1
|
Bolomsky A, Ceribelli M, Scheich S, Rinaldi K, Huang DW, Chakraborty P, Pham L, Wright GW, Hsiao T, Morris V, Choi J, Phelan JD, Holewinski RJ, Andresson T, Wisniewski J, Riley D, Pittaluga S, Hill E, Thomas CJ, Muppidi J, Young RM. IRF4 requires ARID1A to establish plasma cell identity in multiple myeloma. Cancer Cell 2024; 42:1185-1201.e14. [PMID: 38906156 PMCID: PMC11233249 DOI: 10.1016/j.ccell.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/03/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy that exploits transcriptional networks driven by IRF4. We employ a multi-omics approach to discover IRF4 vulnerabilities, integrating functional genomics screening, spatial proteomics, and global chromatin mapping. ARID1A, a member of the SWI/SNF chromatin remodeling complex, is required for IRF4 expression and functionally associates with IRF4 protein on chromatin. Deleting Arid1a in activated murine B cells disrupts IRF4-dependent transcriptional networks and blocks plasma cell differentiation. Targeting SWI/SNF activity leads to rapid loss of IRF4-target gene expression and quenches global amplification of oncogenic gene expression by MYC, resulting in profound toxicity to MM cells. Notably, MM patients with aggressive disease bear the signature of SWI/SNF activity, and SMARCA2/4 inhibitors remain effective in immunomodulatory drug (IMiD)-resistant MM cells. Moreover, combinations of SWI/SNF and MEK inhibitors demonstrate synergistic toxicity to MM cells, providing a promising strategy for relapsed/refractory disease.
Collapse
Affiliation(s)
- Arnold Bolomsky
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michele Ceribelli
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristina Rinaldi
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Da Wei Huang
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Papiya Chakraborty
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisette Pham
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, DCTD, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tony Hsiao
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivian Morris
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James D Phelan
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald J Holewinski
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Thorkell Andresson
- Protein Mass Spectrometry Group, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21701, USA
| | - Jan Wisniewski
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deanna Riley
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Hill
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig J Thomas
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20892, USA
| | - Jagan Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ryan M Young
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Neil AJ, Chukwueke UN, Hoover N, Marris SRN, Rojas-Rudilla V, Manning DK, Mito JK, Cibas ES, Sholl LM. Validation of targeted next-generation sequencing of cell-free DNA from archival cerebrospinal fluid specimens for the detection of somatic variants in cancer involving the leptomeninges: Cytopathologic and radiographic correlation. Cancer Cytopathol 2024; 132:214-223. [PMID: 37812603 DOI: 10.1002/cncy.22768] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/28/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Leptomeningeal metastases occur across multiple solid and lymphoid cancers, and patients typically undergo cytopathologic assessment of cerebrospinal fluid (CSF) in this setting. For patients diagnosed with metastatic cancer, the detection of actionable somatic mutations in CSF can provide clinically valuable information for treatment without the need for additional tissue collection. METHODS The authors validated a targeted next-generation sequencing assay for the detection of somatic variants in cancer (OncoPanel) on cell-free DNA (cfDNA) isolated from archival CSF specimens in a cohort of 25 patients who had undergone molecular testing of a prior tumor specimen. RESULTS CSF storage time and volume had no impact on cfDNA concentration or mean target coverage of the assay. Previously identified somatic variants in CSF cfDNA were detected in 88%, 50%, and 27% of specimens diagnosed cytologically as positive, suspicious/atypical, and negative for malignancy, respectively. Somatic variants were identified in 81% of CSF specimens from patients who had leptomeningeal enhancement on magnetic resonance imaging compared with 31% from patients without such enhancement. CONCLUSIONS These data highlight the stability of cfDNA in CSF, which allows for cytopathologic evaluation before triage for next-generation sequencing assays. For a subset of cases in which clinical suspicion is high but cytologic or radiographic studies are inconclusive, the detection of pathogenic somatic variants in CSF cfDNA may aid in the diagnosis of leptomeningeal metastases.
