1
|
Raza M, Rajan AR, Kennedy BB, Reznicek TE, Oruji F, Mirza S, Rowley MJ, Kristiansen G, Datta K, Mohapatra BC, Band H, Band V. ECD, a novel androgen receptor target promotes prostate cancer tumorigenesis by regulating glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635534. [PMID: 39975152 PMCID: PMC11838420 DOI: 10.1101/2025.01.30.635534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Androgen receptor (AR)-mediated signaling is essential for PC tumorigenesis. In TCGA database we observed a positive correlation between ECD and AR expression. Consistently, Dihydrotestosterone (DHT) treatment of PC cell lines increased ECD mRNA and protein levels, and AR knockdown (KD) reduced ECD expression. Bioinformatic analysis predicted three consensus androgen response elements in the ECD promoter, and DHT treatment increased AR occupancy at the ECD promoter, and enhanced ECD promoter activity. Enzalutamide treatment decreased ECD levels, and ECD knockout (KO) in PC cells reduced oncogenic traits, suggesting a functional role of ECD to maintain PC oncogenesis. ECD mRNA and protein are overexpressed in PC patient tissues, and its overexpression predicts shorter survival. Overexpression of ECD in PC cell lines enhanced the oncogenic traits in vitro and developed faster and larger highly proliferative xenograft tumors. RNA-seq analysis of mouse tumors revealed increase mRNA levels of several glycolytic genes. ECD associates with mRNA of several key glycolytic genes and is required for their stability, consistent with our recent demonstration of ECD as an RNA binding protein. Higher glucose uptake and glycolysis was seen upon ECD OE in PC cells. Together, we demonstrate role of a novel AR target gene ECD in PC tumorigenesis.
Collapse
|
2
|
Sridaran D, Mahajan NP. ACK1/TNK2 kinase: molecular mechanisms and emerging cancer therapeutics. Trends Pharmacol Sci 2025; 46:62-77. [PMID: 39721828 DOI: 10.1016/j.tips.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024]
Abstract
Activated CDC42-associated kinase 1 (ACK1), encoded by the TNK2 gene, is a cytoplasmic non-receptor tyrosine kinase whose aberrant activation correlates positively with cancer severity. Recent research has revealed the functional relevance of this oncokinase - it is an epigenetic regulator that drives cancer progression in multiple malignancies. Although ACK1 is an attractive target for therapeutic intervention, incomplete knowledge of its diverse signaling mechanisms and the lack of specific inhibitors have challenged its clinical success. We summarize recent breakthroughs in understanding ACK1 regulation and cellular signaling, and shed light on its immunomodulatory role in balancing T cell activation. We provide a comprehensive overview of preclinical, proof-of-concept studies of potent ACK1-targeting small-molecule inhibitors that are expected to enter clinical trials for cancer patients.
Collapse
Affiliation(s)
- Dhivya Sridaran
- Division of Urologic Surgery, Department of Surgery, Washington University at St. Louis, St. Louis, MO 63110, USA
| | - Nupam P Mahajan
- Division of Urologic Surgery, Department of Surgery, Washington University at St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Cancer Research Building, Washington University at St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
3
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Green JR, Mahalingaiah PKS, Gopalakrishnan SM, Liguori MJ, Mittelstadt SW, Blomme EAG, Van Vleet TR. Off-target pharmacological activity at various kinases: Potential functional and pathological side effects. J Pharmacol Toxicol Methods 2023; 123:107468. [PMID: 37553032 DOI: 10.1016/j.vascn.2023.107468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.
Collapse
Affiliation(s)
- Jonathon R Green
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States.
| | | | - Sujatha M Gopalakrishnan
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Michael J Liguori
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Scott W Mittelstadt
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Eric A G Blomme
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Terry R Van Vleet
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
5
|
Kan Y, Paung Y, Seeliger MA, Miller WT. Domain Architecture of the Nonreceptor Tyrosine Kinase Ack1. Cells 2023; 12:900. [PMID: 36980241 PMCID: PMC10047419 DOI: 10.3390/cells12060900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The nonreceptor tyrosine kinase (NRTK) Ack1 comprises a distinct arrangement of non-catalytic modules. Its SH3 domain has a C-terminal to the kinase domain (SH1), in contrast to the typical SH3-SH2-SH1 layout in NRTKs. The Ack1 is the only protein that shares a region of high homology to the tumor suppressor protein Mig6, a modulator of EGFR. The vertebrate Acks make up the only tyrosine kinase (TK) family known to carry a UBA domain. The GTPase binding and SAM domains are also uncommon in the NRTKs. In addition to being a downstream effector of receptor tyrosine kinases (RTKs) and integrins, Ack1 can act as an epigenetic regulator, modulate the degradation of the epidermal growth factor receptor (EGFR), confer drug resistance, and mediate the progression of hormone-sensitive tumors. In this review, we discuss the domain architecture of Ack1 in relation to other protein kinases that possess such defined regulatory domains.
