Hospital. KRT20 and PLAC8 expression levels were assessed using immunohistochemistry. The CRC cell lines SW620 and Caco-2 were used to assess interactions between KRT20 and PLAC8 via reverse transcription-quantitative PCR. PLAC8 and KRT20 expression was observed consistently only in the well-differentiated CRC tissue samples. Low KRT20 expression levels were observed in the PLAC8 knockdown SW620 cells. In addition, there was a positive association between PLAC8 and KRT20 expression in the differentiated Caco-2 cells. According to the results of the present study, the differentiation status of GI cancer influenced KRT20 expression, particularly in CRC, which may explain why patients with well-differentiated CRC display better clinical outcomes. Therefore, the prognostic significance of KRT20 and PLAC8 may be particularly crucial for patients with CRC displaying a well-differentiated phenotype.
Collapse
Affiliation(s)
- Chih-Sheng Hung
- Department of Internal Medicine, Division of Gastroenterology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Yen-Chieh Wang
- Department of Surgery, Division of Urology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Jiun-Wen Guo
- Department of Medical Research, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Ruey-Neng Yang
- Department of Internal Medicine, Sijhih Cathay General Hospital, New Taipei 22174, Taiwan, R.O.C
| | - Chia-Long Lee
- Department of Internal Medicine, Division of Gastroenterology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Ming-Hung Shen
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Chi-Cheng Huang
- Department of Surgery, Taipei‑Veterans General Hospital, Taipei 11217, Taiwan, R.O.C
| | - Chi-Jung Huang
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Jhih-Yun Yang
- Department of Mathematics, Taipei Wego Private Senior High School, Taipei 11254, Taiwan, R.O.C
| | - Chih-Yi Liu
- Department of Pathology, Sijhih Cathay General Hospital, New Taipei 22174, Taiwan, R.O.C
| |
Collapse
|
8
|
DAPK1 loss triggers tumor invasion in colorectal tumor cells. Cell Death Dis 2019; 10:895. [PMID: 31772156 PMCID: PMC6879526 DOI: 10.1038/s41419-019-2122-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/03/2019] [Accepted: 11/06/2019] [Indexed: 12/27/2022]
Abstract
Colorectal cancer (CRC) is one of the leading cancer-related causes of death worldwide. Despite the improvement of surgical and chemotherapeutic treatments, as of yet, the disease has not been overcome due to metastasis to distant organs. Hence, it is of great relevance to understand the mechanisms responsible for metastasis initiation and progression and to identify novel metastatic markers for a higher chance of preventing the metastatic disease. The Death-associated protein kinase 1 (DAPK1), recently, has been shown to be a potential candidate for regulating metastasis in CRC. Hence, the aim of the study was to investigate the impact of DAPK1 protein on CRC aggressiveness. Using CRISPR/Cas9 technology, we generated DAPK1-deficient HCT116 monoclonal cell lines and characterized their knockout phenotype in vitro and in vivo. We show that loss of DAPK1 implemented changes in growth pattern and enhanced tumor budding in vivo in the chorioallantoic membrane (CAM) model. Further, we observed more tumor cell dissemination into chicken embryo organs and increased invasion capacity using rat brain 3D in vitro model. The novel identified DAPK1-loss gene expression signature showed a stroma typical pattern and was associated with a gained ability for remodeling the extracellular matrix. Finally, we suggest the DAPK1-ERK1 signaling axis being involved in metastatic progression of CRC. Our results highlight DAPK1 as an anti-metastatic player in CRC and suggest DAPK1 as a potential predictive biomarker for this cancer type.
Collapse
|
9
|
Regulation of the Expression of DAPK1 by SUMO Pathway. Biomolecules 2019; 9:biom9040151. [PMID: 30999631 PMCID: PMC6523460 DOI: 10.3390/biom9040151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/07/2019] [Accepted: 04/15/2019] [Indexed: 01/11/2023] Open
Abstract
Death Associated Protein Kinase 1 (DAPK1) is an important signaling kinase mediating the biological effect of multiple natural biomolecules such as IFN-γ, TNF-α, curcumin, etc. DAPK1 is degraded through both ubiquitin-proteasomal and lysosomal degradation pathways. To investigate the crosstalk between these two DAPK1 degradation pathways, we carried out a screen using a set of ubiquitin E2 siRNAs at the presence of Tuberous Sclerous 2 (TSC2) and identified that the small ubiquitin-like molecule (SUMO) pathway is able to regulate the protein levels of DAPK1. Inhibition of the SUMO pathway enhanced DAPK1 protein levels and the minimum domain of DAPK1 protein required for this regulation is the kinase domain, suggesting that the SUMO pathway regulates DAPK1 protein levels independent of TSC2. Suppression of the SUMO pathway did not enhance DAPK1 protein stability. In addition, mutation of the potential SUMO conjugation sites on DAPK1 kinase domain did not alter its protein stability or response to SUMO pathway inhibition. These data suggested that the SUMO pathway does not regulate DAPK1 protein degradation. The exact molecular mechanism underlying this regulation is yet to be discovered.