Collapse
Affiliation(s)
- Alexander J Neil
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ugonma N Chukwueke
- Center for Neuro-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Hoover
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sean R N Marris
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vanesa Rojas-Rudilla
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Danielle K Manning
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey K Mito
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Edmund S Cibas
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Almasmoum HA. Molecular complexity of diffuse large B-cell lymphoma: a molecular perspective and therapeutic implications. J Appl Genet 2024; 65:57-72. [PMID: 38001281 DOI: 10.1007/s13353-023-00804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) stands as a formidable challenge in the landscape of non-Hodgkin's lymphomas. This review illuminates the remarkable strides made in comprehending DLBCL's molecular intricacies and devising targeted treatments. DLBCL, the most prevalent non-Hodgkin's lymphoma, has seen transformative progress in its characterization. Genetic investigations, led by high-throughput sequencing, have unveiled recurrent mutations in genes such as MYC, BCL2, and BCL6, casting light on the underlying genetic chaos propelling DLBCL's aggressiveness. A pivotal facet of this understanding centers on cell signaling pathways. Dysregulation of B-cell receptor (BCR) signaling, NF-κB, PI3K/Akt/mTOR, JAK/STAT, Wnt/β-Catenin, and Toll-like receptor pathways plays a critical role in DLBCL pathogenesis, offering potential therapeutic targets. DLBCL's complex tumor microenvironment (TME) cannot be overlooked. The dynamic interplay among tumor cells, immune cells, stromal components, and the extracellular matrix profoundly influences DLBCL's course and response to therapies. Epigenetic modifications, including DNA methylation and histone changes, add another layer of intricacy. Aberrant epigenetic regulation plays a significant role in lymphomagenesis, offering prospects for epigenetic-based therapies. Promisingly, these molecular insights have spurred the development of personalized treatments. Targeted therapies and immunotherapies, guided by genomic profiling and molecular classification, are emerging as game-changers in DLBCL management. In conclusion, this review underscores the remarkable strides in understanding DLBCL's molecular underpinnings, spanning genetics, cell signaling, the tumor microenvironment, and epigenetics. These advances pave the way for more effective, personalized treatments, renewing hope for DLBCL patients.
Collapse
Affiliation(s)
- Hibah Ali Almasmoum
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia.
| |
Collapse
|
4
|
Gomez F, Fisk B, McMichael JF, Mosior M, Foltz JA, Skidmore ZL, Duncavage EJ, Miller CA, Abel H, Li YS, Russler-Germain DA, Krysiak K, Watkins MP, Ramirez CA, Schmidt A, Martins Rodrigues F, Trani L, Khanna A, Wagner JA, Fulton RS, Fronick CC, O'Laughlin MD, Schappe T, Cashen AF, Mehta-Shah N, Kahl BS, Walker J, Bartlett NL, Griffith M, Fehniger TA, Griffith OL. Ultra-Deep Sequencing Reveals the Mutational Landscape of Classical Hodgkin Lymphoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:2312-2330. [PMID: 37910143 PMCID: PMC10648575 DOI: 10.1158/2767-9764.crc-23-0140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified >95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient.
Collapse
Affiliation(s)
- Felicia Gomez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Bryan Fisk
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Joshua F. McMichael
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Matthew Mosior
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Jennifer A. Foltz
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Zachary L. Skidmore
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Eric J. Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Christopher A. Miller
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Haley Abel
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Yi-Shan Li
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - David A. Russler-Germain
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Kilannin Krysiak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Marcus P. Watkins
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Cody A. Ramirez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Alina Schmidt
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Fernanda Martins Rodrigues
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Lee Trani
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Ajay Khanna
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Julia A. Wagner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Robert S. Fulton
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Catrina C. Fronick
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Michelle D. O'Laughlin
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Amanda F. Cashen
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Neha Mehta-Shah
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Brad S. Kahl
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Jason Walker
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nancy L. Bartlett
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Malachi Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| | - Todd A. Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Obi L. Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
5
|
Berendsen MR, van Bladel DA, Hesius E, Berganza Irusquieta C, Rijntjes J, van Spriel AB, van der Spek E, Pruijt JF, Kroeze LI, Hebeda KM, Croockewit S, Stevens WB, van Krieken JHJ, Groenen PJ, van den Brand M, Scheijen B. Clonal Relationship and Mutation Analysis in Lymphoplasmacytic Lymphoma/Waldenström Macroglobulinemia Associated With Diffuse Large B-cell Lymphoma. Hemasphere 2023; 7:e976. [PMID: 37928625 PMCID: PMC10621888 DOI: 10.1097/hs9.0000000000000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 11/07/2023] Open
Abstract
Patients with lymphoplasmacytic lymphoma/Waldenström macroglobulinemia (LPL/WM) occasionally develop diffuse large B-cell lymphoma (DLBCL). This mostly results from LPL/WM transformation, although clonally unrelated DLBCL can also arise. LPL/WM is characterized by activating MYD88L265P (>95%) and CXCR4 mutations (~30%), but the genetic drivers of transformation remain to be identified. Here, in thirteen LPL/WM patients who developed DLBCL, the clonal relationship of LPL and DLBCL together with mutations contributing to transformation were investigated. In 2 LPL/WM patients (15%), high-throughput sequencing of immunoglobulin gene rearrangements showed evidence of >1 clonal B-cell population in LPL tissue biopsies. In the majority of LPL/WM patients, DLBCL presentations were clonally related to the dominant clone in LPL, providing evidence of transformation. However, in 3 patients (23%), DLBCL was clonally unrelated to the major malignant B-cell clone in LPL, of which 2 patients developed de novo DLBCL. In this study cohort, LPL displayed MYD88L265P mutation in 8 out of eleven patients analyzed (73%), while CXCR4 mutations were observed in 6 cases (55%). MYD88WT LPL biopsies present in 3 patients (27%) were characterized by CD79B and TNFAIP3 mutations. Upon transformation, DLBCL acquired novel mutations targeting BTG1, BTG2, CD79B, CARD11, TP53, and PIM1. Together, we demonstrate variable clonal B-cell dynamics in LPL/WM patients developing DLBCL, and the occurrence of clonally unrelated DLBCL in about one-quarter of LPL/WM patients. Moreover, we identified commonly mutated genes upon DLBCL transformation, which together with preserved mutations already present in LPL characterize the mutational landscape of DLBCL occurrences in LPL/WM patients.
