1
|
Doosti Z, Ebrahimi SO, Ghahfarokhi MS, Reiisi S. Synergistic effects of miR-143 with miR-99a inhibited cell proliferation and induced apoptosis in breast cancer. Biotechnol Appl Biochem 2024; 71:993-1004. [PMID: 38689536 DOI: 10.1002/bab.2592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Breast cancer (BC) is the most common cancer type and the fifth leading cause of cancer-related deaths. The primary goals of BC treatment are to remove the tumor and prevent metastasis. Despite advances in BC treatment, more effective therapies are required. miRNAs can regulate many targets involved in biological processes and tumor progression; these molecules have emerged as a promising cancer treatment strategy. In the present study, we investigated the effects of miR-99a and miR-143 in single expression plasmids for BC inhibition. In this study, the precursor structure of miRNAs in the expression vector pEGFP-N1 entered single and double states, and MCF7 and T47D cells were transfected. The miRNAs expression level after transfection was then measured using qPCR. The MultiMiR package was used to obtain predicted and validated miRNA targets. MTT assay, qRT-PCR, migration test, and flow cytometry were used to assess the effect of miRNA and gene modulation. The qPCR results revealed that miRNA constructs were significantly expressed after the transfection of both cell lines. The biological function of miRNAs showed that upregulation of miR-99a and miR-143 in any of the two selected BC cells inhibited their proliferation and migration rate, significantly inducing apoptosis (p < 0.01). Also, miR-99a/miR-143 co-treatment has a synergistic anticancer effect in cancer cells via Akt1 and CDK6 targeting. These findings suggest that miR-99a/miR-143 plays synergistic regulatory roles in BC, possibly via a shared signaling pathway, providing a therapeutic strategy for BC treatment.
Collapse
Affiliation(s)
- Zahra Doosti
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Syed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | | | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
2
|
Pommerenke C, Nagel S, Haake J, Koelz AL, Christgen M, Steenpass L, Eberth S. Molecular Characterization and Subtyping of Breast Cancer Cell Lines Provide Novel Insights into Cancer Relevant Genes. Cells 2024; 13:301. [PMID: 38391914 PMCID: PMC10886524 DOI: 10.3390/cells13040301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Continuous cell lines are important and commonly used in vitro models in breast cancer (BC) research. Selection of the appropriate model cell line is crucial and requires consideration of their molecular characteristics. To characterize BC cell line models in depth, we profiled a panel of 29 authenticated and publicly available BC cell lines by mRNA-sequencing, mutation analysis, and immunoblotting. Gene expression profiles separated BC cell lines in two major clusters that represent basal-like (mainly triple-negative BC) and luminal BC subtypes, respectively. HER2-positive cell lines were located within the luminal cluster. Mutation calling highlighted the frequent aberration of TP53 and BRCA2 in BC cell lines, which, therefore, share relevant characteristics with primary BC. Furthermore, we showed that the data can be used to find novel, potential oncogenic fusion transcripts, e.g., FGFR2::CRYBG1 and RTN4IP1::CRYBG1 in cell line MFM-223, and to elucidate the regulatory circuit of IRX genes and KLF15 as novel candidate tumor suppressor genes in BC. Our data indicated that KLF15 was activated by IRX1 and inhibited by IRX3. Moreover, KLF15 inhibited IRX1 in cell line HCC-1599. Each BC cell line carries unique molecular features. Therefore, the molecular characteristics of BC cell lines described here might serve as a valuable resource to improve the selection of appropriate models for BC research.
Collapse
Affiliation(s)
- Claudia Pommerenke
- Department of Bioinformatics, IT and Databases, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany;
| | - Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| | - Josephine Haake
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| | - Anne Leena Koelz
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| | - Matthias Christgen
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany
| | - Laura Steenpass
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
- Zoological Institute, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Sonja Eberth
- Department of Human and Animal Cell Lines, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany; (S.N.)
| |
Collapse
|
3
|
Turkoglu F, Calisir A, Ozturk B. Clinical importance of serum miRNA levels in breast cancer patients. Discov Oncol 2024; 15:19. [PMID: 38280134 PMCID: PMC10821853 DOI: 10.1007/s12672-024-00871-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/21/2024] [Indexed: 01/29/2024] Open
Abstract
There is limited data on the relationship of miRNAs with parameters that may affect surgical management or reflect tumour prognosis. It was aimed to evaluate serum miRNA levels in breast carcinoma cases and reveal the relationship between these levels and prognosis-related factors such as the histological type of the tumour, estrogen receptor, progesterone receptor, Ki-67 index, HER-2neu, E-cadherin, tumour size, CK5/6, CA15.3 levels, number of tumour foci, number of metastatic lymph nodes, and status of receiving neoadjuvant therapy. Thirty-five patients with a histopathologically confirmed breast carcinoma diagnosis in the case group and 35 healthy individuals in the control group were examined. miR-206, miR-17-5p, miR-125a, miR-125b, miR-200a, Let-7a, miR-34a, miR-31, miR-21, miR-155, miR-10b, miR-373, miR-520c, miR-210, miR-145, miR-139-5p, miR-195, miR-99a, miR-497 and miR-205 expression levels in the serum of participants were determined using the Polymerase Chain Reaction method. While serum miR-125b and Let-7a expression levels were significantly higher in breast cancer patients, miR-17-5p, miR-125a, miR-200a, miR-34a, miR-21, miR-99a and miR-497 levels were significantly lower in them. The Let-7a expression level had a statistically significant relationship with breast cancer histological type and HER-2neu parameters, miR-17-5p, miR-125b, Let-7a, miR-34a, miR-21 and miR-99a levels with E-cadherin, miR-34a, miR-99a and miR-497 with CA15.3, miR-125b, miR-200a and miR-34a with the number of metastatic lymph nodes, miR-125a with the number of tumour foci and miR-200a with the status of having the neoadjuvant therapy. Serum miR-17-5p, miR-125a, miR-125b, miR-200a, Let-7a, miR-34a, miR-21, miR-99a and miR-497 expression levels were determined to have predictive and prognostic importance in breast cancer.
Collapse
Affiliation(s)
- Fatih Turkoglu
- Department of General Surgery, Faculty of Medicine, Selcuk University, Akademi Mahallesi Yeni İstanbul Caddesi No:313, Selçuk Üniversitesi Alaeddin Keykubat Yerleşkesi, Selçuklu, Konya, 42130, Turkey.
| | - Akin Calisir
- Department of General Surgery, Faculty of Medicine, Selcuk University, Akademi Mahallesi Yeni İstanbul Caddesi No:313, Selçuk Üniversitesi Alaeddin Keykubat Yerleşkesi, Selçuklu, Konya, 42130, Turkey
| | - Bahadir Ozturk
- Department of Biochemistry, Faculty of Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
4
|
The Role of Different Types of microRNA in the Pathogenesis of Breast and Prostate Cancer. Int J Mol Sci 2023; 24:ijms24031980. [PMID: 36768298 PMCID: PMC9916830 DOI: 10.3390/ijms24031980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Micro ribonucleic acids (microRNAs or miRNAs) form a distinct subtype of non-coding RNA and are widely recognized as one of the most significant gene expression regulators in mammalian cells. Mechanistically, the regulation occurs through microRNA binding with its response elements in the 3'-untranslated region of target messenger RNAs (mRNAs), resulting in the post-transcriptional silencing of genes, expressing target mRNAs. Compared to small interfering RNAs, microRNAs have more complex regulatory patterns, making them suitable for fine-tuning gene expressions in different tissues. Dysregulation of microRNAs is well known as one of the causative factors in malignant cell growth. Today, there are numerous data points regarding microRNAs in different cancer transcriptomes, the specificity of microRNA expression changes in various tissues, and the predictive value of specific microRNAs as cancer biomarkers. Breast cancer (BCa) is the most common cancer in women worldwide and seriously impairs patients' physical health. Its incidence has been predicted to rise further. Mounting evidence indicates that microRNAs play key roles in tumorigenesis and development. Prostate cancer (PCa) is one of the most commonly diagnosed cancers in men. Different microRNAs play an important role in PCa. Early diagnosis of BCa and PCa using microRNAs is very useful for improving individual outcomes in the framework of predictive, preventive, and personalized (3P) medicine, thereby reducing the economic burden. This article reviews the roles of different types of microRNA in BCa and PCa progression.
Collapse
|
5
|
Breast Cancer Subtype-Specific miRNAs: Networks, Impacts, and the Potential for Intervention. Biomedicines 2022; 10:biomedicines10030651. [PMID: 35327452 PMCID: PMC8945552 DOI: 10.3390/biomedicines10030651] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
The regulatory and functional roles of non-coding RNAs are increasingly demonstrated as critical in cancer. Among non-coding RNAs, microRNAs (miRNAs) are the most well-studied with direct regulation of biological signals through post-transcriptional repression of mRNAs. Like the transcriptome, which varies between tissue type and disease condition, the miRNA landscape is also similarly altered and shows disease-specific changes. The importance of individual tumor-promoting or suppressing miRNAs is well documented in breast cancer; however, the implications of miRNA networks is less defined. Some evidence suggests that breast cancer subtype-specific cellular effects are influenced by distinct miRNAs and a comprehensive network of subtype-specific miRNAs and mRNAs would allow us to better understand breast cancer signaling. In this review, we discuss the altered miRNA landscape in the context of breast cancer and propose that breast cancer subtypes have distinct miRNA dysregulation. Further, given that miRNAs can be used as diagnostic and/or prognostic biomarkers, their impact as novel targets for subtype-specific therapy is also possible and suggest important implications for subtype-specific miRNAs.
Collapse
|
6
|
Belpaire M, Ewbank B, Taminiau A, Bridoux L, Deneyer N, Marchese D, Lima-Mendez G, Baurain JF, Geerts D, Rezsohazy R. HOXA1 Is an Antagonist of ERα in Breast Cancer. Front Oncol 2021; 11:609521. [PMID: 34490074 PMCID: PMC8417444 DOI: 10.3389/fonc.2021.609521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a heterogeneous disease and the leading cause of female cancer mortality worldwide. About 70% of breast cancers express ERα. HOX proteins are master regulators of embryo development which have emerged as being important players in oncogenesis. HOXA1 is one of them. Here, we present bioinformatic analyses of genome-wide mRNA expression profiles available in large public datasets of human breast cancer samples. We reveal an extremely strong opposite correlation between HOXA1 versus ER expression and that of 2,486 genes, thereby supporting a functional antagonism between HOXA1 and ERα. We also demonstrate in vitro that HOXA1 can inhibit ERα activity. This inhibition is at least bimodal, requiring an intact HOXA1 DNA-binding homeodomain and involving the DNA-binding independent capacity of HOXA1 to activate NF-κB. We provide evidence that the HOXA1-PBX interaction known to be critical for the transcriptional activity of HOXA1 is not involved in the ERα inhibition. Finally, we reveal that HOXA1 and ERα can physically interact but that this interaction is not essential for the HOXA1-mediated inhibition of ERα. Like other HOX oncoproteins interacting with ERα, HOXA1 could be involved in endocrine therapy resistance.