Collapse
Affiliation(s)
- Yagmur Kan
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - YiTing Paung
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Markus A. Seeliger
- Department of Pharmacology, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794-8661, USA
- Department of Veterans Affairs Medical Center, Northport, NY 11768-2200, USA
| |
Collapse
|
6
|
He W, Xu L, Ding J, Song L, Yang W, Klooster I, Pilco-Janeta DF, Serrano C, Fang H, Jiang G, Wang X, Yu J, Ou WB. Co-targeting of ACK1 and KIT triggers additive anti-proliferative and -migration effects in imatinib-resistant gastrointestinal stromal tumors. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166690. [PMID: 36921738 DOI: 10.1016/j.bbadis.2023.166690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
Most gastrointestinal stromal tumors (GIST) harbor mutated receptor tyrosine kinase (RTK) KIT/PDGFRA, which provides an attractive therapeutic target. However, a majority of GISTs ultimately develop resistance to KIT/PDGFRA inhibitor imatinib, multiple therapeutic targets will be identified as a reasonable strategy in imatinib-resistant GISTs. Biological mechanisms of non-RTK activated CDC42 associated kinase 1 (ACK1) are still unclear, which has been found to be activated in GISTs. In the current report, ACK1 overexpression is demonstrated in GIST cell lines and biopsies. RNA-seq analysis and immunoblotting show that ACK1 expression is dependent on imatinib treatment time in GIST-T1 cell line. The colocalization/complex of KIT and ACK1 in GIST cells are observed, and ACK1 activation is in a partially KIT and CDC42 dependent manner. Treatment with a specific ACK1 inhibitor AIM-100 or ACK1 siRNA, mildly suppresses cell viability, but markedly inhibits cell migration in imatinib sensitive and in imatinib resistant GIST cell lines, which is associated with inactivation of PI3K/AKT/mTOR and RAF/MAPK signaling pathways, and inhibition of epithelial-mesenchymal transition, evidencing upregulation of E-cadherin and downregulation of ZEB1, N-cadherin, vimentin, snail, and/or β-catenin after treatment with AIM-100 or ACK1/CDC42 shRNAs. Combination inhibition of ACK1 and KIT results in additive effects of anti-proliferation and pro-apoptosis as well as cell cycle arrest, and inhibition of invasiveness and migration in vitro and in vivo, compared to either intervention alone through dephosphorylation of KIT downstream intermediates (AKT, S6, and MAPK). Our data suggest that co-targeting of ACK1 and KIT might be a novel therapeutic strategy in imatinib-resistant GIST.
Collapse
Affiliation(s)
- Wangzhen He
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Liangliang Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jiongyan Ding
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Li Song
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Weili Yang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Isabella Klooster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Daniel F Pilco-Janeta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Sarcoma Translational Research Laboratory, Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| | - César Serrano
- Sarcoma Translational Research Laboratory, Department of Medical Oncology, Vall d'Hebron Institute of Oncology, Barcelona, Spain.
| | - Hongming Fang
- Department of Oncology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Guojun Jiang
- Department of Oncology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Xiaoyan Wang
- Department of Oncology, Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Jiren Yu
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Peng HH, Yang HC, Rupa D, Yen CH, Chiu YW, Yang WJ, Luo FJ, Yuan TC. ACK1 upregulated the proliferation of head and neck squamous cell carcinoma cells by promoting p27 phosphorylation and degradation. J Cell Commun Signal 2022; 16:567-578. [PMID: 35247157 PMCID: PMC9733751 DOI: 10.1007/s12079-022-00670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 02/02/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a malignancy with a worldwide distribution. Although intensive studies have been made, the underlying oncogenic mechanism of HNSCC requires further investigation. In this study, we examined the oncogenic role of activated Cdc42-associated kinase 1 (ACK1), an oncogenic tyrosine kinase, in regulating the proliferation of HNSCC cells and its underlying molecular mechanism. Results from immunohistochemical studies revealed that ACK1 was highly expressed in HNSCC tumors, with 77% (77/100) of tumors showing a high ACK1 immunoreactivity compared to 40% (8/20) of normal mucosa. Knockdown of ACK1 expression in HNSCC cells resulted in elevated p27 expression, reduced cell proliferation, and G1-phase cell cycle arrest. Rescue of ACK1 expression in the ACK1-knockdown cells suppressed p27 expression and restored cell proliferation. Compared to ACK1-knockdown cells, ACK1-rescued cells exhibited a restored p27 expression after MG132 treatment and showed an elevated level of ubiquitinated p27. Our data further showed that knockdown of ubiquitin ligase Skp2 resulted in elevated p27 expression. Importantly, the expression of p27(WT), p27(Y74F), or p27(Y89F) in ACK1-overexpressed 293T cells or ACK1-rescued SAS cells showed higher levels of tyrosyl-phosphorylated p27 and interaction with ACK1 or Skp2. However, the expression of p27(Y88F) mutant exhibited a relatively low phosphorylation level and barely bound with ACK1 or Skp2, showing a basal interaction as the control cells. These results suggested that ACK1 is highly expressed in HNSCC tumors and functions to promote cell proliferation by the phosphorylation and degradation of p27 in the Skp2-mediated mechanism.