Collapse
Affiliation(s)
| | - Diede A.G. van Bladel
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Hesius
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jos Rijntjes
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemiek B. van Spriel
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Johannes F.M. Pruijt
- Department of Hematology, Jeroen Bosch Hospital, ‘s-Hertogenbosch, The Netherlands
| | - Leonie I. Kroeze
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra Croockewit
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wendy B.C. Stevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | - Blanca Scheijen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Yuan X, Yu T, Zhao J, Jiang H, Hao Y, Lei W, Liang Y, Li B, Qian W. Analysis of the genomic landscape of primary central nervous system lymphoma using whole-genome sequencing in Chinese patients. Front Med 2023; 17:889-906. [PMID: 37418076 DOI: 10.1007/s11684-023-0994-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/06/2023] [Indexed: 07/08/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is an uncommon non-Hodgkin's lymphoma with poor prognosis. This study aimed to depict the genetic landscape of Chinese PCNSLs. Whole-genome sequencing was performed on 68 newly diagnosed Chinese PCNSL samples, whose genomic characteristics and clinicopathologic features were also analyzed. Structural variations were identified in all patients with a mean of 349, which did not significantly influence prognosis. Copy loss occurred in all samples, while gains were detected in 77.9% of the samples. The high level of copy number variations was significantly associated with poor progression-free survival (PFS) and overall survival (OS). A total of 263 genes mutated in coding regions were identified, including 6 newly discovered genes (ROBO2, KMT2C, CXCR4, MYOM2, BCLAF1, and NRXN3) detected in ⩾ 10% of the cases. CD79B mutation was significantly associated with lower PFS, TMSB4X mutation and high expression of TMSB4X protein was associated with lower OS. A prognostic risk scoring system was also established for PCNSL, which included Karnofsky performance status and six mutated genes (BRD4, EBF1, BTG1, CCND3, STAG2, and TMSB4X). Collectively, this study comprehensively reveals the genomic landscape of newly diagnosed Chinese PCNSLs, thereby enriching the present understanding of the genetic mechanisms of PCNSL.
Collapse
Affiliation(s)
- Xianggui Yuan
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Teng Yu
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jianzhi Zhao
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Huawei Jiang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuanyuan Hao
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Wen Lei
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yun Liang
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Baizhou Li
- Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
7
|
Meriranta L, Pitkänen E, Leppä S. Blood has never been thicker: Cell-free DNA fragmentomics in the liquid biopsy toolbox of B-cell lymphomas. Semin Hematol 2023; 60:132-141. [PMID: 37455222 DOI: 10.1053/j.seminhematol.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 06/24/2023] [Indexed: 07/18/2023]
Abstract
Liquid biopsies utilizing plasma circulating tumor DNA (ctDNA) are anticipated to revolutionize decision-making in cancer care. In the field of lymphomas, ctDNA-based blood tests represent the forefront of clinically applicable tools to harness decades of genomic research for disease profiling, quantification, and detection. More recently, the discovery of nonrandom fragmentation patterns in cell-free DNA (cfDNA) has opened another avenue of liquid biopsy research beyond mutational interrogation of ctDNA. Through examination of structural features, nucleotide content, and genomic distribution of massive numbers of plasma cfDNA molecules, the study of fragmentomics aims at identifying new tools that augment existing ctDNA-based analyses and discover new ways to profile cancer from blood tests. Indeed, the characterization of aberrant lymphoma ctDNA fragment patterns and harnessing them with powerful machine-learning techniques are expected to unleash the potential of nonmutant molecules for liquid biopsy purposes. In this article, we review cfDNA fragmentomics as an emerging approach in the ctDNA research of B-cell lymphomas. We summarize the biology behind the formation of cfDNA fragment patterns and discuss the preanalytical and technical limitations faced with current methodologies. Then we go through the advances in the field of lymphomas and envision what other noninvasive tools based on fragment characteristics could be explored. Last, we place fragmentomics as one of the facets of ctDNA analyses in emerging multiview and multiomics liquid biopsies. We pay attention to the unknowns in the field of cfDNA fragmentation biology that warrant further mechanistic investigation to provide rational background for the development of these precision oncology tools and understanding of their limitations.
