1
|
Twum Y, Marshall K, Gao W. Caffeic acid phenethyl ester surmounts acquired resistance of AZD9291 in non-small cell lung cancer cells. Biofactors 2023; 49:1143-1157. [PMID: 37555475 DOI: 10.1002/biof.1983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/19/2023] [Indexed: 08/10/2023]
Abstract
Epithelial growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are the first-line therapy for EGFR mutated non-small cell lung cancer (NSCLC); however, resistance rapidly develops. The objective of this study was therefore to establish and characterize a gefitinib resistant NSCLC line (HCC827GR) and evaluate the therapeutic effects of natural products in combination with third-generation EGFR-TKI, AZD9291. The IC50 of gefitinib and AZD9291 in HCC827GR were significantly higher than those of HCC827 (p < 0.05). Furthermore, anchorage-independent colony assay indicated that HCC827GR cells were more aggressive than their predecessors. This was reflected by the gene/protein expression changes observed in HCC827GR versus HCC827 profiled by cancer drug resistance real-time polymerase chain reaction (RT-PCR) array and Western blot. Three natural products were screened and caffeic acid phenethyl ester (CAPE) exhibited the most significant combinative cytotoxic effect with AZD9291. Specifically, flow cytometry revealed that AZD9291 + CAPE considerably increased the fraction of cell in pre-G1 of the cell cycle and caspase-Glo3/7 assay showed a dramatic increase in apoptosis when compared to AZD9291 alone. Furthermore, Western blot showed significant downregulation of p-EGFR/p-AKT in HCC827GR cells treated with AZD9291 + CAPE as compared to AZD9291. Moreover, it is evident that AZD9291 + CAPE specifically resulted in a marked reduction in the protein expressions of the cell-proliferation-related genes p21, cyclin D1, and survivin. Finally, refined RT-PCR/Western blot data indicated that AZD9291 + CAPE may at least partially exert its synergistic effects via the PLK2 pathway. Together, these results suggest that CAPE is a clinically relevant compound to aid AZD9291 in treating EGFR-TKI resistant cells through modulating critical genes/proteins involved in cancer resistance/therapy.
Collapse
Affiliation(s)
- Yaw Twum
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, West Virginia, USA
| | - Kent Marshall
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, West Virginia, USA
| | - Weimin Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
2
|
Wang Y, Lei J, Zhang S, Wang X, Jin J, Liu Y, Gan M, Yuan Y, Sun L, Li X, Han T, Wang JB. 4EBP1 senses extracellular glucose deprivation and initiates cell death signaling in lung cancer. Cell Death Dis 2022; 13:1075. [PMID: 36575176 PMCID: PMC9794714 DOI: 10.1038/s41419-022-05466-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/28/2022]
Abstract
Nutrient-limiting conditions are common during cancer development. The coordination of cellular glucose levels and cell survival is a fundamental question in cell biology and has not been completely understood. 4EBP1 is known as a translational repressor to regulate cell proliferation and survival by controlling translation initiation, however, whether 4EBP1 could participate in tumor survival by other mechanism except for translational repression function, especially under glucose starvation conditions remains unknown. Here, we found that protein levels of 4EBP1 was up-regulated in the central region of the tumor which always suffered nutrient deprivation compared with the peripheral region. We further discovered that 4EBP1 was dephosphorylated by PTPMT1 under glucose starvation conditions, which prevented 4EBP1 from being targeted for ubiquitin-mediated proteasomal degradation by HERC5. After that, 4EBP1 translocated to cytoplasm and interacted with STAT3 by competing with JAK and ERK, leading to the inactivation of STAT3 in the cytoplasm, resulting in apoptosis under glucose withdrawal conditions. Moreover, 4EBP1 knockdown increased the tumor volume and weight in xenograft models by inhibiting apoptosis in the central region of tumor. These findings highlight a novel mechanism for 4EBP1 as a new cellular glucose sensor in regulating cancer cell death under glucose deprivation conditions, which was different from its classical function as a translational repressor.