Collapse
|
10
|
Wu JS, Li ZF, Wang HF, Yu XH, Pang X, Wu JB, Wang SS, Zhang M, Yang X, Cao MX, Tang YJ, Liang XH, Zheng M, Tang YL. Cathepsin B defines leader cells during the collective invasion of salivary adenoid cystic carcinoma. Int J Oncol 2019; 54:1233-1244. [PMID: 30968153 PMCID: PMC6411368 DOI: 10.3892/ijo.2019.4722] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/11/2019] [Indexed: 02/05/2023] Open
Abstract
Cathepsin B (CTSB) has been reported to be involved in cancer metastasis by altering extracellular matrix (ECM) remodeling and facilitating invasion. However, the contribution of CTSB to collective cell invasion in salivary adenoid cystic carcinoma (SACC) and the underlying mechanisms remain unclear. The present study demonstrated that collective cell invasion is commonly observed in SACC without a complete epithelial-mesenchymal transition signature. CTSB was found to be overexpressed in the invasive front of SACC compared to the tumor center, and was associated with a poor prognosis of patients with SACC. Subsequently, a 3D spheroid invasion assay was established in order to recapitulate the collective cell invasion of SACC and the results revealed that CTSB was only expressed in leader cells. The knockdown of CTSB by siRNA inhibited the migration and invasion of SACC-83 cells and impaired the formation of leader cells. CTSB knockdown also disrupted cytoskeletal organization, altered cell morphology and inhibited ECM remodeling by downregulating matrix metalloproteinase-9, focal adhesion kinase and Rho/ROCK function. Therefore, the present study provides evidence that CTSB may define leader cells in SACC and is required for collective cell invasion as a potential key regulator of ECM remodeling.
Collapse
Affiliation(s)
- Jia-Shun Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Zhu-Feng Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Hao-Fan Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Xiang-Hua Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Xin Pang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Sha-Sha Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Xiao Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Ming-Xin Cao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei 430068, P.R. China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| | - Min Zheng
- Department of Stomatology, Zhoushan Hospital, Wenzhou Medical University, Zhoushan, Zhejiang 316021, P.R. China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
11
|
Downregulation of DAPK1 promotes the stemness of cancer stem cells and EMT process by activating ZEB1 in colorectal cancer. J Mol Med (Berl) 2018; 97:89-102. [DOI: 10.1007/s00109-018-1716-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 08/25/2018] [Accepted: 11/05/2018] [Indexed: 12/22/2022]
|
12
|
Huang Y, Lin M, Chen X, Huang C, Zhang X, Chen L, Wu K, Chen Y, Zhu Y, Lin Y. Evaluation of the prognostic and physiological functions of death associated protein kinase 1 in breast cancer. Oncol Lett 2018; 15:8261-8268. [PMID: 29805560 PMCID: PMC5958705 DOI: 10.3892/ol.2018.8439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Death associated protein kinase 1 (DAPK1) is a notable serine/threonine kinase involved in the regulation of multiple cellular pathways, including apoptosis and autophagy. Although DAPK1 is usually considered to be a tumor suppressor, it was previously reported to promote the viability of p53 mutant cancer cell lines and possess physiological oncogenic functions in breast cancer. However, the ability of endogenous DAPK1 to suppress breast cancer cell mobility has not been assessed. In the present study, the prognostic function of DAPK1 in a Chinese patient cohort was evaluated, and no significant association was observed between DAPK1 expression and patient survival or lymph node metastasis. In order to investigate the physiological function of endogenous DAPK1, stable inducible DAPK1 knockdown MCF7 and MDA-MB-231 cell lines were established. Consistent with previous studies, endogenous DAPK1 only regulated cell viability in p53 mutant MDA-MB-231 cells. However, knockdown of DAPK1 did not significantly affect cell motility of either MCF7 or MDA-MB-231 cells. Altogether, these results further explored the function of endogenous DAPK1 in breast cancer and may shed light in understanding the molecular signaling pathways regulating the physiological function of DAPK1.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Meizhen Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Chaoqun Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Xiuli Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Yupeng Chen
- Department of Pathology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350000, P.R. China
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350117, P.R. China
| |
Collapse
|