Collapse
Affiliation(s)
- Leo Meriranta
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| | - Esa Pitkänen
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland; Institute for Molecular Medicine Finland (FIMM), HILIFE, Helsinki, Finland
| | - Sirpa Leppä
- Applied Tumor Genomics, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland.
| |
Collapse
|
8
|
Dharanipragada P, Parekh N. In Silico Identification and Functional Characterization of Genetic Variations across DLBCL Cell Lines. Cells 2023; 12:cells12040596. [PMID: 36831263 PMCID: PMC9954129 DOI: 10.3390/cells12040596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/12/2023] [Accepted: 01/29/2023] [Indexed: 02/15/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common form of non-Hodgkin lymphoma and frequently develops through the accumulation of several genetic variations. With the advancement in high-throughput techniques, in addition to mutations and copy number variations, structural variations have gained importance for their role in genome instability leading to tumorigenesis. In this study, in order to understand the genetics of DLBCL pathogenesis, we carried out a whole-genome mutation profile analysis of eleven human cell lines from germinal-center B-cell-like (GCB-7) and activated B-cell-like (ABC-4) subtypes of DLBCL. Analysis of genetic variations including small sequence variants and large structural variations across the cell lines revealed distinct variation profiles indicating the heterogeneous nature of DLBCL and the need for novel patient stratification methods to design potential intervention strategies. Validation and prognostic significance of the variants was assessed using annotations provided for DLBCL samples in cBioPortal for Cancer Genomics. Combining genetic variations revealed new subgroups between the subtypes and associated enriched pathways, viz., PI3K-AKT signaling, cell cycle, TGF-beta signaling, and WNT signaling. Mutation landscape analysis also revealed drug-variant associations and possible effectiveness of known and novel DLBCL treatments. From the whole-genome-based mutation analysis, our findings suggest putative molecular genetics of DLBCL lymphomagenesis and potential genomics-driven precision treatments.
Collapse
|
9
|
The genomic landscape and clonal evolutionary trajectory of classical hairy cell leukemia. Leukemia 2023; 37:929-933. [PMID: 36709352 PMCID: PMC10079533 DOI: 10.1038/s41375-023-01823-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 01/29/2023]
|
10
|
Lai CY, Marcel N, Yaldiko AW, Delpoux A, Hedrick SM. A Bcl6 Intronic Element Regulates T Follicular Helper Cell Differentiation. THE JOURNAL OF IMMUNOLOGY 2022; 209:1118-1127. [DOI: 10.4049/jimmunol.2100777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 07/07/2022] [Indexed: 01/04/2023]
Abstract
Abstract
In response to an intracellular infectious agent, the immune system produces a specific cellular response as well as a T cell–dependent Ab response. Precursor T cells differentiate into effector T cells, including Th1 cells, and T follicular helper (TFH) cells. The latter cooperate with B cells to form germinal centers and induce the formation of Ab-forming plasmacytes. One major focal point for control of T cell differentiation is the transcription factor BCL6. In this study, we demonstrated that the Bcl6 gene is regulated by FOXO1-binding, cis-acting sequences located in a highly conserved region of the first Bcl6 intron. In both mouse and human T cells, deletion of the tandem FOXO1 binding sites increased the expression of BCL6 and enhanced the proportion of TFH cells. These results reveal a fundamental control point for cellular versus humoral immunity.