Collapse
Affiliation(s)
- Hsuan-Hsiang Peng
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Hao-Chin Yang
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Darius Rupa
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Chun-Han Yen
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Ya-Wen Chiu
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| | - Wei-Jia Yang
- grid.415323.20000 0004 0639 3300Department of Pathology, Mennonite Christian Hospital, Hualien, 970 Taiwan, Republic of China
| | - Fuh-Jinn Luo
- grid.415323.20000 0004 0639 3300Department of Pathology, Mennonite Christian Hospital, Hualien, 970 Taiwan, Republic of China
| | - Ta-Chun Yuan
- grid.260567.00000 0000 8964 3950Department of Life Science, National Dong Hwa University, No. 1, Sec. 2, Da Hsueh Rd., Shoufeng, Hualien, 974301 Taiwan, Republic of China
| |
Collapse
|
8
|
Jing L, Zhang X, Liu D, Yang Y, Xiong H, Dong G. ACK1 Contributes to the Pathogenesis of Inflammation and Autoimmunity by Promoting the Activation of TLR Signaling Pathways. Front Immunol 2022; 13:864995. [PMID: 35669783 PMCID: PMC9164107 DOI: 10.3389/fimmu.2022.864995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) are the first line of defense in the immune system, whose activation plays a key role in the pathogenesis of inflammation and autoimmunity. TLRs can activate a variety of immune cells such as macrophages and dendritic cells, which produce proinflammatory cytokines, chemokines, and co-stimulatory molecules that lead to the development of inflammation and autoimmune diseases. As a nonreceptor tyrosine kinase, ACK1 is involved in multiple signaling pathways and physiological processes. However, the roles of ACK1 in the activation of TLR pathways and in the pathogenesis of inflammation and autoimmune diseases have not yet been reported. We found that the expression of ACK1 could be upregulated by TLR pathways in vivo and in vitro. Intriguingly, overexpression of ACK1 significantly promoted the activation of TLR4, TLR7, and TLR9 pathways, while knockdown of ACK1 or the use of the ACK1 inhibitor AIM-100 significantly inhibited the activation of TLR4, TLR7, and TLR9 pathways. In vivo studies showed that the inhibition of ACK1 activity by AIM-100 could significantly protect mice from the TLR4 agonist lipopolysaccharide (LPS)-mediated endotoxin shock and alleviate the condition of imiquimod-mediated lupus-prone mice and MRL/lpr mice. In summary, ACK1 participates in TLR-mediated inflammation and autoimmunity and has great potential in controlling inflammation and alleviating autoimmune diseases.
Collapse
Affiliation(s)
- Lina Jing
- Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Dong Liu
- Department of Clinical Laboratory, Affiliated Hospital of Jining Medical University, Jining, China
| | - Yonghong Yang
- Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Guanjun Dong, ; Huabao Xiong,
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Guanjun Dong, ; Huabao Xiong,
| |
Collapse
|
9
|
Wang A, Pei J, Shuai W, Lin C, Feng L, Wang Y, Lin F, Ouyang L, Wang G. Small Molecules Targeting Activated Cdc42-Associated Kinase 1 (ACK1/TNK2) for the Treatment of Cancers. J Med Chem 2021; 64:16328-16348. [PMID: 34735773 DOI: 10.1021/acs.jmedchem.1c01030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Activated Cdc42-associated kinase 1 (ACK1/TNK2) is a nonreceptor tyrosine kinase with a unique structure. It not only can act as an activated transmembrane effector of receptor tyrosine kinases (RTKs) to transmit various RTK signals but also can play a corresponding role in epigenetic regulation. A number of studies have shown that ACK1 is a carcinogenic factor. Blockage of ACK1 has been proven to be able to inhibit cancer cell survival, proliferation, migration, and radiation resistance. Thus, ACK1 is a promising potential antitumor target. To date, despite many efforts to develop ACK1 inhibitors, no specific small molecule inhibitors have entered clinical trials. This Perspective provides an overview of the structural features, biological functions, and association with diseases of ACK1 and in vitro and in vivo activities, selectivity, and therapeutic potential of small molecule ACK1 inhibitors with different chemotypes.
Collapse
Affiliation(s)
- Aoxue Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Junping Pei
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Congcong Lin
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Lu Feng
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Feng Lin
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
The Mammalian Ecdysoneless Protein Interacts with RNA Helicase DDX39A To Regulate Nuclear mRNA Export. Mol Cell Biol 2021; 41:e0010321. [PMID: 33941617 PMCID: PMC8224239 DOI: 10.1128/mcb.00103-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mammalian orthologue of ecdysoneless (ECD) protein is required for embryogenesis, cell cycle progression, and mitigation of endoplasmic reticulum stress. Here, we identified key components of the mRNA export complexes as binding partners of ECD and characterized the functional interaction of ECD with key mRNA export-related DEAD BOX protein helicase DDX39A. We find that ECD is involved in RNA export through its interaction with DDX39A. ECD knockdown (KD) blocks mRNA export from the nucleus to the cytoplasm, which is rescued by expression of full-length ECD but not an ECD mutant that is defective in interaction with DDX39A. We have previously shown that ECD protein is overexpressed in ErbB2+ breast cancers (BC). In this study, we extended the analyses to two publicly available BC mRNA The Cancer Genome Atlas (TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data sets. In both data sets, ECD mRNA overexpression correlated with short patient survival, specifically ErbB2+ BC. In the METABRIC data set, ECD overexpression also correlated with poor patient survival in triple-negative breast cancer (TNBC). Furthermore, ECD KD in ErbB2+ BC cells led to a decrease in ErbB2 mRNA level due to a block in its nuclear export and was associated with impairment of oncogenic traits. These findings provide novel mechanistic insight into the physiological and pathological functions of ECD.