Collapse
Affiliation(s)
- Magali Belpaire
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Bruno Ewbank
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Noémie Deneyer
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Damien Marchese
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Jean-François Baurain
- Pôle d'imagerie moléculaire, radiothérapie et oncologie (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Woluwe-Saint-Lambert, Belgium.,King Albert II Cancer Institute, Cliniques Universitaires St Luc, Woluwe-Saint-Lambert, Belgium
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam University Medical Centrum (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - René Rezsohazy
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
7
|
Palmini G, Brandi ML. microRNAs and bone tumours: Role of tiny molecules in the development and progression of chondrosarcoma, of giant cell tumour of bone and of Ewing's sarcoma. Bone 2021; 149:115968. [PMID: 33892177 DOI: 10.1016/j.bone.2021.115968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/26/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022]
Abstract
The increasing interest on microRNAs (miRNAs), small non-coding RNA molecules containing about 22 nucleotides, about their biological functions led researchers to discover that they are actively involved in several biological processes. In the last decades, miRNAs become one of the most topic of cancer research. miRNAs, thanks to their function, are the perfect molecules to modulate multiple signaling pathways and gene expression in cancer, with the consequent capacity to modulate cancerous processes, such as cellular proliferation, invasion, metastasis and chemoresistance in various tumours. In the last years, several studies have demonstrated the role of miRNAs in their pathophysiology, but little we know about the underlying mechanism that lead to bone tumours like chondrosarcoma (COS), giant cell tumour of bone (GCTB) and Ewing sarcoma (EWS) to still be highly aggressive and resistant tumours. An exploration of the role of miRNAs in the biology of them will permit to researchers to find new molecular mechanisms that can be used to develop new and more effective therapies against these bone tumours. Here we present a comprehensive study of the latest discoveries which have been performed in relation to the role of miRNAs in the neoplastic processes which characterize COS, EWS and GCTB, demonstrating how these tiny molecules can act as tumour promoters or as tumour suppressors and how they can be used for improving therapeutic approaches.
Collapse
Affiliation(s)
- Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Fondazione Italiana Ricerca sulle Malattie dell'Osso, F.I.R.M.O Onlus, Florence, Italy.
| |
Collapse
|
8
|
Qiao EQ, Yang HJ, Zhang XP. Screening of miRNAs associated with lymph node metastasis in Her-2-positive breast cancer and their relationship with prognosis. J Zhejiang Univ Sci B 2021; 21:495-508. [PMID: 32478495 DOI: 10.1631/jzus.b1900584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to identify some biomarkers for predicting lymph node metastasis and prognosis of human epidermal growth factor receptor 2 (Her-2)-positive breast cancer (BC). We analyzed correlations between microRNAs (miRNAs) and the prognosis of patients with BC based on data collected from The Cancer Genome Atlas (TCGA) database. The expression levels of miR-455, miR-143, and miR-99a were measured in clinical samples of Her-2-positive BC patients with different degrees of lymph node metastasis. We investigated the impacts of overexpressed miR-455 on the proliferation and invasiveness of MDA-MB-453 cells and measured its effects on the expression of long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) by quantitative real-time polymerase chain reaction (qRT-PCR). The expression of miR-455 was significantly and positively correlated to the prognosis and overall survival (OS) of the BC (P=0.028), according to TCGA information. The expression level of miR-455 was positively correlated with OS and relapse-free survival (RFS) of patients with Her-2-positive BC, and was negatively correlated with the number of metastatic lymph nodes (P<0.05). Transwell assay suggested that MDA-MB-453 cells became much less invasive (P<0.01) after being transfected with miR-455 mimics. During the qRT-PCR, the expression level of MALAT1 declined significantly after transfection (P<0.01). Overexpressed miR-455 significantly inhibited the proliferation and migration of MDA-MB-453 cells and the expression of MALAT1. We conclude that miR-455 may be a useful potential biomarker for forecasting lymph node metastasis and the prognosis of Her-2-positive BC patients. miR-455 may play an important role in lymph node metastasis of BC by interacting with MALAT1.
Collapse
Affiliation(s)
- En-Qi Qiao
- Department of Breast Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Hong-Jian Yang
- Department of Breast Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Xi-Ping Zhang
- Department of Breast Surgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou 310022, China
| |
Collapse
|
9
|
Choudhry H, Hassan MA, Al-Malki AL, Al-Sakkaf KA. Suppression of circulating AP001429.1 long non-coding RNA in obese patients with breast cancer. Oncol Lett 2021; 22:508. [PMID: 33986869 PMCID: PMC8114468 DOI: 10.3892/ol.2021.12769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a type of cellular RNA, play a critical regulatory role in several physiological developments and pathological processes, such as tumorigenesis and tumor progression. Obesity is a risk factor for a number of serious health conditions, including breast cancer (BC). However, the underlying mechanisms behind the association between obesity and increased BC incidence and mortality remain unclear. Several studies have reported changes in lncRNA expression due to obesity and BC, independently encouraging further investigation of the relationship between the two in connection with lncRNAs. The present study was designed to first screen for the expression of 29 selected lncRNAs that showed a link to cancer or obesity in the blood of a selected cohort of 6 obese and 6 non-obese patients with BC. The expression levels of significantly expressed lncRNAs, AP001429.1, PCAT6, P5549, P19461 and P3134, were further investigated in a larger cohort of 69 patients with BC (36 obese and 33 non-obese), using reverse transcription-quantitative polymerase chain reaction. Results showed not only that AP001429.1 remained significantly downregulated in the larger cohort (P=0.002), but also that it was associated with several clinicopathological characteristics, such as negative HER2 status, negative E-cadherin expression, negative vascular invasion, negative margin invasion and LCIS. These findings suggest that obesity may have a role in inhibiting AP001429.1 expression, which may serve as a novel potential biomarker and therapeutic target for BC.
Collapse
Affiliation(s)
- Hani Choudhry
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.,Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammed A Hassan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.,Department of Basic Medical Sciences, College of Medicine and Health Sciences, Hadhramout University, Mukalla, Republic of Yemen
| | - Abdulrahman L Al-Malki
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Kaltoom A Al-Sakkaf
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.,Immunology Unit, King Fahd Research Medical Centre, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Lin T, Yang Y, Ye X, Yao J, Zhou H. Low expression of miR-99b promotes progression of clear cell renal cell carcinoma by up-regulating IGF1R/Akt/mTOR signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:3083-3091. [PMID: 33425108 PMCID: PMC7791382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Dysfunctions of microRNAs have been implicated in the progression of clear cell renal cell carcinoma (ccRCC). Here, we investigated the roles of miR-99b and miR-99b* in ccRCC development. METHODS The expression levels of miR-99b and miR-99b* in tumor and tumor-adjacent tissues from ccRCC patients were quantified by quantitative Real-Time PCR (qRT-PCR). MicroRNA mimics and inhibitors were employed to evaluate the functions of miR-99b and miR-99b*. The effects of miR-99b on the proliferation and migration of ccRCC cells were analyzed by MTT and wound-healing assays, respectively. The effect of miR-99b on the expression of its target gene IGF1R and mTOR was determined by western blotting and qRT-PCR. RESULTS The abundances of miR-99b and miR-99b* were lower in ccRCC tissues than in the tumor-adjacent tissues from patients. Similarly, the expression of these two microRNAs was higher in the normal kidney HK-2 cells than in the ccRCC cell lines. Moreover, miR-99b and miR-99b* inhibited the proliferation and migration of ccRCC cells. MiR-99b was found to down-regulate IGF1R and mTOR expression, likely through targeting their mRNAs to induce degradation. Consistently, the mRNA levels of IGF1R and mTOR were higher in ccRCC tissues than in the tumor-adjacent tissues, and Akt, a downstream factor of IGF1R, was highly activated correspondingly in ccRCC tissues. CONCLUSION The low expression of miR-99b and miR-99b* contributes to ccRCC development and miR-99b acts as an onco-suppressor by suppressing IGF1R and mTOR expression to down-regulate IGF1R/AKT/mTOR signaling.
Collapse
Affiliation(s)
- Tianqi Lin
- Department of Urology, Zhangzhou Affiliated Hospital of Fujian Medical UniversityZhangzhou, Fujian, China
| | - Yun Yang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen UniversityXiamen, Fujian, China
| | - Xiaohong Ye
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen UniversityXiamen, Fujian, China
| | - Jiayue Yao
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen UniversityXiamen, Fujian, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, High Throughput Drug Screening Platform, Xiamen UniversityXiamen, Fujian, China
| |
Collapse
|
11
|
Shinden Y, Hirashima T, Nohata N, Toda H, Okada R, Asai S, Tanaka T, Hozaka Y, Ohtsuka T, Kijima Y, Seki N. Molecular pathogenesis of breast cancer: impact of miR-99a-5p and miR-99a-3p regulation on oncogenic genes. J Hum Genet 2020; 66:519-534. [PMID: 33177704 DOI: 10.1038/s10038-020-00865-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
Our recent research has revealed that passenger strands of certain microRNAs (miRNAs) function as tumor-suppressive miRNAs in cancer cells, e.g., miR-101-5p, miR-143-5p, miR-144-5p, miR-145-3p, and miR-150-3p. Thus, they are important in cancer pathogenesis. Analysis of the miRNA expression signature of breast cancer (BrCa) showed that the expression levels of two miRNAs derived from pre-miR-99a (miR-99a-5p and miR-99a-3p) were suppressed in cancerous tissues. The aim of this study was to identify oncogenic genes controlled by pre-miR-99a that are closely involved in the molecular pathogenesis of BrCa. A total of 113 genes were identified as targets of pre-miR-99a regulation (19 genes modulated by miR-99a-5p, and 95 genes regulated by miR-99a-3p) in BrCa cells. Notably, FAM64A was targeted by both of the miRNAs. Among these targets, high expression of 16 genes (C5orf22, YOD1, SLBP, F11R, C12orf49, SRPK1, ZNF250, ZNF695, CDK1, DNMT3B, TRIM25, MCM4, CDKN3, PRPS, FAM64A, and DESI2) significantly predicted reduced survival of BrCa patients based upon The Cancer Genome Atlas (TCGA) database. In this study, we focused on FAM64A and investigated the relationship between FAM64A expression and molecular pathogenesis of BrCa subtypes. The upregulation of FAM64A was confirmed in BrCa clinical specimens. Importantly, the expression of FAM64A significantly differed between patients with Luminal-A and Luminal-B subtypes. Our data strongly suggest that the aberrant expression of FAM64A is involved in the malignant transformation of BrCa. Our miRNA-based approaches (identification of tumor-suppressive miRNAs and their controlled targets) will provide novel information regarding the molecular pathogenesis of BrCa.