Collapse
Affiliation(s)
- Chen-Yen Lai
- Molecular Biology Section, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Nimi Marcel
- Molecular Biology Section, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Allen W. Yaldiko
- Molecular Biology Section, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Arnaud Delpoux
- Molecular Biology Section, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| | - Stephen M. Hedrick
- Molecular Biology Section, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
11
|
Mamgain G, Naithani M, Patra P, Mamgain M, Morang S, Nayak J, Kumar K, Singh S, Bakliwal A, Rajoreya A, Vaniyath S, Chattopadhyay D, Chetia R, Gupta A, Dhingra G, Sundriyal D, Nath UK. Next-Generation Sequencing Highlights of Diffuse Large B-cell Lymphoma in a Tertiary Care Hospital in North India. Cureus 2022; 14:e28241. [PMID: 36158348 PMCID: PMC9489829 DOI: 10.7759/cureus.28241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction: Next-generation sequencing (NGS) elucidates the diffuse large B-cell lymphoma (DLBCL) genetic characteristics by finding recurrent and novel somatic mutations. This observational study attempted to create an NGS panel with a focus on identifying novel somatic mutations which could have potential clinical and therapeutic implications. This panel was created to look for mutations in 133 genes chosen on basis of a literature review and it was used to sequence the tumor DNA of 20 DLBCL patients after a centralized histopathologic review. Methods: The study included 20 patients having DLBCL. The quality and quantity of tumor cells were accessed by H&E staining and correlated with histopathology and Immunohistochemistry (IHC) status. Patients were grouped as ABC (activated B-cell), PMBL (primary mediastinal large B-cell lymphoma), and other or unclassified subtypes. The lymphoma panel of 133 was designed on targeted sequencing of multiple genes for the coding regions through NGS. The libraries were prepared and sequenced using the Illumina platform. The alignment of obtained sequences was performed using Burrows-Wheeler Aligner and identification of somatic mutations was done using LoFreq (version 2) variant caller. The mutations were annotated using an annotation pipeline (VariMAT). Previously published literature and databases were used for the annotation of clinically relevant mutations. The common variants were filtered for reporting based on the presence in various population databases (1000G, ExAC, EVS, 1000Japanese, dbSNP, UK10K, MedVarDb). A custom read-depth-based algorithm was used to determine CNV (Copy Number Variants) from targeted sequencing experiments. Rare CNVs were detected using a comparison of the test data read-depths with the matched reference dataset. Reportable mutations were prioritized and prepared based on AMP-ASCO-CAP (Association for Molecular Pathology-American Society of Clinical Oncology-College of American Pathologists), WHO guidelines, and also based on annotation metrics from OncoMD (a knowledge base of genomic alterations). Results: The informativity of the panel was 95 percent. NOTCH 1 was the most frequently mutated gene in 16.1% of patients followed by 12.9% who had ARID1A mutations. MYD88 and TP53 mutations were detected in 9.6% of the patient while 6.4% of patients had CSF3R mutations. NOTCH 1 and TP 53 are the most frequently reported gene in the middle age group (40-60). Mutation in MYD88 is reported in every age group. MYD88 (51%) is the most common mutation in ABC subtypes of DLBCL, followed by NOTCH 1 (44%) and SOCS 1 (33%) according to our findings. NOTCH 1 mutations are frequent in ABC and PMBL subtypes. Closer investigation reveals missense mutation is the most frequent mutation observed in the total cohort targeting 68.4% followed by frameshift deletion reported in 26.3%. Six novel variants have been discovered in this study. Conclusions: This study demonstrates the high yield of information in DLBCL using the NGS Lymphoma panel. Results also highlight the molecular heterogeneity of DLBCL subtypes which indicates the need for further studies to make the results of the NGS more clinically relevant.
Collapse
|
12
|
Machado HE, Mitchell E, Øbro NF, Kübler K, Davies M, Leongamornlert D, Cull A, Maura F, Sanders MA, Cagan ATJ, McDonald C, Belmonte M, Shepherd MS, Vieira Braga FA, Osborne RJ, Mahbubani K, Martincorena I, Laurenti E, Green AR, Getz G, Polak P, Saeb-Parsy K, Hodson DJ, Kent DG, Campbell PJ. Diverse mutational landscapes in human lymphocytes. Nature 2022; 608:724-732. [PMID: 35948631 PMCID: PMC9402440 DOI: 10.1038/s41586-022-05072-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
The lymphocyte genome is prone to many threats, including programmed mutation during differentiation1, antigen-driven proliferation and residency in diverse microenvironments. Here, after developing protocols for expansion of single-cell lymphocyte cultures, we sequenced whole genomes from 717 normal naive and memory B and T cells and haematopoietic stem cells. All lymphocyte subsets carried more point mutations and structural variants than haematopoietic stem cells, with higher burdens in memory cells than in naive cells, and with T cells accumulating mutations at a higher rate throughout life. Off-target effects of immunological diversification accounted for approximately half of the additional differentiation-associated mutations in lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every on-target IGHV mutation during the germinal centre reaction. Structural variation was 16-fold higher in lymphocytes than in stem cells, with around 15% of deletions being attributable to off-target recombinase-activating gene activity. DNA damage from ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory cells. The mutation burden and signatures of normal B cells were broadly similar to those seen in many B-cell cancers, suggesting that malignant transformation of lymphocytes arises from the same mutational processes that are active across normal ontogeny. The mutational landscape of normal lymphocytes chronicles the off-target effects of programmed genome engineering during immunological diversification and the consequences of differentiation, proliferation and residency in diverse microenvironments.