Collapse
|
11
|
Abe K, Kanehira M, Ohkouchi S, Kumata S, Suzuki Y, Oishi H, Noda M, Sakurada A, Miyauchi E, Fujiwara T, Harigae H, Okada Y. Targeting stanniocalcin-1-expressing tumor cells elicits efficient antitumor effects in a mouse model of human lung cancer. Cancer Med 2021; 10:3085-3100. [PMID: 33826244 PMCID: PMC8085941 DOI: 10.1002/cam4.3852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/23/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the most common cause of cancer‐related death in developed countries; therefore, the generation of effective targeted therapeutic regimens is essential. Recently, gene therapy approaches toward malignant cells have emerged as attractive molecular therapeutics. Previous studies have indicated that stanniocalcin‐1 (STC‐1), a hormone involved in calcium and phosphate homeostasis, positively regulates proliferation, apoptosis resistance, and glucose metabolism in lung cancer cell lines. In this study, we investigated if targeting STC‐1 in tumor cells could be a promising strategy for lung cancer gene therapy. We confirmed that STC‐1 levels in peripheral blood were higher in lung cancer patients than in healthy donors and that STC‐1 expression was observed in five out of eight lung cancer cell lines. A vector expressing a suicide gene, uracil phosphoribosyltransferase (UPRT), under the control of the STC‐1 promoter, was constructed (pPSTC‐1‐UPRT) and transfected into three STC‐1‐positive cell lines, PC‐9, A549, and H1299. When stably transfected, we observed significant cell growth inhibition using 5‐fluorouracil (5‐FU) treatment. Furthermore, growth of the STC‐1‐negative lung cancer cell line, LK‐2 was significantly arrested when combined with STC‐1‐positive cells transfected with pPSTC‐1‐UPRT. We believe that conferring cytotoxicity in STC‐1‐positive lung cancer cells using a suicide gene may be a useful therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Kotaro Abe
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Masahiko Kanehira
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Center for Life Science Research, University of Yamanashi, Chuo, Japan
| | - Shinya Ohkouchi
- Department of Occupational Health, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Sakiko Kumata
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yamato Suzuki
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hisashi Oishi
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Masafumi Noda
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Akira Sakurada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Eisaku Miyauchi
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tohru Fujiwara
- Department of Hematology and Rheumatology, Tohoku University Hospital, Sendai, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Hospital, Sendai, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Yu X, Liu J, Qiu H, Hao H, Zhu J, Peng S. Combined inhibition of ACK1 and AKT shows potential toward targeted therapy against KRAS-mutant non-small-cell lung cancer. Bosn J Basic Med Sci 2021; 21:198-207. [PMID: 32530390 PMCID: PMC7982072 DOI: 10.17305/bjbms.2020.4746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/01/2020] [Indexed: 12/11/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) with Kirsten RAt Sarcoma 2 viral oncogene homolog (KRAS) mutation has become a clinical challenge in cancer treatment as KRAS-mutant tumors are often resistant to conventional anti-tumor therapies. Activated CDC42-associated kinase 1 (ACK1), an activator of protein kinase B (AKT), is a promising target for KRAS-mutant tumor therapy, but the downstream ACK1 signaling remains poorly understood. The aim of this study was to evaluate the effectiveness of combined ACK1/AKT inhibition on the proliferation, migration, invasion, and apoptosis of KRAS-mutant NSCLC cell lines (NCI-H23, NCI-H358, and A549). The cells were treated with an inhibitor of either ACK1 (dasatinib or sunitinib) or AKT (MK-2206 or GDC-0068), and the optimal concentrations of the two yielding synergistic tumor-killing effects were determined by applying the Chou-Talalay equation for drug combinations. We showed that combined administration of ACK1 and AKT inhibitors at the optimal concentrations effectively suppressed NSCLC cell viability and promoted apoptosis while inducing cell cycle arrest at the G2 phase. Moreover, NSCLC cell migration and invasion were inhibited by combined ACK1/AKT inhibition. These phenomena were associated with the reduced phosphorylation levels of ACK1 and AKT (at Ser473 and Thr308), as well as alterations in caspase-dependent apoptotic signaling. Collectively, our results demonstrate the promising therapeutic potential of combined ACK1/AKT inhibition as a strategy against KRAS-mutant NSCLC. Our findings provide the basis for the clinical translation of biological targeted drugs (ACK1 and AKT inhibitors) and their rational combination in cancer treatment.