Collapse
Affiliation(s)
- Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tadahiro Hirashima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Hiroko Toda
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Kijima
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
12
|
Garrido-Cano I, Constâncio V, Adam-Artigues A, Lameirinhas A, Simón S, Ortega B, Martínez MT, Hernando C, Bermejo B, Lluch A, Lopes P, Henrique R, Jerónimo C, Cejalvo JM, Eroles P. Circulating miR-99a-5p Expression in Plasma: A Potential Biomarker for Early Diagnosis of Breast Cancer. Int J Mol Sci 2020; 21:ijms21197427. [PMID: 33050096 PMCID: PMC7582935 DOI: 10.3390/ijms21197427] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs have emerged as new diagnostic and therapeutic biomarkers for breast cancer. Herein, we analysed miR-99a-5p expression levels in primary tumours and plasma of breast cancer patients to evaluate its usefulness as a minimally invasive diagnostic biomarker. MiR-99a-5p expression levels were determined by quantitative real-time PCR in three independent cohorts of patients: (I) Discovery cohort: breast cancer tissues (n = 103) and healthy breast tissues (n = 26); (II) Testing cohort: plasma samples from 105 patients and 98 healthy donors; (III) Validation cohort: plasma samples from 89 patients and 85 healthy donors. Our results demonstrated that miR-99a-5p was significantly downregulated in breast cancer tissues compared to healthy breast tissues. Conversely, miR-99a-5p levels were significantly higher in breast cancer patients than in healthy controls in plasma samples from both testing and validation cohorts, and ROC curve analysis revealed that miR-99a-5p has good diagnostic potential even to detect early breast cancer. In conclusion, miR-99a-5p’s deregulated expression distinguished healthy patients from breast cancer patients in two different types of samples (tissues and plasma). Interestingly, expression levels in plasma were significantly lower in healthy controls than in early-stage breast cancer patients. Our findings suggest circulating miR-99a-5p as a novel promising non-invasive biomarker for breast cancer detection.
Collapse
Affiliation(s)
- Iris Garrido-Cano
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
| | - Vera Constâncio
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
| | - Anna Adam-Artigues
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
| | - Ana Lameirinhas
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
| | - Soraya Simón
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Belen Ortega
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - María Teresa Martínez
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Cristina Hernando
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Begoña Bermejo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
| | - Ana Lluch
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Medicine, Universitat de València, 46010 Valencia, Spain
| | - Paula Lopes
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group–Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal; (V.C.); (P.L.); (R.H.)
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
- Correspondence: (C.J.); (J.M.C.); (P.E.); Tel.: +351-962447005 (C.J.); +34-961973517 (J.M.C.); +34-961973517 (P.E.)
| | - Juan Miguel Cejalvo
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, 46010 Valencia, Spain;
- Correspondence: (C.J.); (J.M.C.); (P.E.); Tel.: +351-962447005 (C.J.); +34-961973517 (J.M.C.); +34-961973517 (P.E.)
| | - Pilar Eroles
- Biomedical Research Institute INCLIVA, 46010 Valencia, Spain; (I.G.-C.); (A.A.-A.); (A.L.); (S.S.); (B.O.); (M.T.M.); (C.H.); (B.B.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- COST Action CA15204, 1210 Brussels, Belgium
- Department of Physiology, Universitat de València, 46010 Valencia, Spain
- Correspondence: (C.J.); (J.M.C.); (P.E.); Tel.: +351-962447005 (C.J.); +34-961973517 (J.M.C.); +34-961973517 (P.E.)
| |
Collapse
|
13
|
Brotto DB, Siena ÁDD, de Barros II, Carvalho SDCES, Muys BR, Goedert L, Cardoso C, Plaça JR, Ramão A, Squire JA, Araujo LF, Silva WAD. Contributions of HOX genes to cancer hallmarks: Enrichment pathway analysis and review. Tumour Biol 2020; 42:1010428320918050. [PMID: 32456563 DOI: 10.1177/1010428320918050] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Homeobox genes function as master regulatory transcription factors during development, and their expression is often altered in cancer. The HOX gene family was initially studied intensively to understand how the expression of each gene was involved in forming axial patterns and shaping the body plan during embryogenesis. More recent investigations have discovered that HOX genes can also play an important role in cancer. The literature has shown that the expression of HOX genes may be increased or decreased in different tumors and that these alterations may differ depending on the specific HOX gene involved and the type of cancer being investigated. New studies are also emerging, showing the critical role of some members of the HOX gene family in tumor progression and variation in clinical response. However, there has been limited systematic evaluation of the various contributions of each member of the HOX gene family in the pathways that drive the common phenotypic changes (or "hallmarks") and that underlie the transformation of normal cells to cancer cells. In this review, we investigate the context of the engagement of HOX gene targets and their downstream pathways in the acquisition of competence of tumor cells to undergo malignant transformation and tumor progression. We also summarize published findings on the involvement of HOX genes in carcinogenesis and use bioinformatics methods to examine how their downstream targets and pathways are involved in each hallmark of the cancer phenotype.
Collapse
Affiliation(s)
- Danielle Barbosa Brotto
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Ádamo Davi Diógenes Siena
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Isabela Ichihara de Barros
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Simone da Costa E Silva Carvalho
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Lucas Goedert
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Cibele Cardoso
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jessica Rodrigues Plaça
- National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Jeremy Andrew Squire
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada
| | - Luiza Ferreira Araujo
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil
| | - Wilson Araújo da Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,National Institute of Science and Technology in Stem Cell and Cell Therapy (INCT/CNPq) and Center for Cell-Based Therapy, CEPID/FAPESP, Ribeirão Preto, Brazil.,Center for Integrative System Biology (CISBi), NAP/USP, University of São Paulo, Ribeirão Preto, Brazil.,Center for Medical Genomics, Clinics Hospital, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Li J, Zeng T, Li W, Wu H, Sun C, Yang F, Yang M, Fu Z, Yin Y. Long non-coding RNA SNHG1 activates HOXA1 expression via sponging miR-193a-5p in breast cancer progression. Aging (Albany NY) 2020; 12:10223-10234. [PMID: 32497022 PMCID: PMC7346023 DOI: 10.18632/aging.103123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/24/2020] [Indexed: 01/04/2023]
Abstract
Breast cancer is the leading cause of cancer death in women worldwide. Long non-coding RNA small nucleolar RNA host gene 1 (SNHG1) has been reported to be involved in human diseases, including cancer. Here, we found that SNHG1 expression was significantly upregulated in human breast cancer tissues and cell lines. We explored the function of SNHG1 in breast cancer cells using in vitro and in vivo experiments and found that SNHG1 promotes breast cancer metastasis and proliferation. The potential molecular mechanism of SNHG1 in breast cancer cells may involve SNHG1 acting as a sponge of miR-193a-5p to activate the expression of the oncogene HOXA1. In summary, our study reveals a novel SNHG1/miR-193a-5p/HOXA1 competing endogenous RNA regulatory pathway in breast cancer progression and may provide new strategies for breast cancer therapy.
Collapse
Affiliation(s)
- Jun Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tianyu Zeng
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Wu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chunxiao Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Fan Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Mengzhu Yang
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ziyi Fu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.,Nanjing Maternal and Child Health Medical Institute, Nanjing Maternal and Child Health Care Hospital, Gynecology and Obstetrics Hospital Affiliated to Nanjing Medical University, Nanjing 210029, China
| | - Yongmei Yin
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
15
|
Yousif AA, Eisa HA, Nawar AM, Abd El-latif MS, Behiry EG. Study of serum microRNA-99a relative expression as a diagnostic and prognostic noninvasive biomarker of breast cancer in Egyptian females. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Veryaskina YA, Titov SE, Kometova VV, Rodionov VV, Zhimulev IF. Intratumoral Heterogeneity of Expression of 16 miRNA in Luminal Cancer of the Mammary Gland. Noncoding RNA 2020; 6:ncrna6020016. [PMID: 32403384 PMCID: PMC7344477 DOI: 10.3390/ncrna6020016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/16/2022] Open
Abstract
The purpose of this work is to determine the intratumoral distribution of miRNA expression profiles in luminal breast cancer (BC). The study included 33 certain BC cases of the luminal A or luminal B (Her2-) subtypes. The relative expression levels of miRNA-20a; -21; -125b; -126; -200b; -181a; -205; -221; -222; -451a; -99a; -145; -200a; -214; -30a; -191; and small nuclear RNAs U6, U54, and U58 were measured by RT-qPCR in four intratumor areas in each of 33 luminal BC specimens and in surrounding normal mammary gland tissues. Comparative analysis of miRNA expression levels between normal mammary gland tissue and different intratumor areas revealed that only four miRNAs (miRNA-21, -200b, -200a, -191) appear as consistently differentiating markers. A comparative analysis of miRNA expression levels between normal mammary gland tissue and the tumor border revealed statistically significant differences for ten miRNAs; 10 miRNAs show differential expression between normal mammary gland tissue and central tumor specimens; 9 miRNAs show differential expression between normal mammary gland tissue and tumor periphery 1; 13 miRNAs show differential expression between normal mammary gland tissue and tumor periphery 2. After comparing the tumor periphery 1 and tumor center, we found statistically significant differences in expression between five miRNAs and after comparing the tumor periphery 2 and tumor center, differences were observed for 12 miRNAs. MiRNA expression levels are subject to considerable variation, depending on the intratumor area. This may explain the inconsistency in miRNA expression estimates in BC coming from different laboratories.
Collapse
Affiliation(s)
- Yuliya A. Veryaskina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- Correspondence:
| | - Sergei E. Titov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- AO Vector-Best, 630117 Novosibirsk, Russia
| | - Vlada V. Kometova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of the Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia; (V.V.K.); (V.V.R.)
| | - Valerii V. Rodionov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V. I. Kulakov of the Ministry of Healthcare of the Russian Federation, 117997 Moscow, Russia; (V.V.K.); (V.V.R.)
| | - Igor F. Zhimulev
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
| |
Collapse
|
17
|
de Bessa Garcia SA, Araújo M, Pereira T, Mouta J, Freitas R. HOX genes function in Breast Cancer development. Biochim Biophys Acta Rev Cancer 2020; 1873:188358. [PMID: 32147544 DOI: 10.1016/j.bbcan.2020.188358] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer develops in the mammary glands during mammalian adulthood and is considered the second most common type of human carcinoma and the most incident and mortal in the female population. In contrast to other human structures, the female mammary glands continue to develop after birth, undergoing various modifications during pregnancy, lactation and involution under the regulation of hormones and transcription factors, including those encoded by the HOX clusters (A, B, C, and D). Interestingly, HOX gene deregulation is often associated to breast cancer development. Within the HOXB cluster, 8 out of the 10 genes present altered expression levels in breast cancer with an impact in its aggressiveness and resistance to hormone therapy, which highlights the importance of HOXB genes as potential therapeutic targets used to overcome the limitations of tamoxifen-resistant cancer treatments. Here, we review the current state of knowledge on the role of HOX genes in breast cancer, specially focus on HOXB, discussing the causes and consequences of HOXB gene deregulation and their relevance as prognostic factors and therapeutic targets.