Collapse
Affiliation(s)
| | - Emily Mitchell
- Wellcome Sanger Institute, Hinxton, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Nina F Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Kirsten Kübler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Megan Davies
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Cambridge Molecular Diagnostics, Milton Road, Cambridge, United Kingdom
| | | | - Alyssa Cull
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | | | - Mathijs A Sanders
- Wellcome Sanger Institute, Hinxton, UK
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Craig McDonald
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom
| | - Mairi S Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Robert J Osborne
- Wellcome Sanger Institute, Hinxton, UK
- Biofidelity, 330 Cambridge Science Park, Milton Road, Cambridge, United Kingdom
| | - Krishnaa Mahbubani
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Elisa Laurenti
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Paz Polak
- Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Daniel J Hodson
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - David G Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
- York Biomedical Research Institute, University of York, Wentworth Way, York, United Kingdom.
| | - Peter J Campbell
- Wellcome Sanger Institute, Hinxton, UK.
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
13
|
Parra-Medina R, Rocha F, Castañeda-González JP, Moreno-Lucero P, Veloza L, Romero-Rojas AE. Synchronous or collision solid neoplasms and lymphomas: A systematic review of 308 case reports. Medicine (Baltimore) 2022; 101:e28988. [PMID: 35838994 PMCID: PMC11132339 DOI: 10.1097/md.0000000000028988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/13/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The presence of a lymphoma associated with a solid synchronous neoplasm or collision neoplasm has been rarely in the literature, and a detailed characterization of these cases is lacking to date. OBJECTIVE To describe the main clinicopathological features of synchronous/collision tumors. METHODS A systematic search in PubMed, Scielo, and Virtual Health Library literature databases for cases or case series of synchronous or collision lymphoma and other solid neoplasms reported up to March 2021 was performed. Three reviewers independently screened the literature, extracted data, and assessed the quality of the included studies. The systematic review was performed following the Preferred Reporting Items for Systematic Meta-Analyses guidelines. RESULTS Mean age of patients was 62.9 years (52.9% men). A total of 308 cases were included (62% synchronous and 38% collision). The most frequent location of both synchronous and collision tumors was the gastrointestinal tract with the most common solid neoplasm being adenocarcinoma, and the most frequent lymphoma diffuse large B-cell lymphoma (21.7%) and mucosa-associated lymphoid tissue lymphoma (20.4%). Of the total number of mucosa-associated lymphoid tissue lymphomas and gastric adenocarcinomas, the presence of Helicobacter pylori infection was documented in 47.3% of them. Only 2% of all cases had a previous history of lymphoma. Thus, in most cases (98%), lymphoma was discovery incidentally. In addition, nodal lymphoma was associated with metastasis in 29 (9.4%) cases as collision tumor, most commonly (90%) in locoregional lymph nodes of the solid neoplasm. CONCLUSIONS The frequent association of some type of B-cell lymphoma and adenocarcinoma in synchronous/collision tumors of the gastrointestinal tract points to common pathogenic mechanisms in both neoplasia, particularly related to chronic inflammation in this location. In most cases, lymphoma identified in locoregional lymph nodes or distant of a carcinoma seems to represent an incidental finding during the carcinoma diagnostic/therapeutic approach. A synergy between carcinoma and lymphoma (involving inflammation and immunosuppression mechanisms) may favor tumor progression and dissemination. A better understating of the interactions lymphoma/carcinoma in the setting of synchronous/collision tumors may help to improve patient management and prognosis.
Collapse
Affiliation(s)
- Rafael Parra-Medina
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud, Hospital San José, Bogotá, Colombia
- Research Institute, Fundación Universtaria de Ciencias de la Salud, Bogotá, Colombia
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Franky Rocha
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud, Hospital San José, Bogotá, Colombia
| | | | - Paula Moreno-Lucero
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud, Hospital San José, Bogotá, Colombia
| | - Luis Veloza
- Institute of Pathology, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
| | | |
Collapse
|
14
|
The genomic and transcriptional landscape of primary central nervous system lymphoma. Nat Commun 2022; 13:2558. [PMID: 35538064 PMCID: PMC9091224 DOI: 10.1038/s41467-022-30050-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations.