Collapse
Affiliation(s)
- Xiangjing Yu
- Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jie Liu
- Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huawei Qiu
- Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huiting Hao
- Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinhong Zhu
- Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shiyun Peng
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
13
|
Isoforms of the p53 Family and Gastric Cancer: A Ménage à Trois for an Unfinished Affair. Cancers (Basel) 2021; 13:cancers13040916. [PMID: 33671606 PMCID: PMC7926742 DOI: 10.3390/cancers13040916] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/06/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The p53 family is a complex family of transcription factors with different cellular functions that are involved in several physiological processes. A massive amount of data has been accumulated on their critical role in the tumorigenesis and the aggressiveness of cancers of different origins. If common features are observed, there are numerous specificities that may reflect particularities of the tissues from which the cancers originated. In this regard, gastric cancer tumorigenesis is rather remarkable, as it is induced by bacterial and viral infections, various chemical carcinogens, and familial genetic alterations, which provide an example of the variety of molecular mechanisms responsible for cell transformation and how they impact the p53 family. This review summarizes the knowledge gathered from over 40 years of research on the role of the p53 family in gastric cancer, which still displays one of the most elevated mortality rates amongst all types of cancers. Abstract Gastric cancer is one of the most aggressive cancers, with a median survival of 12 months. This illustrates its complexity and the lack of therapeutic options, such as personalized therapy, because predictive markers do not exist. Thus, gastric cancer remains mostly treated with cytotoxic chemotherapies. In addition, less than 20% of patients respond to immunotherapy. TP53 mutations are particularly frequent in gastric cancer (±50% and up to 70% in metastatic) and are considered an early event in the tumorigenic process. Alterations in the expression of other members of the p53 family, i.e., p63 and p73, have also been described. In this context, the role of the members of the p53 family and their isoforms have been investigated over the years, resulting in conflicting data. For instance, whether mutations of TP53 or the dysregulation of its homologs may represent biomarkers for aggressivity or response to therapy still remains a matter of debate. This uncertainty illustrates the lack of information on the molecular pathways involving the p53 family in gastric cancer. In this review, we summarize and discuss the most relevant molecular and clinical data on the role of the p53 family in gastric cancer and enumerate potential therapeutic innovative strategies.
Collapse
|
14
|
Zhu J, Liu Y, Zhao M, Cao K, Ma J, Peng S. Identification of downstream signaling cascades of ACK1 and prognostic classifiers in non-small cell lung cancer. Aging (Albany NY) 2021; 13:4482-4502. [PMID: 33495411 PMCID: PMC7906148 DOI: 10.18632/aging.202408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
Activated Cdc42-associated kinase 1 (ACK1) is an oncogene in multiple cancers, but the underlying mechanisms of its oncogenic role remain unclear in non-small cell lung cancer (NSCLC). Herein, we comprehensively investigated the ACK1-regulated cell processes and downstream signaling pathways, as well as its prognostic value in NSCLC. We found that ACK1 gene amplification was associated with mRNA levels in The Cancer Genome Atlas (TCGA) lung cancer cohort. The Oncomine databases showed significantly elevated ACK1 levels in lung cancer. In vitro, an ACK1 inhibitor (dasatinib) increased the sensitivity of NSCLC cell lines to AKT or MEK inhibitors. RNA-sequencing results demonstrated that an ACK1 deficiency in A549 cells affected the MAPK, PI3K/AKT, and Wnt pathways. These results were validated by gene set enrichment analysis (GSEA) of data from 188 lung cancer cell lines. Using Cytoscape, we dissected 14 critical ACK1-regulated genes. The signature with the 14 genes and ACK1 could significantly dichotomize the TCGA lung cohort regarding overall survival. The prognostic accuracy of this signature was confirmed in five independent lung cancer cohorts and was further validated by a prognostic nomogram. Our study unveiled several downstream signaling pathways for ACK1, and the proposed signature may be a promising prognostic predictor for NSCLC.
Collapse
Affiliation(s)
- Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Yang Liu
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Meng Zhao
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Kui Cao
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| | - Shiyun Peng
- Department of Precision Medicine, Harbin Medical University Cancer Hospital, Harbin 150040, Heilongjiang, China
| |
Collapse
|
15
|
Zhu J, Liu Y, Ao H, Liu M, Zhao M, Ma J. Comprehensive Analysis of the Immune Implication of ACK1 Gene in Non-small Cell Lung Cancer. Front Oncol 2020; 10:1132. [PMID: 32793482 PMCID: PMC7390926 DOI: 10.3389/fonc.2020.01132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/05/2020] [Indexed: 01/21/2023] Open
Abstract
Activated Cdc42-associated kinase1 (ACK1), a non-receptor tyrosine kinase, has been considered as an oncogene and therapeutic target in various cancers. However, its contribution to cancer immunity remains uncertain. Here we first compared the profiles of immune cells in cancerous and normal tissues in The Cancer Genome Atlas (TCGA) lung cancer cohorts. Next, we found that the immune cell infiltration levels were associated with the ACK1 gene copy numbers in lung cancer. Consistently, our RNA-seq data unveiled that the silencing of ACK1 upregulated several immune pathways in lung cancer cells, including the T cell receptor signaling pathway. The impacts of ACK1 on immune activity were validated by Gene Set Enrichment Analysis of RNA-seq data of 188 lung cancer cell lines from the public database. A pathway enrichment analysis of 35 ACK1-associated immunomodulators and 50 tightly correlated genes indicated the involvement of the PI3K-Akt and Ras signaling pathways. Based on ACK1-associated immunomodulators, we established multiple-gene risk prediction signatures using the Cox regression model. The resulting risk scores were an independent prognosis predictor in the TCGA lung cohorts. We also accessed the prognostic accuracy of the risk scores with a receiver operating characteristic methodology. Finally, a prognostic nomogram, accompanied by a calibration curve, was constructed to predict individuals' 3- and 5-year survival probabilities. Our findings provided evidence of ACK1's implication in tumor immunity, suggesting that ACK1 may be a potential immunotherapeutic target for non-small cell lung cancer (NSCLC). The nominated immune signature is a promising prognostic biomarker in NSCLC.