Collapse
Affiliation(s)
- Simone Aparecida de Bessa Garcia
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Mafalda Araújo
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Tiago Pereira
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - João Mouta
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal
| | - Renata Freitas
- IBMC- Institute for Molecular and Cell Biology, I3S- Institute for Innovation and Health Research, Universidade do Porto, Portugal.; ICBAS- Institute of Biomedical Sciences Abel Salazar, Universidade do Porto, Portugal..
| |
Collapse
|
18
|
Khalaj M, Woolthuis CM, Hu W, Durham BH, Chu SH, Qamar S, Armstrong SA, Park CY. miR-99 regulates normal and malignant hematopoietic stem cell self-renewal. J Exp Med 2020; 214:2453-2470. [PMID: 28733386 PMCID: PMC5551568 DOI: 10.1084/jem.20161595] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 04/18/2017] [Accepted: 06/08/2017] [Indexed: 12/17/2022] Open
Abstract
The mechanisms that regulate self-renewal in hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) are poorly understood. Herein, Khalaj et al. identify microRNA-99 (miR-99) as a novel noncoding RNA critical for the maintenance of HSCs and LSCs and demonstrate that miR-99 mediates its role by suppressing multiple target genes, including HOXA1. The microRNA-99 (miR-99) family comprises a group of broadly conserved microRNAs that are highly expressed in hematopoietic stem cells (HSCs) and acute myeloid leukemia stem cells (LSCs) compared with their differentiated progeny. Herein, we show that miR-99 regulates self-renewal in both HSCs and LSCs. miR-99 maintains HSC long-term reconstitution activity by inhibiting differentiation and cell cycle entry. Moreover, miR-99 inhibition induced LSC differentiation and depletion in an MLL-AF9–driven mouse model of AML, leading to reduction in leukemia-initiating activity and improved survival in secondary transplants. Confirming miR-99’s role in established AML, miR-99 inhibition induced primary AML patient blasts to undergo differentiation. A forward genetic shRNA library screen revealed Hoxa1 as a critical mediator of miR-99 function in HSC maintenance, and this observation was independently confirmed in both HSCs and LSCs. Together, these studies demonstrate the importance of noncoding RNAs in the regulation of HSC and LSC function and identify miR-99 as a critical regulator of stem cell self-renewal.
Collapse
Affiliation(s)
- Mona Khalaj
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Weill Graduate School of Medical Sciences, Cornell University, New York, NY
| | - Carolien M Woolthuis
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - S Haihua Chu
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Sarah Qamar
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY.,Weill Graduate School of Medical Sciences, Cornell University, New York, NY
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Christopher Y Park
- Department of Pathology, New York University School of Medicine, New York, NY
| |
Collapse
|
19
|
Long X, Shi Y, Ye P, Guo J, Zhou Q, Tang Y. MicroRNA-99a Suppresses Breast Cancer Progression by Targeting FGFR3. Front Oncol 2020; 9:1473. [PMID: 32038996 PMCID: PMC6993250 DOI: 10.3389/fonc.2019.01473] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs have been implicated in acting as oncogenes or anti-oncogenes in breast cancer by regulating diverse cellular pathways. In the present study, we investigated the effects of miR-99a on cell biological processes in breast cancer. Breast cancer cells were transfected with a lentivirus that expressed miR-99a or a scramble control sequence. Functional experiments showed that miR-99a reduced breast cancer cell proliferation, invasion and migration. Tumor xenograft experiment suggested miR-99a overexpression inhibited breast cancer cell proliferation in vivo. The dual luciferase assay revealed that miR-99a directly targets FGFR3 by binding its 3′ UTR in breast cancer. miR-99a was strongly down-regulated in breast tumor and FGFR3 was significantly up-regulated in breast tumor. FGFR3 silencing inhibited proliferation, migration and invasion of breast cancer cells. Deep sequencing indicated that miR-99a overexpression regulates multiple signaling pathways and triggers the alteration of the whole transcriptome. We constructed correlated expression networks based on circRNA/miRNA and lncRNA/miRNA competing endogenous RNAs regulation and miRNA-mRNA interaction, which provided new insights into the regulatory mechanism of miR-99a. In conclusion, these results suggest that the miR-99a/FGFR3 axis is an important tumor regulator in breast cancer and might have potential as a therapeutic target.
Collapse
Affiliation(s)
- Xinghua Long
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Shi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Peng Ye
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Juan Guo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qian Zhou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yueting Tang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Zhao J, He L, Yin L. lncRNA NEAT1 Binds to MiR-339-5p to Increase HOXA1 and Alleviate Ischemic Brain Damage in Neonatal Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:117-127. [PMID: 32163893 PMCID: PMC7066222 DOI: 10.1016/j.omtn.2020.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/16/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
Hypoxic-ischemic brain damage (HIBD) is a major cause of fatality and morbidity in neonates. However, current treatment approaches to alleviate HIBD are not effective. Various studies have highlighted the role of microRNAs (miRNAs) in various biological functions in multiple diseases. This study investigated the role of miR-339-5p in HIBD progression. Neonatal HIBD mouse model was induced by ligation of the right common carotid artery. Neuronal cell model exposed to oxygen-glucose deprivation (OGD) was also established. The miR-339-5p expression in mouse brain tissues and neuronal cells was quantified, and the effects of miR-339-5p on neuronal cell activity and apoptosis induced by hypoxia-ischemia were explored. The overexpression or knockdown of long non-coding RNA (lncRNA) nuclear-enriched abundant transcript 1 (NEAT1) in hippocampal neurons was used to determine the effect of lncRNA NEAT1 on the expression of miR-339-5p and homeobox A1 (HOXA1) and apoptosis. Short hairpin RNA targeting lncRNA NEAT1 and miR-339-5p antagomir were used in neonatal HIBD mice to identify their roles in HIBD. Our results revealed that miR-339-5p was downregulated in neonatal HIBD mice and neuronal cells exposed to OGD. Downregulated miR-339-5p promoted neuronal cell viability and suppressed apoptosis during hypoxia-ischemia. Moreover, lncRNA NEAT1 competitively bound to miR-339-5p to increase HOXA1 expression and inhibited neuronal cell apoptosis under hypoxic-ischemic conditions. The key observations of the current study present evidence demonstrating that lncRNA NEAT1 upregulated HOXA1 to alleviate HIBD in mice by binding to miR-339-5p.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P.R. China.
| | - Ling He
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P.R. China
| | - Lingling Yin
- Department of Neonatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P.R. China
| |
Collapse
|
21
|
Han Z, Guan Y, Liu B, Lin Y, Yan Y, Wang H, Wang H, Jing B. MicroRNA-99a-5p alleviates atherosclerosis via regulating Homeobox A1. Life Sci 2019; 232:116664. [DOI: 10.1016/j.lfs.2019.116664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
22
|
Elevated microRNA-145 inhibits the development of oral squamous cell carcinoma through inactivating ERK/MAPK signaling pathway by down-regulating HOXA1. Biosci Rep 2019; 39:BSR20182214. [PMID: 31138758 PMCID: PMC6591566 DOI: 10.1042/bsr20182214] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/19/2019] [Accepted: 05/08/2019] [Indexed: 01/18/2023] Open
Abstract
Background: Oral cancer is one of the most frequent solid cancers worldwide, and oral squamous cell carcinoma (OSCC) constitutes approximately 90% of oral cancers. The discovery of reliable prognostic indicators would be a potential strategy for OSCC treatment. In the present study, we aim to explore the underlying mechanism by which microRNA-145 (miR-145) affected OSCC. Methods: Forty-eight patients diagnosed with OSCC were enrolled to obtain the OSCC tissues and adjacent normal tissues. The targeting relationship between miR-145 and Homeobox A1 (HOXA1) was verified. In order to assess the effects of miR-145 in OSCC and the detailed regulatory mechanism, the SCC-9 cell line was adopted, in which expression of miR-145 and HOXA1 were altered by transfection. Then, a series of in vitro and in vivo experiments were performed to evaluate the cell viability, migration, invasion, and tumor growth. Results: miR-145 was poorly expressed and HOXA1 was highly expressed in OSCC. HOXA1 was verified as a target of miR-145 to mediate the activation of the extracellular signal-regulated kinase/mitogen activated protein kinase (ERK/MAPK) signaling pathway. In the circumstance of miR-145 elevation or HOXA1 depletion, the SCC-9 cell line manifested with inhibited cell viability, invasion, and migration in vitro, coupled with reduced tumor growth in vivo, with a decreased expression of ERK/MAPK signaling pathway-related genes/proteins. Conclusion: These findings suggested that miR-145 can inhibit HOXA1 to inactivate the ERK/MAPK signaling pathway, thereby suppressing OSCC cell proliferation, migration, and invasion to further inhibit the development of OSCC, highlighting a novel therapeutic target for the OSCC treatment.
Collapse
|
23
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
24
|
Chen L, Hu J, Pan L, Yin X, Wang Q, Chen H. Diagnostic and prognostic value of serum miR-99a expression in oral squamous cell carcinoma. Cancer Biomark 2019; 23:333-339. [PMID: 30223386 DOI: 10.3233/cbm-181265] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Despite progress in the treatment of oral squamous cell carcinoma (OSCC) over past years, the prognosis for OSCC patients remains dismal. MicroRNA-99a (miR-99a) has been found to involve in the development of many cancer types, but its clinical role in OSCC is unclear. OBJECTIVE The aim of this study was to explore the clinical implications of serum miR-99a in OSCC. METHODS This study detected serum miR-99a levels in 121 OSCC cases and 55 healthy controls by using quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis. RESULTS The data showed that serum miR-99a expression was significantly decreased in OSCC patients compared with normal controls. OSCC patients with low miR-99a expression experienced more frequent poor differentiation and advanced clinical stage. Furthermore, in screening OSCC cases from normal controls, miR-99a could yield a receiver-operating characteristic (ROC) area under the curve (AUC) of 0.911 with 83.6% specificity and 80.2% sensitivity. Notably, patients with high miR-99a expression had longer overall survival and recurrence free survival. Finally, serum miR-99a was identified to be an independent prognostic indicator for OSCC. CONCLUSIONS These results suggested that miR-99a might be a valuable marker for the prediction of early detection and prognosis in OSCC.