Collapse
|
15
|
Shared and distinct genetic features in human and canine B-cell lymphomas. Blood Adv 2022; 6:3404-3409. [PMID: 35359007 PMCID: PMC9198934 DOI: 10.1182/bloodadvances.2021006429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
|
16
|
The TΑp63/BCL2 Axis Represents A Novel Mechanism Of Clinical Aggressiveness In Chronic Lymphocytic Leukemia. Blood Adv 2022; 6:2646-2656. [PMID: 35235952 PMCID: PMC9043946 DOI: 10.1182/bloodadvances.2021006348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
High expression of TAp63 is linked to adverse clinical outcomes in CLL. TAp63 contributes to the antiapoptotic phenotype of CLL cells, likely through modulating BCL2 protein expression.
The TA-isoform of the p63 transcription factor (TAp63) has been reported to contribute to clinical aggressiveness in chronic lymphocytic leukemia (CLL) in a hitherto elusive way. Here, we sought to further understand and define the role of TAp63 in the pathophysiology of CLL. First, we found that elevated TAp63 expression levels are linked with adverse clinical outcomes, including disease relapse and shorter time-to-first treatment and overall survival. Next, prompted by the fact that TAp63 participates in an NF-κB/TAp63/BCL2 antiapoptotic axis in activated mature, normal B cells, we explored molecular links between TAp63 and BCL2 also in CLL. We documented a strong correlation at both the protein and the messenger RNA (mRNA) levels, alluding to the potential prosurvival role of TAp63. This claim was supported by inducible downregulation of TAp63 expression in the MEC1 CLL cell line using clustered regularly interspaced short palindromic repeats (CRISPR) system, which resulted in downregulation of BCL2 expression. Next, using chromatin immunoprecipitation (ChIP) sequencing, we examined whether BCL2 might constitute a transcriptional target of TAp63 and identified a significant binding profile of TAp63 in the BCL2 gene locus, across a genomic region previously characterized as a super enhancer in CLL. Moreover, we identified high-confidence TAp63 binding regions in genes mainly implicated in immune response and DNA-damage procedures. Finally, we found that upregulated TAp63 expression levels render CLL cells less responsive to apoptosis induction with the BCL2 inhibitor venetoclax. On these grounds, TAp63 appears to act as a positive modulator of BCL2, hence contributing to the antiapoptotic phenotype that underlies clinical aggressiveness and treatment resistance in CLL.
Collapse
|
17
|
Lue JK, Downs-Canner S, Chaudhuri J. The role of B cells in the development, progression, and treatment of lymphomas and solid tumors. Adv Immunol 2022; 154:71-117. [PMID: 36038195 DOI: 10.1016/bs.ai.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
B cells are integral components of the mammalian immune response as they have the ability to generate antibodies against an almost infinite array of antigens. Over the past several decades, significant scientific progress has been made in understanding that this enormous B cell diversity contributes to pathogen clearance. However, our understanding of the humoral response to solid tumors and to tumor-specific antigens is unclear. In this review, we first discuss how B cells interact with other cells in the tumor microenvironment and influence the development and progression of various solid tumors. The ability of B lymphocytes to generate antibodies against a diverse repertoire of antigens and subsequently tailor the humoral immune response to specific pathogens relies on their ability to undergo genomic alterations during their development and differentiation. We will discuss key transforming events that lead to the development of B cell lymphomas. Overall, this review provides a foundation for innovative therapeutic interventions for both lymphoma and solid tumor malignancies.