Collapse
Affiliation(s)
- Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Liu
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haijiao Ao
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingdong Liu
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Meng Zhao
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
16
|
Xiao CL, Zhu S, He M, Chen D, Zhang Q, Chen Y, Yu G, Liu J, Xie SQ, Luo F, Liang Z, Wang DP, Bo XC, Gu XF, Wang K, Yan GR. N 6-Methyladenine DNA Modification in the Human Genome. Mol Cell 2018; 71:306-318.e7. [PMID: 30017583 DOI: 10.1016/j.molcel.2018.06.015] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/14/2018] [Accepted: 06/07/2018] [Indexed: 01/06/2023]
Abstract
DNA N6-methyladenine (6mA) modification is the most prevalent DNA modification in prokaryotes, but whether it exists in human cells and whether it plays a role in human diseases remain enigmatic. Here, we showed that 6mA is extensively present in the human genome, and we cataloged 881,240 6mA sites accounting for ∼0.051% of the total adenines. [G/C]AGG[C/T] was the most significantly associated motif with 6mA modification. 6mA sites were enriched in the coding regions and mark actively transcribed genes in human cells. DNA 6mA and N6-demethyladenine modification in the human genome were mediated by methyltransferase N6AMT1 and demethylase ALKBH1, respectively. The abundance of 6mA was significantly lower in cancers, accompanied by decreased N6AMT1 and increased ALKBH1 levels, and downregulation of 6mA modification levels promoted tumorigenesis. Collectively, our results demonstrate that DNA 6mA modification is extensively present in human cells and the decrease of genomic DNA 6mA promotes human tumorigenesis.
Collapse
Affiliation(s)
- Chuan-Le Xiao
- Biomedicine Research Center, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Song Zhu
- Biomedicine Research Center, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Minghui He
- CookGene Biosciences Center, Guangzhou 510320, China
| | - De Chen
- Biomedicine Research Center, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Qian Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ying Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Guoliang Yu
- Grandomics Biosciences, Beijing 102206, China
| | - Jinbao Liu
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shang-Qian Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Feng Luo
- School of Computing, Clemson University, Clemson, SC 29634-0974, USA
| | - Zhe Liang
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | | | - Xiao-Chen Bo
- Dapartment of Biotechnology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Xiao-Feng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Guang-Rong Yan
- Biomedicine Research Center, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
17
|
Li W, Ng JMK, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer. Oncogene 2018; 37:4903-4920. [PMID: 29795331 PMCID: PMC6127089 DOI: 10.1038/s41388-018-0341-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel therapeutic targets that will lead to better patient outcomes.
Collapse
Affiliation(s)
- Weilin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jennifer Mun-Kar Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
18
|
ECD promotes gastric cancer metastasis by blocking E3 ligase ZFP91-mediated hnRNP F ubiquitination and degradation. Cell Death Dis 2018; 9:479. [PMID: 29706618 PMCID: PMC5924763 DOI: 10.1038/s41419-018-0525-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/23/2018] [Indexed: 12/12/2022]
Abstract
The human ortholog of the Drosophila ecdysoneless gene (ECD) is required for embryonic development and cell-cycle progression; however, its role in cancer progression and metastasis remains unclear. Here, we found that ECD is frequently overexpressed in gastric cancer (GC), especially in metastatic GC, and is correlated with poor clinical outcomes in GC patients. Silencing ECD inhibited GC migration and invasion in vitro and metastasis in vivo, while ECD overexpression promoted GC migration and invasion. ECD promoted GC invasion and metastasis by protecting hnRNP F from ubiquitination and degradation. We identified ZFP91 as the E3 ubiquitin ligase that is responsible for hnRNP F ubiquitination at Lys 185 and proteasomal degradation. ECD competitively bound to hnRNP F via the N-terminal STG1 domain (13-383aa), preventing hnRNP F from interacting with ZFP91, thus preventing ZFP91-mediated hnRNP F ubiquitination and proteasomal degradation. Collectively, our findings indicate that ECD promotes cancer invasion and metastasis by preventing E3 ligase ZFP91-mediated hnRNP F ubiquitination and degradation, suggesting that ECD may be a marker for poor prognosis and a potential therapeutic target for GC patients.