Collapse
Affiliation(s)
- Yanan Wang
- grid.412604.50000 0004 1758 4073Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006 Jiangxi China ,Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang City, 330052 Jiangxi China ,Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang City, 330006 Jiangxi China
| | - Jiapeng Lei
- School of Basic Medical Sciences, Nanchang Medical College, Nanchang City, 330006 Jiangxi China
| | - Song Zhang
- grid.412465.0Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, 310009 Zhejiang China
| | - Xiaomei Wang
- grid.415912.a0000 0004 4903 149XDepartment of Pharmacy, Liaocheng People’s Hospital, Liaocheng City, 252000 Shandong China
| | - Jiangbo Jin
- grid.260463.50000 0001 2182 8825Department of Thoracic Surgery, The First Affifiliated Hospital of Nanchang University, Nanchang City, 330006 Jiangxi China
| | - Yufeng Liu
- grid.260463.50000 0001 2182 8825School of Basic Medical Sciences, Nanchang University, Nanchang City, 330031 Jiangxi China
| | - Mingxi Gan
- grid.260463.50000 0001 2182 8825School of Basic Medical Sciences, Nanchang University, Nanchang City, 330031 Jiangxi China
| | - Yi Yuan
- grid.260463.50000 0001 2182 8825Huankui Academy, Nanchang University, Nanchang City, 330031 Jiangxi China
| | - Longhua Sun
- grid.412604.50000 0004 1758 4073Departments of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006 Jiangxi China
| | - Xiaolei Li
- grid.412604.50000 0004 1758 4073Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006 Jiangxi China
| | - Tianyu Han
- grid.412604.50000 0004 1758 4073Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang City, 330006 Jiangxi China ,Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang City, 330052 Jiangxi China ,Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang City, 330006 Jiangxi China
| | - Jian-Bin Wang
- grid.260463.50000 0001 2182 8825Department of Thoracic Surgery, The First Affifiliated Hospital of Nanchang University, Nanchang City, 330006 Jiangxi China ,grid.260463.50000 0001 2182 8825School of Basic Medical Sciences, Nanchang University, Nanchang City, 330031 Jiangxi China
| |
Collapse
|
3
|
Liu Z, Shah N, Marshall KL, Sprowls SA, Saralkar P, Mohammad A, Blethen KE, Arsiwala TA, Fladeland R, Lockman PR, Gao W. Overcoming the acquired resistance to gefitinib in lung cancer brain metastasis in vitro and in vivo. Arch Toxicol 2021; 95:3575-3587. [PMID: 34455456 PMCID: PMC9511176 DOI: 10.1007/s00204-021-03147-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 10/24/2022]
Abstract
In our previous work, PC-9-Br, a PC-9 brain seeking line established via a preclinical animal model of lung cancer brain metastasis (LCBM), exhibited not only resistance to epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) gefitinib in vitro, but also chemotherapy regimens of cisplatin plus etoposide in vivo. Using this cell line, we investigated novel potential targeted therapeutics for treating LCBM in vitro and in vivo to combat drug resistance. Significant increases in mRNA and protein expression levels of Bcl-2 were found in PC-9-Br compared with parental PC-9 (PC-9-P), but no significant changes of Bcl-XL were observed. A remarkable synergistic effect between EGFR-TKI gefitinib and Bcl-2 inhibitors ABT-263 (0.17 ± 0.010 µM at 48 h and 0.02 ± 0.004 µM at 72 h), or ABT-199 (0.22 ± 0.008 µM at 48 h and 0.02 ± 0.001 µM at 72 h) to overcome acquired resistance to gefitinib (> 0.5 µM at 48 h and 0.10 ± 0.007 µM at 72 h) in PC-9-Br was observed in MTT assays. AZD9291 was also shown to overcome acquired resistance to gefitinib in PC-9-Br in MTT assays (0.23 ± 0.031 µM at 48 h and 0.03 ± 0.008 µM at 72 h). Western blot showed significantly decreased phospho-Erk1/2 and increased cleaved-caspase-3 expressions were potential synergistic mechanisms for gefitinib + ABT263/ABT199 in PC-9-Br. Significantly decreased protein expressions of phospho-EGFR, phospho-Akt, p21, and survivin were specific synergistic mechanism for gefitinib + ABT199 in PC-9-Br. In vivo studies demonstrated afatinib (30 mg/kg) and AZD9291 (25 mg/kg) could significantly reduce the LCBM in vivo and increase survival percentages of treated mice compared with mice treated with vehicle and gefitinib (6.25 mg/kg). In conclusion, our study demonstrated gefitinib + ABT263/ABT199, afatinib, and AZD9291 have clinical potential to treat LCBM.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Neal Shah
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
- School of Medicine, West Virginia University, Morgantown, USA
| | - Kent L Marshall
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26505, USA
- School of Medicine, West Virginia University, Morgantown, USA
- West Virginia Clinical and Translational Science Institute, Morgantown, USA
| | - Samuel A Sprowls
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - Pushkar Saralkar
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - Afroz Mohammad
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - Kathryn E Blethen
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - Tasneem A Arsiwala
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - Ross Fladeland
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA
| | - Paul R Lockman
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, West Virginia University, 108 Biomedical Drive, Morgantown, WV, 26506, USA.
| | - Weimin Gao
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26505, USA.