Collapse
Affiliation(s)
- Liang Chen
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China.,Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Jing Hu
- Department of Stomatology, PLA Army General Hospital, Beijing, China.,Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Lina Pan
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Xiaochun Yin
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Qibao Wang
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Hui Chen
- Department of Endodontics, Jinan Stomatological Hospital, Jinan, Shandong, China
| |
Collapse
|
25
|
Wang X, Chen T, Zhang Y, Zhang N, Li C, Li Y, Liu Y, Zhang H, Zhao W, Chen B, Wang L, Yang Q. Long noncoding RNA Linc00339 promotes triple‐negative breast cancer progression through miR‐377‐3p/HOXC6 signaling pathway. J Cell Physiol 2019; 234:13303-13317. [PMID: 30618083 DOI: 10.1002/jcp.28007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaolong Wang
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Tong Chen
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Yan Zhang
- Department of Breast and Thyroid Surgery Jinan Central Hospital Affiliated to Shandong University Jinan Shandong China
| | - Ning Zhang
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Chen Li
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Yaming Li
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Ying Liu
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Hanwen Zhang
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
| | - Wenjing Zhao
- Department of Pathology Tissue Bank Qilu Hospital, Shandong University Jinan Shandong China
| | - Bing Chen
- Department of Pathology Tissue Bank Qilu Hospital, Shandong University Jinan Shandong China
| | - Lijuan Wang
- Department of Pathology Tissue Bank Qilu Hospital, Shandong University Jinan Shandong China
| | - Qifeng Yang
- Department of Breast Surgery Qilu Hospital, Shandong University Jinan Shandong China
- Department of Pathology Tissue Bank Qilu Hospital, Shandong University Jinan Shandong China
| |
Collapse
|
26
|
Klinge CM. Non-Coding RNAs in Breast Cancer: Intracellular and Intercellular Communication. Noncoding RNA 2018; 4:E40. [PMID: 30545127 PMCID: PMC6316884 DOI: 10.3390/ncrna4040040] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 02/07/2023] Open
Abstract
Non-coding RNAs (ncRNAs) are regulators of intracellular and intercellular signaling in breast cancer. ncRNAs modulate intracellular signaling to control diverse cellular processes, including levels and activity of estrogen receptor α (ERα), proliferation, invasion, migration, apoptosis, and stemness. In addition, ncRNAs can be packaged into exosomes to provide intercellular communication by the transmission of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) to cells locally or systemically. This review provides an overview of the biogenesis and roles of ncRNAs: small nucleolar RNA (snRNA), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), miRNAs, and lncRNAs in breast cancer. Since more is known about the miRNAs and lncRNAs that are expressed in breast tumors, their established targets as oncogenic drivers and tumor suppressors will be reviewed. The focus is on miRNAs and lncRNAs identified in breast tumors, since a number of ncRNAs identified in breast cancer cells are not dysregulated in breast tumors. The identity and putative function of selected lncRNAs increased: nuclear paraspeckle assembly transcript 1 (NEAT1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), steroid receptor RNA activator 1 (SRA1), colon cancer associated transcript 2 (CCAT2), colorectal neoplasia differentially expressed (CRNDE), myocardial infarction associated transcript (MIAT), and long intergenic non-protein coding RNA, Regulator of Reprogramming (LINC-ROR); and decreased levels of maternally-expressed 3 (MEG3) in breast tumors have been observed as well. miRNAs and lncRNAs are considered targets of therapeutic intervention in breast cancer, but further work is needed to bring the promise of regulating their activities to clinical use.
Collapse
Affiliation(s)
- Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
27
|
Geng Y, Sui C, Xun Y, Lai Q, Jin L. MiRNA-99a can regulate proliferation and apoptosis of human granulosa cells via targeting IGF-1R in polycystic ovary syndrome. J Assist Reprod Genet 2018; 36:211-221. [PMID: 30374732 DOI: 10.1007/s10815-018-1335-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE We aimed to evaluate the regulation of miR-99a to the biological functions of granulosa cells in polycystic ovary syndrome (PCOS) via targeting IGF-1R. METHODS We collected aspirated follicular fluid in both patients with and without PCOS. Granulosa cells (GCs) were isolated through Percoll differential centrifugation to detect both miR-99a and IGF-1R expressions. We further transfected COV434 cells with miR-99a mimics to establish a miRNA-99a (miR-99a) overexpression model. We explored the regulation of miR-99a to the proliferation and apoptosis of human GCs via IGF-1R in COV434. The effect of different insulin concentrations on miR-99a expression was also evaluated. RESULTS MiR-99a was significantly downregulated while IGF-1R was upregulated in patients with PCOS. MiR-99a can regulate IGF-1R on a post-transcriptional level. After transfection of miR-99a mimics, the proliferation rate was decreased and apoptosis rate was increased significantly in COV434. Exogenous insulin-like growth factor 1 (IGF-1) treatment could reverse the effect of miR-99a. MiR-99a was negatively and dose-dependently regulated by insulin in vitro. CONCLUSIONS MiR-99a expression was downregulated in patients with PCOS, the degree of which may be closely related to insulin resistance and hyperinsulinemia. MiR-99a could attenuate proliferation and promote apoptosis of human GCs through targeting IGF-1R, which could partly explain the abnormal folliculogenesis in PCOS.
Collapse
Affiliation(s)
- Yudi Geng
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yang Xun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiaohong Lai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
28
|
Zhang Y, Fang J, Zhao H, Yu Y, Cao X, Zhang B. Retracted
: Downregulation of microRNA‐1469 promotes the development of breast cancer via targeting HOXA1 and activating PTEN/PI3K/AKT and Wnt/β‐catenin pathways. J Cell Biochem 2018; 120:5097-5107. [DOI: 10.1002/jcb.27786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/06/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Yonghui Zhang
- Department of Breast Surgery Peking University International Hospital, Peking University Beijing China
| | - Jing Fang
- Department of Head and Neck Surgery Anhui Provincial Cancer Hospital, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China Hefei Anhui China
| | - Hongmeng Zhao
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| | - Yue Yu
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| | - Xuchen Cao
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| | - Bin Zhang
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| |
Collapse
|
29
|
Balatti V, Oghumu S, Bottoni A, Maharry K, Cascione L, Fadda P, Parwani A, Croce C, Iwenofu OH. MicroRNA Profiling of Salivary Duct Carcinoma Versus Her2/Neu Overexpressing Breast Carcinoma Identify miR-10a as a Putative Breast Related Oncogene. Head Neck Pathol 2018; 13:344-354. [PMID: 30259272 PMCID: PMC6684709 DOI: 10.1007/s12105-018-0971-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
Salivary duct carcinomas (SDC) and Her2/Neu3-overexpressing invasive breast carcinomas (HNPIBC/IBC) are histologically indistinguishable. We investigated whether common histopathologic and immunophenotypic features of SDC and IBC are mirrored by a similar microRNA (miRNA) profile. MiRNA profiling of 5 SDCs, 6 IBCs Her2/Neu3+, and 5 high-grade ductal breast carcinoma in situ (DCIS) was performed by NanoString platform. Selected miRNAs and HOXA1 gene were validated by RT-PCR. We observed similar miRNA expression profiles between IBC and SDC with the exception of 2 miRNAs, miR-10a and miR-142-3p, which were higher in IBC tumors. DCIS tumors displayed increased expression of miR-10a, miR-99a, miR-331-3p and miR-335, and decreased expression of miR-15a, miR-16 and miR-19b compared to SDC. The normal salivary gland and breast tissues also showed similar expression profiles. Interestingly, miR-10a was selectively increased in both IBC and normal breast tissue compared to SDC and normal salivary gland tissue. Moreover, our NanoString and RT-PCR data confirmed that miR-10a was upregulated in IBC and DCIS compared to SDC. Finally, we show downregulation of HOXA1, a miR-10 target, in IBC tumors compared to normal breast tissue. Taken together, our data demonstrates that, based on miRNA profiling, SDC is closely related to HNPIBC. Our results also suggest that miR-10a is differentially expressed in IBC compared to SDC and may have potential utility as a diagnostic biomarker in synchronous or metachronous malignant epithelial malignancies involving both organs. In addition, miR-10a could be playing an important role as a mammary-specific oncogene, involved in breast cancer initiation (DCIS) and progression (IBC), through mechanisms that include modulation of HOXA1 gene expression.
Collapse
Affiliation(s)
- Veronica Balatti
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Steve Oghumu
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, USA
| | - Arianna Bottoni
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Kati Maharry
- Department of Epidemiology, College of Public Health, The Ohio State University, Columbus, USA
| | - Luciano Cascione
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA ,Institute of Oncology Research, Bellinzona, Switzerland
| | - Paolo Fadda
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - Anil Parwani
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, USA
| | - Carlo Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University, Columbus, USA
| | - O. Hans Iwenofu
- Department of Pathology and Laboratory Medicine, The Ohio State University, Columbus, USA
| |
Collapse
|
30
|
Cheng Z, Zhou L, Hu K, Dai Y, Pang Y, Zhao H, Wu S, Qin T, Han Y, Hu N, Chen L, Wang C, Zhang Y, Wu D, Ke X, Shi J, Fu L. Prognostic significance of microRNA-99a in acute myeloid leukemia patients undergoing allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2018; 53:1089-1095. [PMID: 29515250 DOI: 10.1038/s41409-018-0146-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 02/05/2023]
Abstract
Overexpression of microRNA-99a (miR-99a) have been associated with adverse prognosis in acute myeloid leukemia (AML). Nevertheless, whether it also predicts poor outcome in post-allogeneic hematopoietic stem cell transplantation (allo-HSCT) AML patients remains unclear. To further elucidate the prognostic value of miR-99a, 74 AML patients with miR-99a expression report who underwent allo-HSCT from The Cancer Genome Atlas database were identified and grouped into either miR-99ahigh or miR-99alow based on their miR-99a expression levels relative to the median. Two groups had similar clinical and molecular characteristics except that miR-99ahigh group had fewer patients of the French-American-British M4 subtype (P = 0.018) and more frequent CEBPA mutations (P = 0.005). Univariate analysis indicated that high miR-99a expression was unfavorable for both event-free survival (EFS) and overall survival (OS; P = 0.029; P = 0.012, respectively). Multivariate analysis suggested that high miR-99a expression was an independent risk factor for both EFS and OS in AML patients who underwent allo-HSCT [hazard ratio (HR) 1.909, 95% confidence interval (CI) 1.043-3.494, P = 0.036 and HR 2.179, 95% CI 1.192-3.982, P = 0.011, respectively]. Our results further proved that high miR-99a expression could predict worse outcome in AML patients, even in those who underwent intensive post-remission therapy such as allo-HCST.