Collapse
|
19
|
Siveen KS, Prabhu KS, Achkar IW, Kuttikrishnan S, Shyam S, Khan AQ, Merhi M, Dermime S, Uddin S. Role of Non Receptor Tyrosine Kinases in Hematological Malignances and its Targeting by Natural Products. Mol Cancer 2018; 17:31. [PMID: 29455667 PMCID: PMC5817858 DOI: 10.1186/s12943-018-0788-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/01/2018] [Indexed: 12/12/2022] Open
Abstract
Tyrosine kinases belong to a family of enzymes that mediate the movement of the phosphate group to tyrosine residues of target protein, thus transmitting signals from the cell surface to cytoplasmic proteins and the nucleus to regulate physiological processes. Non-receptor tyrosine kinases (NRTK) are a sub-group of tyrosine kinases, which can relay intracellular signals originating from extracellular receptor. NRTKs can regulate a huge array of cellular functions such as cell survival, division/propagation and adhesion, gene expression, immune response, etc. NRTKs exhibit considerable variability in their structural make up, having a shared kinase domain and commonly possessing many other domains such as SH2, SH3 which are protein-protein interacting domains. Recent studies show that NRTKs are mutated in several hematological malignancies, including lymphomas, leukemias and myelomas, leading to aberrant activation. It can be due to point mutations which are intragenic changes or by fusion of genes leading to chromosome translocation. Mutations that lead to constitutive kinase activity result in the formation of oncogenes, such as Abl, Fes, Src, etc. Therefore, specific kinase inhibitors have been sought after to target mutated kinases. A number of compounds have since been discovered, which have shown to inhibit the activity of NRTKs, which are remarkably well tolerated. This review covers the role of various NRTKs in the development of hematological cancers, including their deregulation, genetic alterations, aberrant activation and associated mutations. In addition, it also looks at the recent advances in the development of novel natural compounds that can target NRTKs and perhaps in combination with other forms of therapy can show great promise for the treatment of hematological malignancies.
Collapse
Affiliation(s)
- Kodappully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Iman W Achkar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Sunitha Shyam
- Medical Research Center, Hamad Medical Corporation, Doha, State of Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, State of Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, PO Box 3050, Doha, State of Qatar.
| |
Collapse
|
20
|
Del Mar Masdeu M, Armendáriz BG, Torre AL, Soriano E, Burgaya F, Ureña JM. Identification of novel Ack1-interacting proteins and Ack1 phosphorylated sites in mouse brain by mass spectrometry. Oncotarget 2017; 8:101146-101157. [PMID: 29254152 PMCID: PMC5731862 DOI: 10.18632/oncotarget.20929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/26/2017] [Indexed: 12/04/2022] Open
Abstract
Ack1 (activated Cdc42-associated tyrosine kinase) is a non-receptor tyrosine kinase that is highly expressed in brain. This kinase contains several protein-protein interaction domains and its action is partially regulated by phosphorylation. As a first step to address the neuronal functions of Ack1, here we screened mouse brain samples to identify proteins that interact with this kinase. Using mass spectrometry analysis, we identified new putative partners for Ack1 including cytoskeletal proteins such as Drebrin or MAP4; adhesion regulators such as NCAM1 and neurabin-2; and synapse mediators such as SynGAP, GRIN1 and GRIN3. In addition, we confirmed that Ack1 and CAMKII both co-immunoprecipitate and co-localize in neurons. We also identified that adult and P5 samples contained the phosphorylated residues Thr 104 and Ser 825, and only P5 samples contained phosphorylated Ser 722, a site linked to cancer and interleukin signaling when phosphorylated. All these findings support the notion that Ack1 could be involved in neuronal plasticity.
Collapse
Affiliation(s)
- Maria Del Mar Masdeu
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain.,Present address: Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, United Kingdom
| | - Beatriz G Armendáriz
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Anna La Torre
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Present address: Department of Cell Biology and Human Anatomy, University of California Davis, 95616 Davis, California, USA
| | - Eduardo Soriano
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain.,Vall d´Hebron Institute of Research, Barcelona 08035, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Ferran Burgaya
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Jesús Mariano Ureña
- Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona 08028, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| |
Collapse
|
21
|
Huang JZ, Chen M, Chen D, Gao XC, Zhu S, Huang H, Hu M, Zhu H, Yan GR. A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. Mol Cell 2017; 68:171-184.e6. [PMID: 28985503 DOI: 10.1016/j.molcel.2017.09.015] [Citation(s) in RCA: 479] [Impact Index Per Article: 59.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/19/2017] [Accepted: 09/12/2017] [Indexed: 12/29/2022]
Abstract
A substantial fraction of eukaryotic transcripts are considered long non-coding RNAs (lncRNAs), which regulate various hallmarks of cancer. Here, we discovered that the lncRNA HOXB-AS3 encodes a conserved 53-aa peptide. The HOXB-AS3 peptide, not lncRNA, suppresses colon cancer (CRC) growth. Mechanistically, the HOXB-AS3 peptide competitively binds to the ariginine residues in RGG motif of hnRNP A1 and antagonizes the hnRNP A1-mediated regulation of pyruvate kinase M (PKM) splicing by blocking the binding of the ariginine residues in RGG motif of hnRNP A1 to the sequences flanking PKM exon 9, ensuring the formation of lower PKM2 and suppressing glucose metabolism reprogramming. CRC patients with low levels of HOXB-AS3 peptide have poorer prognoses. Our study indicates that the loss of HOXB-AS3 peptide is a critical oncogenic event in CRC metabolic reprogramming. Our findings uncover a complex regulatory mechanism of cancer metabolism reprogramming orchestrated by a peptide encoded by an lncRNA.