| |
Collapse
|
4
|
Synergistic effects of Bcl-2 inhibitors with AZD9291 on overcoming the acquired resistance of AZD9291 in H1975 cells. Arch Toxicol 2020; 94:3125-3136. [PMID: 32577785 DOI: 10.1007/s00204-020-02816-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 01/07/2023]
Abstract
Non-small cell lung cancer (NSCLC) patients with epithermal growth factor receptor (EGFR) mutations can be treated with EGFR-tyrosine kinase inhibitors (EGFR-TKIs), however, development of acquired resistance could significantly limit curative effects of EGFR-TKIs. Different mechanisms of acquired resistance to first-generation and second-generation EGFR TKIs have been widely reported, but there were few reports on the resistant mechanism of third-generation EGFR-TKI such as osimertinib (AZD9291). In the present study, significant upregulation of Bcl-2 was found in AZD9291-resistant H1975 cells (H1975AR) compared with H1975, which may constitute an important resistant mechanism of acquired resistance to AZD9291. More importantly, our study showed that synergism between AZD9291 and Bcl-2 inhibitor ABT263 (0.25 μM) or ABT199 (1 μM) could effectively overcome the acquired resistance of AZD9291 in H1975AR in vitro. Flow cytometry analyses demonstrated that AZD9291 + ABT263/ABT199 caused a significantly different cell cycle distribution and produced significantly more apoptosis compared with either AZD9291 or ABT263/ABT199 treatment alone. Further multiscreen/Western blot analyses revealed that NF-κB was significantly downregulated in AZD9291 + ABT263/ABT199 treatment groups compared with AZD9291 or ABT263/ABT199 treatment alone, with a more significant reduction of NF-κB in AZD9291 + ABT199 compared with AZD9291 + ABT263. It is also noticeable that AZD9291 + ABT263 specifically caused a significantly reduced expression of p21 compared with AZD9291 or ABT263 treatment alone while AZD9291 + ABT199 specifically caused significantly reduced expressions of SQSTM1 and survivin, but increased expression of autophagosome marker LC3-II compared with AZD9291 or ABT199 treatment alone. Furthermore, cytotoxicity of AZD9291 + ABT199 could be partially reversed by autophagy inhibitor chloroquine. These results suggest that ABT263 and ABT199 may work through different signaling pathways to achieve synergistic cytotoxicity with AZD9291 in H1975AR. These findings suggest that Bcl-2 inhibitor may provide an effective option in combination therapy with EGFR-TKIs to treat NSCLC with EGFR-TKI acquired resistance.
Collapse
|
5
|
Sun G, Ni K. The Role of Cavin3 in the Progression of Lung Cancer and Its Mechanism. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6364801. [PMID: 32352004 PMCID: PMC7178469 DOI: 10.1155/2020/6364801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The purpose of this study was to describe the role of Cavin3 in the progression of lung cancer and its underlying mechanism. METHODS Totally, 200 cases of lung cancer tissues and corresponding paracancer tissues were collected. Cavin3 expression in samples was determined by qRT-PCR, and the correlation with lung cancer stages as well as prognosis was statistically analyzed combined with matched clinical information. To investigate the mechanism of Cavin3 in lung cancer progression, firstly, Cavin3 was detected in lung cancer cell lines A549, PC9, and H520. Then, cells with stable Cavin3 overexpression and Cavin3 knockout were established to determine the effect of Cavin3 overexpression on the mammalian target of rapamycin (mTOR) signaling pathway. Subsequently, cells were harvested for cell proliferation, migration, and invasion assays in vitro, as well as nude mouse transplantation tumor experiment in vivo. RESULTS Cavin3 was seen to be highly expressed in cancer tissues. Statistical analysis with matched clinical data showed that Cavin3 as a prognostic indicator of lung cancer had important clinical value. In addition, it could be found that high expression of Cavin3 was able to promote cell proliferation, migration, and invasion and also potentiate tumor formation in vivo. CONCLUSION Cavin3 was highly expressed in lung cancer, and it was capable to promote cell proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Gaozhong Sun
- Department of Cardio-Thoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014 Zhejiang, China
| | - Kewei Ni
- Department of Cardio-Thoracic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014 Zhejiang, China
| |
Collapse
|
6
|