Collapse
Affiliation(s)
- Zhiheng Cheng
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China
| | - Lei Zhou
- Department of Hematology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kai Hu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, China
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, 48073, USA
| | - Hongmian Zhao
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Sun Wu
- Department of Hematology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, China
| | - Tong Qin
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yu Han
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Ning Hu
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Li Chen
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Chao Wang
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yijie Zhang
- Department of Respiratory, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Depei Wu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China
| | - Jinlong Shi
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
- Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China.
- Department of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China.
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.
| |
Collapse
|
31
|
Liu X, Yao B, Wu Z. miRNA-199a-5p suppresses proliferation and invasion by directly targeting NF-κB1 in human ovarian cancer cells. Oncol Lett 2018; 16:4543-4550. [PMID: 30214589 DOI: 10.3892/ol.2018.9170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
The aberrant expression of microRNA (miRNA)-199a-5p has been frequently reported in a number of cancer types, but to the best of our knowledge, this has not been reported in ovarian cancer (OC). The role and the molecular mechanism of miR-199a-5p in OC have not been reported. Therefore, the present study investigated the effects of miR-199a-5p overexpression on the proliferation and invasion of OC cells. The level of miR-199a-5p in OC cell lines was determined by reverse transcription-quantitative polymerase chain reaction. The miR-199a-5p mimic was transiently transfected into OC cells using Lipofectamine™ 2000 reagent. Subsequently, the BrdU-ELISA results indicated that the exogenous expression of miR-199a-5p inhibited cell proliferation. In addition, miR-199a-5p overexpression was able to inhibit the invasion of HO-8910 and ES-2 cells. RT-qPCR was performed to determine the expression of matrix metalloproteinase (MMP)-2 and -9 in OC cells. NF-κB1 expression was reduced by upregulation of miR-199a-5p. Bioinformatics analysis predicted that NF-κB1 was a potential target of miR-199a-5p. Luciferase reporter assay further confirmed that miR-199a-5p was able to directly target the 3'UTR of NF-κB1. In conclusion, miRNA-199a-5p may suppress the proliferation and invasion of human ovarian cancer cells by directly targeting NF-κB1.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Department of Internal Medicine-Oncology, Xinchang People's Hospital of Zhejiang, Shaoxing, Zhejiang 312500, P.R. China
| | - Baofeng Yao
- Department of Intensive Care Unit, Putuo Hospital of Zhejiang, Zhoushan, Zhejiang 316100, P.R. China
| | - Zhiming Wu
- Department of General Surgery, Shaoxing Hospital of China Medical University, Shaoxing, Zhejiang 312030, P.R. China
| |
Collapse
|
32
|
Yan HB, Zhang Y, Cen JM, Wang X, Gan BL, Huang JC, Li JY, Song QH, Li SH, Chen G. Expression of microRNA-99a-3p in Prostate Cancer Based on Bioinformatics Data and Meta-Analysis of a Literature Review of 965 Cases. Med Sci Monit 2018; 24:4807-4822. [PMID: 29997385 PMCID: PMC6069561 DOI: 10.12659/msm.908057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND microRNAs (miRNAs) have a role as biomarkers in human cancer. The aim of this study was to use bioinformatics data, and review of cases identified from the literature, to investigate the role of microRNA-99a-3p (miR-99a-3p) in prostate cancer, including the identification of its target genes and signaling pathways. MATERIAL AND METHODS Meta-analysis from a literature review included 965 cases of prostate cancer. Bioinformatics databases interrogated for miR-99a-3p in prostate cancer included The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and ArrayExpress. Twelve computational predictive algorithms were developed to integrate miR-99a-3p target gene prediction data. Bioinformatics analysis data from Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analysis were used investigate the possible pathways and target genes for miR-99a-3p in prostate cancer. RESULTS TCGA data showed that miR-99a was down-regulated in prostate cancer when compared with normal prostate tissue. Receiver-operating characteristic (ROC) curve area under the curve (AUC) for miR-99a-3p was 0.660 (95% CI, 0.587-0.732) or a moderate level of discriminations. Pathway analysis showed that miR-99a-3p was associated with the Wnt and vascular endothelial growth factor (VEGF) signaling pathways. The PPP3CA and HYOU1 genes, selected from the PPI network, were highly expressed in prostate cancer tissue compared with normal prostate tissue, and negatively correlated with the expression of miR-99a-3p. CONCLUSIONS In prostate cancer, miR-99a-3p expression was associated with the Wnt and VEGF signaling pathways, which might inhibit the expression of PPP3CA or HYOU1.
Collapse
Affiliation(s)
- Hai-Biao Yan
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jie-Mei Cen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiao Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, Shandong, China (mainland)
| | - Bin-Liang Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jia-Cheng Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Jia-Yi Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qian-Hui Song
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Sheng-Hua Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
33
|
Loginov VI, Filippova EA, Kurevlev SV, Fridman MV, Burdennyy AM, Braga EA. Suppressive and Hypermethylated MicroRNAs in the Pathogenesis of Breast Cancer. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418070086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
34
|
Chen YT, Yao JN, Qin YT, Hu K, Wu F, Fang YY. Biological role and clinical value of miR-99a-5p in head and neck squamous cell carcinoma (HNSCC): A bioinformatics-based study. FEBS Open Bio 2018; 8:1280-1298. [PMID: 30087832 PMCID: PMC6070648 DOI: 10.1002/2211-5463.12478] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/19/2018] [Accepted: 06/11/2018] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) are confirmed to be tumor promoters or suppressors in multiple squamous cell carcinomas (SCCs). miR‐99a‐5p has been demonstrated to be downregulated in cancerous tissues, but its functional role in head and neck SCC (HNSCC) and its mechanism of action have not been fully elucidated. Here, we studied the expression of miR‐99a‐5p in HNSCC and performed a clinical value assessment and then extracted mature expression data from The Cancer Genome Atlas (TCGA) and microarrays from Gene Expression Omnibus (GEO). Furthermore, biological analysis was constructed via online prediction tools. The results revealed that miR‐99a‐5p expression was markedly lower in HNSCC tissues than in normal tissues, which also showed significance in the prognosis of HNSCC. However, its diagnostic value could not be verified due to the lack of body fluid samples. Additionally, miR‐99a‐5p was expressed at higher levels in patients with low histological grade neoplasms than those with high histological grade neoplasms. The age of the patient might also be a possible clinical parameter affecting miR‐99a‐5p expression. Furthermore, miR‐99a‐5p significantly influenced HNSCC progression by regulating the PI3K‐Akt signaling pathway, in which the key target genes were upregulated in 519 HNSCC tissues compared to 44 normal tissues, as determined by the Gene Expression Profiling Interactive Analysis (GEPIA). In conclusion, our study may provide insights into the expression and mechanism of miR‐99a‐5p in HNSCC. Further studies are required to elucidate the role of miR‐99a‐5p and its potential clinical applications for HNSCC.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Jian-Ni Yao
- Department of Pathology First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Yu-Tao Qin
- Department of Radiation Oncology Radiation Oncology Clinical Medical Research Center of Guangxi First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Kai Hu
- Department of Radiation Oncology Radiation Oncology Clinical Medical Research Center of Guangxi First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Fang Wu
- Department of Radiation Oncology Radiation Oncology Clinical Medical Research Center of Guangxi First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| | - Ye-Ying Fang
- Department of Radiation Oncology Radiation Oncology Clinical Medical Research Center of Guangxi First Affiliated Hospital of Guangxi Medical University Nanning Guangxi China
| |
Collapse
|
35
|
Zhang Y, Li XJ, He RQ, Wang X, Zhang TT, Qin Y, Zhang R, Deng Y, Wang HL, Luo DZ, Chen G. Upregulation of HOXA1 promotes tumorigenesis and development of non‑small cell lung cancer: A comprehensive investigation based on reverse transcription-quantitative polymerase chain reaction and bioinformatics analysis. Int J Oncol 2018; 53:73-86. [PMID: 29658571 PMCID: PMC5958640 DOI: 10.3892/ijo.2018.4372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Homeobox A1 (HOXA1) serves an oncogenic role in multiple cancer types. However, the role of HOXA1 in non-small cell lung cancer (NSCLC) remains unclear. In the present study, use of reverse transcription-quantitative polymerase chain reaction and the databases of The Cancer Genome Atlas (TCGA), Oncomine, Gene Expression Profiling Interactive Analysis and the Multi Experiment Matrix were combined to assess the expression of HOXA1 and its co-expressed genes in NSCLC. Bioinformatic analyses, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network and protein-protein interaction analyses, were used to investigate the underlying molecular mechanism effected by the co-expressed genes. Additionally, the potential miRNAs targeting HOXA1 were investigated. The results showed that HOXA1 was upregulated in NSCLC. The area under the curve of HOXA1 indicated a moderate diagnostic value of the HOXA1 level in NSCLC. According to GO and KEGG analyses, the co-expressed genes may be involved in 'dGTP metabolic processes', 'network-forming collagen trimers', 'centromeric DNA binding' and 'the p53 signaling pathway'. Three miRNAs (miR-181b-5p, miR-28-5p and miR-181d-5p) targeting HOXA1 were each predicted by 10 algorithms; miR-181b and miR-181d levels were downregulated in LUSC tissues compared with those in normal lung tissues based on data from the TCGA database, and inverse correlations were found between HOXA1 and miR-181b (r=−0.205, P<0.001) and miR-181d (r=−0.106, P=0.020). We speculate that HOXA1 may be the direct target of miR-181b-5p or miR-181d-5p in LUSC, and HOXA1 may serve a significant role in NSCLC by regulating various pathways, particularly the p53 signaling pathway. However, the detailed mechanism should be verified by functional experiments.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao-Jiao Li
- Department of Positron Emission Tomography-Computed Tomography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology,, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tong-Tong Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuan Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yun Deng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Han-Lin Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
36
|
Si X, Zhang X, Hao X, Li Y, Chen Z, Ding Y, Shi H, Bai J, Gao Y, Cheng T, Yang FC, Zhou Y. Upregulation of miR-99a is associated with poor prognosis of acute myeloid leukemia and promotes myeloid leukemia cell expansion. Oncotarget 2018; 7:78095-78109. [PMID: 27801668 PMCID: PMC5363646 DOI: 10.18632/oncotarget.12947] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/14/2016] [Indexed: 01/05/2023] Open
Abstract
Leukemia stem cells (LSCs) can resist available treatments that results in disease progression and/or relapse. To dissect the microRNA (miRNA) expression signature of relapse in acute myeloid leukemia (AML), miRNA array analysis was performed using enriched LSCs from paired bone marrow samples of an AML patient at different disease stages. We identified that miR-99a was significantly upregulated in the LSCs obtained at relapse compared to the LSCs collected at the time of initial diagnosis. We also found that miR-99a was upregulated in LSCs compared to non-LSCs in a larger cohort of AML patients, and higher expression levels of miR-99a were significantly correlated with worse overall survival and event-free survival in these AML patients. Ectopic expression of miR-99a led to increased colony forming ability and expansion in myeloid leukemia cells after exposure to chemotherapeutic drugs in vitro and in vivo, partially due to overcoming of chemotherapeutic agent-mediated cell cycle arrest. Gene profiling and bioinformatic analyses indicated that ectopic expression of miR-99a significantly upregulated genes that are critical for LSC maintenance, cell cycle, and downstream targets of E2F and MYC. This study suggests that miR-99a has a novel role and potential use as a biomarker in myeloid leukemia progression.