Collapse
Affiliation(s)
- Jin-Zhou Huang
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Institutes of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Min Chen
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - De Chen
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Cheng Gao
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Song Zhu
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Hongyang Huang
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Min Hu
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Huifang Zhu
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China
| | - Guang-Rong Yan
- Biomedicine Research Center, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China; Key Laboratory of Protein Modification and Degradation, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
22
|
Zhao X, Lv C, Chen S, Zhi F. A role for the non-receptor tyrosine kinase ACK1 in TNF-alpha-mediated apoptosis and proliferation in human intestinal epithelial caco-2 cells. Cell Biol Int 2017; 42:1097-1105. [PMID: 28921811 DOI: 10.1002/cbin.10875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/14/2017] [Indexed: 01/03/2023]
Abstract
The roles of tumor necrosis factor alpha (TNF-alpha) and its mediators in cellular processes related to intestinal diseases remain elusive. In this study, we aimed to determine the biological role of activated Cdc42-associated kinase 1 (ACK1) in TNF-alpha-mediated apoptosis and proliferation in Caco-2 cells. ACK1 expression was knocked down using ACK1-specific siRNAs, and ACK1 activity was disrupted using a small molecule ACK1 inhibitor. The Terminal deoxynucleotidyl transferase biotin-dUTP Nick End Labeling (TUNEL) and the BrdU incorporation assays were used to measure apoptosis and cell proliferation, respectively. ACK1-specific siRNA and the pharmacological ACK1 inhibitor significantly abrogated the TNF-alpha-mediated anti-apoptotic effects and proliferation of Caco-2 cells. Interestingly, TNF-alpha activated ACK1 at tyrosine 284 (Tyr284), and the ErbB family of proteins was implicated in ACK1 activation in Caco-2 cells. ACK1-Tyr284 was required for protein kinase B (AKT) activation, and ACK1 signaling was mediated through recruiting and phosphorylating the down-stream adaptor protein AKT, which likely promoted cell proliferation in response to TNF-alpha. Moreover, ACK1 activated AKT and Src enhanced nuclear factor-кB (NF-кB) activity, suggesting a correlation between NF-кB signaling and TNF-alpha-mediated apoptosis in Caco-2 cells. Our results demonstrate that ACK1 plays an important role in modulating TNF-alpha-induced aberrant cell proliferation and apoptosis, mediated in part by ACK1 activation. ACK1 and its down-stream effectors may hold promise as therapeutic targets in the prevention and treatment of gastrointestinal cancers, in particular, those induced by chronic intestinal inflammation.
Collapse
Affiliation(s)
- Xinmei Zhao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chaolan Lv
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Shengbo Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
23
|
Mammalian ECD Protein Is a Novel Negative Regulator of the PERK Arm of the Unfolded Protein Response. Mol Cell Biol 2017; 37:MCB.00030-17. [PMID: 28652267 PMCID: PMC5574048 DOI: 10.1128/mcb.00030-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/17/2017] [Indexed: 01/01/2023] Open
Abstract
Mammalian Ecdysoneless (ECD) is a highly conserved ortholog of the DrosophilaEcd gene product whose mutations impair the synthesis of Ecdysone and produce cell-autonomous survival defects, but the mechanisms by which ECD functions are largely unknown. Here we present evidence that ECD regulates the endoplasmic reticulum (ER) stress response. ER stress induction led to a reduced ECD protein level, but this effect was not seen in PKR-like ER kinase knockout (PERK-KO) or phosphodeficient eukaryotic translation initiation factor 2α (eIF2α) mouse embryonic fibroblasts (MEFs); moreover, ECD mRNA levels were increased, suggesting impaired ECD translation as the mechanism for reduced protein levels. ECD colocalizes and coimmunoprecipitates with PERK and GRP78. ECD depletion increased the levels of both phospho-PERK (p-PERK) and p-eIF2α, and these effects were enhanced upon ER stress induction. Reciprocally, overexpression of ECD led to marked decreases in p-PERK, p-eIF2α, and ATF4 levels but robust increases in GRP78 protein levels. However, GRP78 mRNA levels were unchanged, suggesting a posttranscriptional event. Knockdown of GRP78 reversed the attenuating effect of ECD overexpression on PERK signaling. Significantly, overexpression of ECD provided a survival advantage to cells upon ER stress induction. Taken together, our data demonstrate that ECD promotes survival upon ER stress by increasing GRP78 protein levels to enhance the adaptive folding protein in the ER to attenuate PERK signaling.
Collapse
|