Overcoming acquired resistance of gefitinib in lung cancer cells without T790M by AZD9291 or Twist1 knockdown in vitro and in vivo. Arch Toxicol 2019; 93:1555-1571. [PMID: 30993382 DOI: 10.1007/s00204-019-02453-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
The T790M mutation is recognized as a typical mechanism of acquired resistance to first generation of epithermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) such as gefitinib in non-small cell lung cancer (NSCLC) patients who are commonly treated by third generation of EGFR-TKI AZD9291 (osimertinib). However, the therapeutic strategy for overcoming acquired resistance to EGFR-TKIs in NSCLC patients without T790M remains to be definitively determined. In the present study, gefitinib-resistant H1650 (H1650GR) or AZD9291-resistant H1975 (H1975AR) was generated by exposing NSCLC cell line H1650 or H1975 to progressively increased concentrations of gefitinib or AZD9291 over 11 months. The cytotoxic effects of gefitinib or AZD9291 in vitro were evaluated via the half maximal inhibitory concentrations (IC50s) determined by the MTT assay. IC50 of gefitinib in H1650GR (50.0 ± 3.0 µM) significantly increased compared with H1650 (31.0 ± 1.0 µM) (p < 0.05). Similarly, the IC50 of AZD9291 in H1975AR (10.3 ± 0.9 µM) significantly increased compared with H1975 (5.5 ± 0.6 µM) (p < 0.05). However, IC50 of AZD9291 on H1650GR (8.5 ± 0.5 µM) did not increase compared with H1650 (9.7 ± 0.7 µM). On the other hand, IC50 of AZD9291 on gefitinib-resistant A549 (A549GR established in our previous study) (12.7 ± 0.8 µM) was significantly increased compared with A549 (7.0 ± 1.0 µM) (p < 0.05). AZD9291 induced caspase 3/7 activation in A549, H1650, and H1650GR, but not in A549GR. Western blot analyses showed that p-Akt played a key role in determining the sensitivities of A549, A549GR, H1650, and H1650GR to gefitinib or AZD9291. Additionally, increased expression of Twist1 was observed in all cells with acquired EGFR-TKI resistance and knockdown of Twist1 by shRNA was found to significantly enhance the sensitivity of A549GR to gefitinib or AZD9291 via reversing epithelial-mesenchymal transition and downregulating p-Akt, but not of H1975AR to AZD9291. The enhanced cytotoxic effect of AZD9291 on A549GR by Twist1 knockdown in vitro was further validated by in vivo studies which showed that Twist1 knockdown could lead to significantly delayed tumor growth of A549GR xenograft with increased sensitivity to AZD9291 treatment in nude mice without any observed side toxic effects. In summary, our study demonstrated that the mechanisms of acquired resistance in different NSCLC cell lines treated by even the same EGFR-TKI might be quite different, which provide a rationale for adopting different therapeutic strategies for those NSCLC patients with acquired EGFR-TKI resistance based on different status of heterogeneous mutations.
Collapse
|
7
|
Duan F, Hao D, Xu W, Zhong X, Luo T. Correlations of Twist Expression with Pathological and Computed Tomography (CT) Characteristics and Prognosis of Non-Small Cell Lung Cancer (NSCLC). Med Sci Monit 2019; 25:977-983. [PMID: 30714578 PMCID: PMC6371739 DOI: 10.12659/msm.912674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background The aim of this study was to assess the correlations of Twist expression with pathological and computed tomography (CT) characteristics and prognosis of non-small cell lung cancer (NSCLC). Material/Methods We enrolled 120 patients with lung cancer who underwent CT examination. The Twist protein expression level was detected in 120 cases of cancer tissues and a control group using immunohistochemical method. The survival curve was plotted using the Kaplan-Meier method and analyzed via log-rank test. Results The Twist expression was associated with tumor stage, differentiation degree, and presence or absence of lymph node metastasis, but had no correlations with sex, age, or histological type. Grade-3 bronchial involvement, pleural indentation, and hilar and mediastinal lymph node enlargement occurred more frequently in the high-expression Twist group compared with the low-expression Twist group. The overall survival rate of patients with Twist overexpression was significantly lower than that of patients with normal Twist expression. The mean survival time was 69.8 months in Twist protein expression-negative patients and 45.8 months in Twist protein expression-positive patients. Finally, the positive expression of Twist protein was significantly correlated with the long-term survival and prognosis of patients. Conclusions The Twist gene might be involved in the occurrence and development of NSCLC, which is correlated with patient prognosis.