Collapse
Affiliation(s)
- Xiaohui Si
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoyun Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xing Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yunan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zizhen Chen
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yahui Ding
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hui Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Bai
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yingdai Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China.,Collaborative Innovation Center for Cancer Medicine, Tianjin, China
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.,Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin, China
| |
Collapse
|
37
|
Chen L, Hu N, Wang C, Zhao H, Gu Y. Long non-coding RNA CCAT1 promotes multiple myeloma progression by acting as a molecular sponge of miR-181a-5p to modulate HOXA1 expression. Cell Cycle 2018; 17:319-329. [PMID: 29228867 DOI: 10.1080/15384101.2017.1407893] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Multiple myeloma (MM) is the second most common hematological cancer all over the world. Long non-coding RNA (lncRNA) colon cancer associated transcript-1 (CCAT1) has been reported to play important roles in the development and progression of multiple human malignancies. However, little is known about its functional role and molecular mechanism in MM. The aim of this study was to investigate the clinical and biological significance of CCAT1 in MM. Our data showed that the relative expression levels of CCAT1 were significantly upregulated in MM tissues and cell lines compared with healthy donors and normal plasma cells (nPCs). High expression of CCAT1 was correlated shorter overall survival of MM patients. CCAT1 knockdown significantly inhibited cell proliferation, induced cell cycle arrest at G0/G1 phase and promoted cell apoptosis in vitro, and suppressed tumor growth in vivo. MiR-181a-5p was a direct target of CCAT1, and repression of miR-181a-5p could rescue the inhibition of CCAT1 knockdown on MM progression. In addition, CCAT1 positively regulated HOXA1 expression through sponging miR-181a-5p in MM cells.taken together, lncRNA CCAT1 exerted an oncogenic role in MM by acting as a ceRNA of miR-181a-5p. These results suggest that CCAT1 may serve as a novel diagnostic marker and therapeutic target for MM.
Collapse
Affiliation(s)
- Li Chen
- a Department of Hematology , Huaihe Hospital of Henan University , Kaifeng 475000 , Henan China
| | - Ning Hu
- a Department of Hematology , Huaihe Hospital of Henan University , Kaifeng 475000 , Henan China
| | - Chao Wang
- a Department of Hematology , Huaihe Hospital of Henan University , Kaifeng 475000 , Henan China
| | - Hongmian Zhao
- a Department of Hematology , Huaihe Hospital of Henan University , Kaifeng 475000 , Henan China
| | - Yueli Gu
- b Department of Hematology , The First People's Hospital of Shangqiu , Shangqiu 476100 , Henan China
| |
Collapse
|
38
|
Mei LL, Qiu YT, Huang MB, Wang WJ, Bai J, Shi ZZ. MiR-99a suppresses proliferation, migration and invasion of esophageal squamous cell carcinoma cells through inhibiting the IGF1R signaling pathway. Cancer Biomark 2017; 20:527-537. [DOI: 10.3233/cbm-170345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
39
|
Makishima H. Somatic SETBP1 mutations in myeloid neoplasms. Int J Hematol 2017; 105:732-742. [PMID: 28447248 DOI: 10.1007/s12185-017-2241-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 01/06/2023]
Abstract
SETBP1 is a SET-binding protein regulating self-renewal potential through HOXA-protein activation. Somatic SETBP1 mutations were identified by whole exome sequencing in several phenotypes of myelodysplastic/myeloproliferative neoplasms (MDS/MPN), including atypical chronic myeloid leukemia, chronic myelomonocytic leukemia, and juvenile myelomonocytic leukemia as well as in secondary acute myeloid leukemia (sAML). Surprisingly, its recurrent somatic activated mutations are located at the identical positions of germline mutations reported in congenital Schinzel-Giedion syndrome. In general, somatic SETBP1 mutations have a significant clinical impact on the outcome as poor prognostic factor, due to downstream HOXA-pathway as well as associated aggressive types of chromosomal defects (-7/del(7q) and i(17q)), which is consistent with wild-type SETBP1 activation in aggressive types of acute myeloid leukemia and leukemic evolution. Biologically, mutant SETBP1 attenuates RUNX1 and activates MYB. The studies of mouse models confirmed biological significance of SETBP1 mutations in myeloid leukemogenesis, particularly associated with ASXL1 mutations. SETBP1 is a major oncogene in myeloid neoplasms, which cooperates with various genetic events and causes distinct phenotypes of MDS/MPN and sAML.
Collapse
MESH Headings
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Chromosome Deletion
- Chromosomes, Human, Pair 7/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/metabolism
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/mortality
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/metabolism
- Leukemia, Myelomonocytic, Chronic/mortality
- Leukemia, Myelomonocytic, Chronic/therapy
- Leukemia, Myelomonocytic, Juvenile
- Mice
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Proto-Oncogene Proteins c-myb/genetics
- Proto-Oncogene Proteins c-myb/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
Collapse
Affiliation(s)
- Hideki Makishima
- Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
40
|
Ying X, Sun Y, He P. MicroRNA-137 inhibits BMP7 to enhance the epithelial-mesenchymal transition of breast cancer cells. Oncotarget 2017; 8:18348-18358. [PMID: 28407692 PMCID: PMC5392333 DOI: 10.18632/oncotarget.15442] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/11/2017] [Indexed: 12/22/2022] Open
Abstract
Bone morphogenetic protein-7 (BMP7) is known to antagonize transforming growth factor β 1 (TGFβ1)-mediated fibrosis through suppressing epithelial-mesenchymal transition (EMT). We recently reported that BMP7 also antagonizes the effects of TGFβ1 in breast cancer (BC) tumorigenesis-related EMT. Nevertheless, the control of BMP7 expression in BC remains ill-defined. Here, we detected significantly lower levels of BMP7 and significantly higher levels of microRNA-137 (miR-137) in the BC specimens, relative to paired adjacent non-tumor breast tissue. BMP7 and miR-137 levels were correlated inversely. Additionally, the high miR-137 levels in BC specimens were correlated with reduced patient survival. In vitro, overexpression of miR-137 significantly increased cell EMT and invasion, while depletion of miR-137 significantly decreased cell EMT and invasion in BC cells. The increases in BC cell invasiveness by miR-137 appeared to result from its suppression of BMP7, through direct binding of miR-137 to the 3'-UTR of BMP7 mRNA, thereby blocking its protein translation in BC cells. This study sheds light on miR-137 as a crucial factor that enhances BC cell EMT and invasiveness, and points to miR-137 as a promising innovative therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Xuexiang Ying
- 1 Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, China
| | - Yunpo Sun
- 1 Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, China
| | - Pingqing He
- 1 Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 200233, China
| |
Collapse
|
41
|
Wang JG, Tang WP, Liao MC, Liu YP, Ai XH. MiR-99a suppresses cell invasion and metastasis in nasopharyngeal carcinoma through targeting HOXA1. Onco Targets Ther 2017; 10:753-761. [PMID: 28228659 PMCID: PMC5312690 DOI: 10.2147/ott.s126781] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background Recent studies reported that miRNAs play important roles in the carcinogenesis and progression of nasopharyngeal carcinoma (NPC). Therefore, further studies are warranted to better elucidate the function and mechanism of miRNAs in NPC. Methods Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was used to detect the miR-99a expression in NPC cell lines and tissue samples. Wound healing, transwell migration and invasion, and lung metastatic colonization assays were performed to determine NPC cell migratory, invasive and metastatic abilities of NPC cells. Luciferase reporter assays, quantitative RT-PCR and Western blotting were used to validate the target of miR-99a. Results We found that miR-99a was significantly downregulated in NPC cell lines and tissue samples. Ectopic overexpression of miR-99a significantly inhibited NPC cell migration and invasion in vitro, and suppressed lung macroscopic and microscopic metastatic colonization in vivo. Conversely, silencing of miR-99a significantly promoted the migratory and invasive abilities of NPC cells. Furthermore, HOXA1 was validated as a direct target of miR-99a, and ectopic expression of HOXA1 could rescue the suppressive effect of miR-99a overexpression on NPC cell migration and invasion. Conclusion Together, these results indicated that miR-99a could inhibit NPC invasion and metastasis by targeting HOXA1, thus providing a novel potential target for miRNA-based treatment for NPC patients in the future.