Collapse
Affiliation(s)
- Feng Duan
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, Christmas island
| | - Dapeng Hao
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Wenjian Xu
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Xin Zhong
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Tao Luo
- Department of Radiology, Shengli Oilfield Central Hospital, Dongying, Shandong, China (mainland)
| |
Collapse
|
8
|
Mikheev AM, Mikheeva SA, Severs LJ, Funk CC, Huang L, McFaline-Figueroa JL, Schwensen J, Trapnell C, Price ND, Wong S, Rostomily RC. Targeting TWIST1 through loss of function inhibits tumorigenicity of human glioblastoma. Mol Oncol 2018; 12:1188-1202. [PMID: 29754406 PMCID: PMC6026950 DOI: 10.1002/1878-0261.12320] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 12/30/2022] Open
Abstract
TWIST1 (TW) is a bHLH transcription factor (TF) and master regulator of the epithelial-to-mesenchymal transition (EMT). In vitro, TW promotes mesenchymal change, invasion, and self-renewal in glioblastoma (GBM) cells. However, the potential therapeutic relevance of TW has not been established through loss-of-function studies in human GBM cell xenograft models. The effects of TW loss of function (gene editing and knockdown) on inhibition of tumorigenicity of U87MG and GBM4 glioma stem cells were tested in orthotopic xenograft models and conditional knockdown in established flank xenograft tumors. RNAseq and the analysis of tumors investigated putative TW-associated mechanisms. Multiple bioinformatic tools revealed significant alteration of ECM, membrane receptors, signaling transduction kinases, and cytoskeleton dynamics leading to identification of PI3K/AKT signaling. We experimentally show alteration of AKT activity and periostin (POSTN) expression in vivo and/or in vitro. For the first time, we show that effect of TW knockout inhibits AKT activity in U87MG cells in vivo independent of PTEN mutation. The clinical relevance of TW and candidate mechanisms was established by analysis of the TCGA and ENCODE databases. TW expression was associated with decreased patient survival and LASSO regression analysis identified POSTN as one of top targets of TW in human GBM. While we previously demonstrated the role of TW in promoting EMT and invasion of glioma cells, these studies provide direct experimental evidence supporting protumorigenic role of TW independent of invasion in vivo and the therapeutic relevance of targeting TW in human GBM. Further, the role of TW driving POSTN expression and AKT signaling suggests actionable targets, which could be leveraged to mitigate the oncogenic effects of TW in GBM.
Collapse
Affiliation(s)
- Andrei M Mikheev
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA.,Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Svetlana A Mikheeva
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA.,Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Liza J Severs
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| | - Cory C Funk
- Institute for Systems Biology, Seattle, WA, USA
| | - Lei Huang
- Department of Systems Medicine& Bioengineering, Houston Methodist Hospital and Research Institute, Weil Cornell Medical College, Houston, TX, USA
| | | | - Jeanette Schwensen
- Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | - Stephen Wong
- Department of Systems Medicine& Bioengineering, Houston Methodist Hospital and Research Institute, Weil Cornell Medical College, Houston, TX, USA
| | - Robert C Rostomily
- Department of Neurosurgery, Houston Methodist Hospital and Research Institute, Houston, TX, USA.,Department of Neurosurgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Li M, Zhang X, Xu X, Wu J, Hu K, Guo X, Zhang P. Clinicopathological and prognostic significance of Twist overexpression in NSCLC. Oncotarget 2018; 9:14642-14651. [PMID: 29581870 PMCID: PMC5865696 DOI: 10.18632/oncotarget.24489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023] Open
Abstract
Several studies were conducted to explore the prognostic significance of Twist in non-small cell lung cancer (NSCLC), however, contradictory results in different studies were reported. To this end, we presented a systematic review aiming to summarize the prognostic significance of Twist in patients with NSCLC. 5 studies involving a total of 572 patients were identified. The result indicated that high Twist expression was significantly associated with a worse overall survival (OS) (hazard ratio (HR) = 2.19, 95% confidence interval (95% CI) = 1.64–2.94, p < 0.001; I2 = 0.0%, fixed effect), recurrence-free survival (RFS) (HR = 2.476, 95% CI = 1.728–3.547, p < 0.001; I2 = 0.0%, fixed effect) and lymph node or other metastasis (odds rate (OR) = 0.419, 95% CI = 0.259–0.679, P < 0.001, fixed effect). Subgroup analysis revealed that the expression of Twist in Chinese patients might be more closely associated with the prognosis of NSCLC than in American patients. Overall, these results indicated that Twist over-expression in patients with NSCLC might be related to poor prognosis and serves as an unfavorable predictor of poor clinicopathological prognosis factor.
Collapse
Affiliation(s)
- Meng Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xing Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqing Xu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Jiubin Wu
- Department of Traumatology and Orthopedics, First Affiliated Hospital of Tianjin University of TCM, Tianjin, China
| | - Kaiwen Hu
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiuwei Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peitong Zhang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Mikheev AM, Mikheeva SA, Tokita M, Severs LJ, Rostomily RC. Twist1 mediated regulation of glioma tumorigenicity is dependent on mode of mouse neural progenitor transformation. Oncotarget 2017; 8:107716-107729. [PMID: 29296200 PMCID: PMC5746102 DOI: 10.18632/oncotarget.22593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/05/2017] [Indexed: 02/07/2023] Open
Abstract
Twist1 is a master regulator of epithelial mesenchymal transition and carcinoma metastasis. Twist1 has also been associated with increased malignancy of human glioma. However, the impact of inhibiting Twist1 on tumorigenicity has not been characterized in glioma models in the context of different oncogenic transformation paradigms. Here we used an orthotopic mouse glioma model of transplanted transformed neural progenitor cells (NPCs) to demonstrate the effects of Twist1 loss of function on tumorigenicity. Decreased tumorigenicity was observed after shRNA mediated Twist knockdown in HPV E6/7 Ha-RasV12 transformed NPCs and Cre mediated Twist1 deletion in Twist1 fl/fl NPCs transformed by p53 knockdown and Ha-RasV12 expression. By contrast, Twist1 deletion had no effect on tumorigenicity of NPCs transformed by co-expression of Akt and Ha-RasV12. We demonstrated a dramatic off-target effect of Twist1 deletion with constitutive Cre expression, which was completely reversed when Twist1 deletion was achieved by transient administration of recombinant Cre protein. Together these findings demonstrate that the function of Twist1 in these models is highly dependent on specific oncogenic contexts of NPC transformation. Therefore, the driver mutational context in which Twist1 functions may need to be taken into account when evaluating mechanisms of action and developing therapeutic approaches to target Twist1 in human gliomas.
Collapse
Affiliation(s)
- Andrei M. Mikheev
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Svetlana A. Mikheeva
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Mari Tokita
- Division of Medical Genetics, University of Washington, Seattle, Washington, USA
| | - Liza J. Severs
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA
| | - Robert C. Rostomily
- Department of Neurological Surgery, Houston Methodist Hospital and Research Institute, Houston, Texas, USA
- Department of Neurological Surgery and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Meta-analysis of the prognostic value of p-4EBP1 in human malignancies. Oncotarget 2017; 9:2761-2769. [PMID: 29416809 PMCID: PMC5788677 DOI: 10.18632/oncotarget.23031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/20/2017] [Indexed: 01/16/2023] Open
Abstract
Phosphorylated 4E-binding protein 1 (p-4EBP1) is the inactivated form of 4EBP1, which is a downstream mediator in the mTOR signaling pathway and a vital factor in the synthesis of some oncogenic proteins. This meta-analysis was conducted to assess the predicative value of p-4EBP1 expression in human malignancies. The PubMed and Embase databases were carefully searched. Articles comparing the prognostic worthiness of different p-4EBP1 levels in human malignancies were collected for pooled analyses and methodologically appraised using the Newcastle-Ottawa Scale (NOS). A total of 39 retrospective cohorts with an overall sample size of 3,980 were selected. Patients with lower p-4EBP1 expression had better 3-year (P < 0.00001), 5-year (P < 0.00001), and 10-year (P = 0.03) overall survival and better 3-year (P < 0.0001) and 5-year (P = 0.0005) disease-free survival. Subgroup analyses confirmed the unfavorable prognosis associated with p-4EBP1 overexpression. These findings were further validated by sensitivity analyses. Harbord and Peters tests revealed no publication bias within the included studies. It thus appears higher expression of p-4EBP1 indicates a poor prognosis in human malignancies.
Collapse
|
12
|
Liu Z, Gao W. Leptomycin B reduces primary and acquired resistance of gefitinib in lung cancer cells. Toxicol Appl Pharmacol 2017; 335:16-27. [PMID: 28942004 PMCID: PMC5643250 DOI: 10.1016/j.taap.2017.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/07/2017] [Accepted: 09/19/2017] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) gefitinib has demonstrated dramatic clinical efficacy in non-small cell lung cancer (NSCLC) patients. However, its therapeutic efficacy is ultimately limited by the development of acquired drug resistance. The aim of this study was to explore the potential utility of chromosome region maintenance 1 (CRM1) inhibitor leptomycin B (LMB) in combination with gefitinib to overcome primary and acquired gefitinib resistance in NSCLC cells. The combinative effects of gefitinib and LMB were evaluated by MTT and its underlining mechanism was assessed by flow cytometry and Western blot. LMB displayed a synergistic effect on gefitinib-induced cytotoxicity in A549 (IC50: 25.0±2.1μM of gefitinib+LMB vs. 32.0±2.5μM of gefitinib alone, p<0.05). Gefitinib+LMB caused a significantly different cell cycle distribution and signaling pathways involved in EGFR/survivin/p21 compared with gefitinib. A549 cells then were treated with progressively increased concentrations of gefitinib (A549GR) or in combination with LMB (A549GLR) over 10months to generate gefitinib resistance. IC50 of gefitinib in A549GLR (37.0±2.8μM) was significantly lower than that in A549GR (53.0±3.0μM, p<0.05), which indicates that LMB could reverse gefitinib-induced resistance in A549. Further mechanism investigation revealed that the expression patterns of EGFR pathway and epithelial-mesenchymal transition (EMT) markers in A549, A549GR, and A549GLR were significantly different. In conclusion, LMB at a very low concentration (0.5nM) combined with gefitinib showed synergistic therapeutic effects and ameliorated the development of gefitinib-induced resistance in lung cancer cells.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, United States
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
13
|