Collapse
Affiliation(s)
- Jian-Gang Wang
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang; Department of Oncology, Shaoyang Hospital of TCM, Shaoyang, People's Republic of China
| | - Wu-Ping Tang
- Department of Oncology, Shaoyang Hospital of TCM, Shaoyang, People's Republic of China
| | - Ming-Chu Liao
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang
| | - Yan-Ping Liu
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang
| | - Xiao-Hong Ai
- Department of Radiation Oncology, The First Affiliated Hospital of University of South China, Hengyang
| |
Collapse
|
42
|
Hao B, Cui L, Gu Y, Zhang B, Wang M, Zhou H, Xu R, He X. WITHDRAWN: MicroRNA-99a Suppresses Proliferation, Migration, Invasion and Induces G1-phase Cell Cycle Arrest via Targeting Insulin-like Growth Factor 1 Receptor Pathway in Renal Cell Carcinoma 786-0 and OS-RC-2 Cells. Urology 2017:S0090-4295(17)30015-8. [PMID: 28088554 DOI: 10.1016/j.urology.2017.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/13/2016] [Accepted: 01/02/2017] [Indexed: 11/24/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Bo Hao
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Li Cui
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yi Gu
- Department of Breast Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bo Zhang
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| | - Min Wang
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Hua Zhou
- Department of Nephrology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Renfang Xu
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
43
|
Peng F, Xiong L, Tang H, Peng C, Chen J. Regulation of epithelial-mesenchymal transition through microRNAs: clinical and biological significance of microRNAs in breast cancer. Tumour Biol 2016; 37:14463-14477. [DOI: 10.1007/s13277-016-5334-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 09/06/2016] [Indexed: 12/16/2022] Open
|
44
|
Zhang M, Guo Y, Wu J, Chen F, Dai Z, Fan S, Li P, Song T. Roles of microRNA-99 family in human glioma. Onco Targets Ther 2016; 9:3613-9. [PMID: 27382299 PMCID: PMC4920231 DOI: 10.2147/ott.s99363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objective Deregulation of microRNA (miR)-99 family members (miR-99a, miR-99b, and miR-100) has been reported to play a crucial role in many cancer types. However, their roles in human gliomas have not been fully elucidated. This study aimed to investigate the expression patterns of miR-99a, miR-99b, and miR-100 in glioma tissues and to evaluate their expression profiles with respect to tumor progression. Methods Quantitative real-time polymerase chain reaction was performed to detect the expression levels of miR-99a, miR-99b, and miR-100 in glioma and matched non-neoplastic brain tissues. Then, the associations of their expression with various clinicopathological features of glioma patients were statistically analyzed. Moreover, the roles of miR-99a, miR-99b, and miR-100 in regulating glioma cell migration and invasion were determined via transwell assay in vitro. Results Compared with non-neoplastic brain tissues, miR-99a, miR-99b, and miR-100 expression levels were all significantly decreased in glioma tissues (all P<0.001). miR-99a-low, miR-99b-low, and miR-100-low expression more frequently occurred in glioma patients with low Karnofsky performance score (<90) and high World Health Organization grade (III–IV). Further functional experiments revealed that the enforced expression of miR-99a, miR-99b, and miR-100 resulted in the inhibition of cellular migration and invasion in glioma cells. Conclusion Our results strongly suggest that the aberrant expression of miR-99a, miR-99b, and miR-100 may be a common feature in human gliomas with aggressive clinicopathological features and may participate in malignant phenotypes of the tumors. These findings highlight the potential of the three miR-99 family members as novel therapeutic targets for human gliomas.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| | - Yong Guo
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| | - Jun Wu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| | - Fenghua Chen
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| | - Zhijie Dai
- Institute of Endocrinology and Metabolism, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Shuangshi Fan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| | - Pengcheng Li
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| | - Tao Song
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha
| |
Collapse
|
45
|
Zhao J, Chen F, Zhou Q, Pan W, Wang X, Xu J, Ni L, Yang H. Aberrant expression of microRNA-99a and its target gene mTOR associated with malignant progression and poor prognosis in patients with osteosarcoma. Onco Targets Ther 2016; 9:1589-97. [PMID: 27073323 PMCID: PMC4806763 DOI: 10.2147/ott.s102421] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background The mammalian target of rapamycin (mTOR) has been reported to act as a target gene of microRNA (miR)-99a in various cancer cells and identified as an independent prognostic marker of human osteosarcoma. The aim of this study was to investigate the clinical significance of miR-99a/mTOR axis in human osteosarcoma. Methods A total of 130 pairs of osteosarcoma and matched noncancerous bone tissues were used to detect the expression levels of miR-99a and mTOR mRNA by quantitative real-time polymerase chain reaction. Then, associations of miR-99a and/or mTOR expression with clinico-pathological features and prognosis of patients with osteosarcoma were statistically analyzed. Results The expression levels of miR-99a (tumor vs normal: 2.11±1.03 vs 4.69±1.21, P<0.001) and mTOR mRNA (tumor vs normal: 4.40±1.13 vs 1.74±0.85, P<0.001) in osteosarcoma tissues were, respectively, lower and higher than those in noncancerous bone tissues. The expression levels of miR-99a in osteosarcoma tissues were negatively correlated with those of mTOR mRNA. Additionally, miR-99a-low and/or mTOR-high expression were all significantly associated with advanced surgical stage, positive metastasis and recurrence, and poor response to chemotherapy (all P<0.05). Moreover, patients with osteosarcoma with miR-99a-low and/or mTOR-high expression had shorter overall and disease-free survivals than those in miR-99a-high and/or mTOR-low expression groups. Multivariate Cox analyses showed that miR-99a and/or mTOR expression were all independent prognostic factors of osteosarcoma. Conclusion Our data showed the crucial role of miR-99a/mTOR axis in the malignant progression of human osteosarcoma, implying that conjoined expression of miR-99a and mTOR may offer an attractive novel prognostic marker for this disease.
Collapse
Affiliation(s)
- Jiali Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China; Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, People's Republic of China
| | - Fengli Chen
- Central Laboratory, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Quan Zhou
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, People's Republic of China
| | - Wei Pan
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, People's Republic of China
| | - Xinhong Wang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, People's Republic of China
| | - Jin Xu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical College and The Second People's Hospital of Huai'an, Huai'an, People's Republic of China
| | - Li Ni
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
46
|
Do Canto LM, Marian C, Willey S, Sidawy M, Da Cunha PA, Rone JD, Li X, Gusev Y, Haddad BR. MicroRNA analysis of breast ductal fluid in breast cancer patients. Int J Oncol 2016; 48:2071-8. [PMID: 26984519 PMCID: PMC4809650 DOI: 10.3892/ijo.2016.3435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/20/2016] [Indexed: 12/23/2022] Open
Abstract
Recent studies suggest that microRNAs show promise as excellent biomarkers for breast cancer; however there is still a high degree of variability between studies making the findings difficult to interpret. In addition to blood, ductal lavage (DL) and nipple aspirate fluids represent an excellent opportunity for biomarker detection because they can be obtained in a less invasive manner than biopsies and circumvent the limitations of evaluating blood biomarkers with regards to tissue of origin specificity. In this study, we have investigated for the first time, through a real-time PCR array, the expression of 742 miRNAs in the ductal lavage fluid collected from 22 women with unilateral breast tumors. We identified 17 differentially expressed miRNAs between tumor and paired normal samples from patients with ductal breast carcinoma. Most of these miRNAs have various roles in breast cancer tumorigenesis, invasion and metastasis, therapeutic response, or are associated with several clinical and pathological characteristics of breast tumors. Moreover, some miRNAs were also detected in other biological fluids of breast cancer patients such as serum (miR-23b, -133b, -181a, 338-3p, -625), plasma (miR-200a), and breast milk (miR-181a). A systems biology analysis of these differentially expressed miRNAs points out possible pathways and cellular processes previously described as having an important role in breast cancer such as Wnt, ErbB, MAPK, TGF-β, mTOR, PI3K-Akt, p53 signaling pathways. We also observed a difference in the miRNA expression with respect to the histological type of the tumors. In conclusion, our findings suggest that miRNA analysis of breast ductal fluid is feasible and potentially very useful for the detection of breast cancer.
Collapse
Affiliation(s)
- Luisa Matos Do Canto
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Catalin Marian
- Biochemistry Department, 'Victor Babes' University of Medicine and Pharmacy, Timisoara, Romania
| | - Shawna Willey
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Mary Sidawy
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Patricia A Da Cunha
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Janice D Rone
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Xin Li
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Yuriy Gusev
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - Bassem R Haddad
- Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
47
|
陈 帅, 周 永, 陈 颖, 陈 小, 李 光, 杨 加, 雷 玉, 赵 光, 黄 秋, 杨 长, 杜 亚, 黄 云. [Specific microRNA expression profiles of lung adenocarcinoma in Xuanwei region and bioinformatic analysis for predicting their target genes and related signaling pathways]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2016; 37:238-244. [PMID: 28219870 PMCID: PMC6779667 DOI: 10.3969/j.issn.1673-4254.2017.02.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVE To identify differentially expressed microRNAs (miRNAs) related to lung adenocarcinoma in Xuanwei region and predict their target genes and related signaling pathways based on bioinformatic analysis. METHODS High-throughput microarray assay was performed to detect miRNA expression profiles in 34 paired human lung adenocarcinoma and adjacent normal tissues (including 24 cases in Xuanwei region and 10 in other regions). Gene ontology and KEGG pathway analyses were used to predict the target genes and the regulatory signaling pathways. RESULTS Thirty-four miRNAs were differentially expressed in lung adenocarcinoma tissues in cases in Xuanwei region as compared with cases in other regions, including 23 upregulated and 11 downregulated miRNAs. The predicted target genes included GF, RTK, SOS, IRS1, BCAP, CYTOKINSR, ECM, ITGB, FAK and Gbeta;Y involving the PI3K/Alt, WNT and MAPK pathways. CONCLUSION The specific microRNA expression profiles of lung adenocarcinoma in cases found in Xuanwei region allow for a better understanding of the pathogenesis of lung adenocarcinoma in Xuanwei. The predicted target genes may involve the PI3K/Alt, WNT and MAPK pathways.
Collapse
Affiliation(s)
- 帅 陈
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 永春 周
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 颖 陈
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 小波 陈
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 光剑 李
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 加鹏 杨
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 玉洁 雷
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 光强 赵
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 秋博 黄
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 长绍 杨
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 亚茜 杜
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| | - 云超 黄
- />昆明医科大学第三附属医院//云南省肿瘤医院//云南省肺癌研究重点实验室,云南 昆明 650000Department of Thoracic Surgery, Third Affiliated Hospital of Kunming Medical University/ Tumor Hospital of Yunnan Province/ Yunnan Key Laboratory of Lung Cancer Research, Kunming 650000, China
| |
Collapse
|
48
|
Zhou WB, Zhong CN, Luo XP, Zhang YY, Zhang GY, Zhou DX, Liu LP. miR-625 suppresses cell proliferation and migration by targeting HMGA1 in breast cancer. Biochem Biophys Res Commun 2016; 470:838-44. [PMID: 26806308 DOI: 10.1016/j.bbrc.2016.01.122] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
Dysregulation of microRNA contributes to the high incidence and mortality of breast cancer. Here, we show that miR-625 was frequently down-regulated in breast cancer. Decrease of miR-625 was closely associated with estrogen receptor (P = 0.004), human epidermal growth factor receptor 2 (P = 0.003) and clinical stage (P = 0.001). Kaplan-Meier and multivariate analyses indicated miR-625 as an independent factor for unfavorable prognosis (hazard ratio = 2.654, 95% confident interval: 1.300-5.382, P = 0.007). Re-expression of miR-625 impeded, whereas knockdown of miR-625 enhanced cell viabilities and migration abilities in breast cancer cells. HMGA1 was confirmed as a direct target of miR-625. The expressions of HMGA1 mRNA and protein were induced by miR-625 mimics, but reduced by miR-625 inhibitor. Re-introduction of HMGA1 in cells expressing miR-625 distinctly abrogated miR-625-mediated inhibition of cell growth. Taken together, our data demonstrate that miR-625 suppresses cell proliferation and migration by targeting HMGA1 and suggest miR-625 as a promising prognostic biomarker and a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Wen-bin Zhou
- Department of Breast Surgery, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Cai-neng Zhong
- Department of Breast Surgery, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Xun-peng Luo
- Department of Breast Surgery, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Ya-yuan Zhang
- Department of Breast Surgery, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Gui-ying Zhang
- Department of Breast Surgery, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China
| | - Dong-xian Zhou
- Department of Breast Surgery, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China.
| | - Li-ping Liu
- Department of Hepatobiliary and Pancreas Surgery, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong Province, China.
| |
Collapse
|