Armas-López L, Piña-Sánchez P, Arrieta O, de Alba EG, Ortiz-Quintero B, Santillán-Doherty P, Christiani DC, Zúñiga J, Ávila-Moreno F. Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients. Oncotarget 2017; 8:67056-67081. [PMID: 28978016 PMCID: PMC5620156 DOI: 10.18632/oncotarget.17715] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 04/11/2017] [Indexed: 01/10/2023] Open
Abstract
Several homeobox-related gene (HOX) transcription factors such as mesenchyme HOX-2 (MEOX2) have previously been associated with cancer drug resistance, malignant progression and/or clinical prognostic responses in lung cancer patients; however, the mechanisms involved in these responses have yet to be elucidated. Here, an epigenomic strategy was implemented to identify novel MEOX2 gene promoter transcription targets and propose a new molecular mechanism underlying lung cancer drug resistance and poor clinical prognosis. Chromatin immunoprecipitation (ChIP) assays derived from non-small cell lung carcinomas (NSCLC) hybridized on gene promoter tiling arrays and bioinformatics analyses were performed, and quantitative, functional and clinical validation were also carried out. We statistically identified a common profile consisting of 78 gene promoter targets, including Hedgehog-GLI1 gene promoter sequences (FDR≤0.1 and FDR≤0.2). The GLI-1 gene promoter region from -2,192 to -109 was occupied by MEOX2, accompanied by transcriptionally active RNA Pol II and was epigenetically linked to the active histones H3K27Ac and H3K4me3; these associations were quantitatively validated. Moreover, siRNA genetic silencing assays identified a MEOX2-GLI1 axis involved in cellular cytotoxic resistance to cisplatinum in a dose-dependent manner, as well as cellular migration and proliferation. Finally, Kaplan-Maier survival analyses identified significant MEOX2-dependent GLI-1 protein expression associated with clinical progression and poorer overall survival using an independent cohort of NSCLC patients undergoing platinum-based oncological therapy with both epidermal growth factor receptor (EGFR)-non-mutated and EGFR-mutated status. In conclusion, this is the first study to investigate epigenome-wide MEOX2-transcription factor occupation identifying a novel overexpressed MEOX2-GLI1 axis and its clinical association with platinum-based cancer drug resistance and EGFR-tyrosine kinase inhibitor (TKI)-based therapy responses in NSCLC patients.
Collapse
Affiliation(s)
- Leonel Armas-López
- National University Autonomous of México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Lung Diseases And Cancer Epigenomics Laboratory, Mexico State, Mexico
| | - Patricia Piña-Sánchez
- Instituto Mexicano del Seguro Social (IMSS), Centro Medico Nacional (CMN) Siglo XXI, Unidad de Investigación Médica en Enfermedades Oncológicas (UIMEO), Molecular Oncology Laboratory, Mexico City, Mexico
| | - Oscar Arrieta
- National Cancer Institute (INCAN), Thoracic Oncology Clinic, Mexico City, Mexico
| | - Enrique Guzman de Alba
- National Institute of Respiratory Diseases (INER) “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Blanca Ortiz-Quintero
- National Institute of Respiratory Diseases (INER) “Ismael Cosío Villegas”, Mexico City, Mexico
| | | | - David C. Christiani
- Harvard Medical School, Harvard School of Public Health, Department of Environmental Health, Boston, Massachusetts, USA
| | - Joaquín Zúñiga
- National Institute of Respiratory Diseases (INER) “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Federico Ávila-Moreno
- National University Autonomous of México (UNAM), Facultad de Estudios Superiores (FES) Iztacala, Biomedicine Research Unit (UBIMED), Lung Diseases And Cancer Epigenomics Laboratory, Mexico State, Mexico
- National Institute of Respiratory Diseases (INER) “Ismael Cosío Villegas”, Mexico City, Mexico
| |
Collapse
|
14
|
Abstract
Eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) is a member of a family of translation repressor proteins, and a well-known substrate of mechanistic target of rapamycin (mTOR) signaling pathway. Phosphorylation of 4E-BP1 causes its release from eIF4E to allow cap-dependent translation to proceed. Recently, 4E-BP1 was shown to be phosphorylated by other kinases besides mTOR, and overexpression of 4E-BP1 was found in different human carcinomas. In this review, we summarize the novel findings on mTOR independent 4E-BP1 phosphorylation in carcinomas. The implications of overexpression and possible multi-function of 4E-BP1 are also discussed.
Collapse
Affiliation(s)
- Xiaoyu Qin
- a Department of Oncology , Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Bin Jiang
- a Department of Oncology , Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| | - Yanjie Zhang
- a Department of Oncology , Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine , Shanghai , China
| |
Collapse
|
15
|
An X, Hu J, Do KA. SIFORM: shared informative factor models for integration of multi-platform bioinformatic data. Bioinformatics 2016; 32:3279-3290. [PMID: 27381342 DOI: 10.1093/bioinformatics/btw295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/28/2016] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION High-dimensional omic data derived from different technological platforms have been extensively used to facilitate comprehensive understanding of disease mechanisms and to determine personalized health treatments. Numerous studies have integrated multi-platform omic data; however, few have efficiently and simultaneously addressed the problems that arise from high dimensionality and complex correlations. RESULTS We propose a statistical framework of shared informative factor models that can jointly analyze multi-platform omic data and explore their associations with a disease phenotype. The common disease-associated sample characteristics across different data types can be captured through the shared structure space, while the corresponding weights of genetic variables directly index the strengths of their association with the phenotype. Extensive simulation studies demonstrate the performance of the proposed method in terms of biomarker detection accuracy via comparisons with three popular regularized regression methods. We also apply the proposed method to The Cancer Genome Atlas lung adenocarcinoma dataset to jointly explore associations of mRNA expression and protein expression with smoking status. Many of the identified biomarkers belong to key pathways for lung tumorigenesis, some of which are known to show differential expression across smoking levels. We discover potential biomarkers that reveal different mechanisms of lung tumorigenesis between light smokers and heavy smokers. AVAILABILITY AND IMPLEMENTATION R code to implement the new method can be downloaded from http://odin.mdacc.tmc.edu/jhhu/ CONTACT: jhu@mdanderson.org.
Collapse
Affiliation(s)
- Xuebei An
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Hu
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kim-Anh Do
- Department of Biostatistics, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
16
|
Yu G, Huang B, Chen G, Mi Y. Phosphatidylethanolamine-binding protein 4 promotes lung cancer cells proliferation and invasion via PI3K/Akt/mTOR axis. J Thorac Dis 2015; 7:1806-16. [PMID: 26623104 PMCID: PMC4635298 DOI: 10.3978/j.issn.2072-1439.2015.10.17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/11/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND While phosphatidylethanolamine-binding protein 4 (PEBP4) is a key factor in the malignant proliferation and metastasis of tumor cells, the exact regulatory network governing its roles remains unclear. This study was designed to investigate the effect of PEBP4 on PI3K/Akt/mTOR pathway and explore its molecular network that governs the proliferation and metastasis of tumor cells. METHODS After the recombinant plasmid pcDNA3.1-PEBP4 was constructed, the recombinant plasmid pcDNA3.1-PEBP4 and PEBP4-targeting siRNA were transfected into lung cancer HCC827 cell line. The expressions of PI3K/Akt/mTOR pathway components in HCC827 cells in each group were determined using Western blotting. In the HCC827 cells, the effect of PI3K pathway inhibitor LY294002 on the expressions of PI3K/Akt/mTOR pathway components under the effect of PEBP4 was determined using Western blotting, and the effects of LY294002 on the cell viability, proliferation, and migration capabilities under the overexpression of PEBP4 were determined using MTT method, flow cytometry, and Transwell migration assay. Furthermore, the effect of mTOR inhibitor rapamycin (RAPA) on the expressions of PI3K/Akt/mTOR pathway components under the effect of PEBP4 was determined using Western blotting, and the effects of RAPA on the cell viability, proliferation, and migration capabilities under the overexpression of PEBP4 were determined using MTT method, flow cytometry, and Transwell migration assay. RESULTS As shown by Western blotting, the protein expressions of p-Akt and phosphorylated mTOR (p-mTOR) were significantly higher in the pcDNA3.1-PEBP4-transfected group than in the normal control group and PEBP4 siRNA group (P<0.05); furthermore, the protein expressions of p-Akt and p-mTOR significantly decreased in the PEBP4 targeting siRNA-transfected group (P<0.05). Treatment with LY294002 significantly inhibited the protein expressions of p-Akt and p-mTOR in HCC827 cells (P<0.05). In contrast, treatment with RAPA only significantly inhibited the protein expression of p-mTOR (P<0.05). As shown by MTT, flow cytometry, and Transwell migration assay, both LY294002 and RAPA could significantly lower the viability of HCC827 cells and inhibit their proliferation and invasion (P<0.05); meanwhile, they could reverse the effect of PEBP4 in promoting the proliferation and migration of HCC827 cells (P<0.05). CONCLUSIONS The overexpression of PEBP4 increases the phosphorylation levels of Akt and mTOR in lung cancer cells. The PI3K/Akt/mTOR signaling axis may be a key molecular pathway via which PEBP4 promotes the proliferation and invasion of non-small cell lung cancer (NSCLC) cells; also, it may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Bin Huang
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Guoqiang Chen
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| | - Yedong Mi
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin 214400, China
| |
Collapse
|