Collapse
Affiliation(s)
- Jennifer K Lue
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Stephanie Downs-Canner
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
18
|
Kurtz DM, Soo J, Co Ting Keh L, Alig S, Chabon JJ, Sworder BJ, Schultz A, Jin MC, Scherer F, Garofalo A, Macaulay CW, Hamilton EG, Chen B, Olsen M, Schroers-Martin JG, Craig AFM, Moding EJ, Esfahani MS, Liu CL, Dührsen U, Hüttmann A, Casasnovas RO, Westin JR, Roschewski M, Wilson WH, Gaidano G, Rossi D, Diehn M, Alizadeh AA. Enhanced detection of minimal residual disease by targeted sequencing of phased variants in circulating tumor DNA. Nat Biotechnol 2021; 39:1537-1547. [PMID: 34294911 PMCID: PMC8678141 DOI: 10.1038/s41587-021-00981-w] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/11/2021] [Indexed: 12/11/2022]
Abstract
Circulating tumor-derived DNA (ctDNA) is an emerging biomarker for many cancers, but the limited sensitivity of current detection methods reduces its utility for diagnosing minimal residual disease. Here we describe phased variant enrichment and detection sequencing (PhasED-seq), a method that uses multiple somatic mutations in individual DNA fragments to improve the sensitivity of ctDNA detection. Leveraging whole-genome sequences from 2,538 tumors, we identify phased variants and their associations with mutational signatures. We show that even without molecular barcodes, the limits of detection of PhasED-seq outperform prior methods, including duplex barcoding, allowing ctDNA detection in the ppm range in participant samples. We profiled 678 specimens from 213 participants with B cell lymphomas, including serial cell-free DNA samples before and during therapy for diffuse large B cell lymphoma. In participants with undetectable ctDNA after two cycles of therapy using a next-generation sequencing-based approach termed cancer personalized profiling by deep sequencing, an additional 25% have ctDNA detectable by PhasED-seq and have worse outcomes. Finally, we demonstrate the application of PhasED-seq to solid tumors.
Collapse
Affiliation(s)
- David M Kurtz
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Joanne Soo
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Lyron Co Ting Keh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Stefan Alig
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Jacob J Chabon
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
- Foresight Diagnostics, Aurora, CO, USA
| | - Brian J Sworder
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Andre Schultz
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Michael C Jin
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Florian Scherer
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Garofalo
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Charles W Macaulay
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Emily G Hamilton
- Program in Cancer Biology, Stanford University, Stanford, CA, USA
| | - Binbin Chen
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mari Olsen
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Joseph G Schroers-Martin
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Alexander F M Craig
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Mohammad S Esfahani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Chih Long Liu
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Ulrich Dührsen
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, Essen, Germany
| | - Andreas Hüttmann
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center Essen, University Hospital Essen, Essen, Germany
| | | | - Jason R Westin
- Department of Lymphoma/Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark Roschewski
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wyndham H Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Davide Rossi
- Hematology, Oncology Institute of Southern Switzerland and Institute of Oncology Research, Bellinzona, Switzerland
| | - Maximilian Diehn
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA.
| | - Ash A Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
19
|
Bruscaggin A, di Bergamo LT, Spina V, Hodkinson B, Forestieri G, Bonfiglio F, Condoluci A, Wu W, Pirosa MC, Faderl MR, Koch R, Schaffer M, Alvarez JD, Fourneau N, Gerber B, Stussi G, Zucca E, Balasubramanian S, Rossi D. Circulating tumor DNA for comprehensive noninvasive monitoring of lymphoma treated with ibrutinib plus nivolumab. Blood Adv 2021; 5:4674-4685. [PMID: 34500472 PMCID: PMC8759132 DOI: 10.1182/bloodadvances.2021004528] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/04/2021] [Indexed: 11/20/2022] Open
Abstract
To advance the use of circulating tumor DNA (ctDNA) applications, their broad clinical validity must be tested in different treatment settings, including targeted therapies. Using the prespecified longitudinal systematic collection of plasma samples in the phase 1/2a LYM1002 trial (registered on www.clinicaltrials.gov as NCT02329847), we tested the clinical validity of ctDNA for baseline mutation profiling, residual tumor load quantification, and acquisition of resistance mutations in patients with lymphoma treated with ibrutinib+nivolumab. Inclusion criterion for this ancillary biological study was the availability of blood collected at baseline and cycle 3, day 1. Overall, 172 ctDNA samples from 67 patients were analyzed by the LyV4.0 ctDNA Cancer Personalized Profiling Deep Sequencing Assay. Among baseline variants in ctDNA, only TP53 mutations (detected in 25.4% of patients) were associated with shorter progression-free survival; clones harboring baseline TP53 mutations did not disappear during treatment. Molecular response, defined as a >2-log reduction in ctDNA levels after 2 cycles of therapy (28 days), was achieved in 28.6% of patients with relapsed diffuse large B-cell lymphoma who had ≥1 baseline variant and was associated with best response and improved progression-free survival. Clonal evolution occurred frequently during treatment, and 10.3% new mutations were identified after 2 treatment cycles in nonresponders. PLCG2 was the topmost among genes that acquired new mutations. No patients acquired the C481S BTK mutation implicated in resistance to ibrutinib in CLL. Collectively, our results provide the proof of concept that ctDNA is useful for noninvasive monitoring of lymphoma treated with targeted agents in the clinical trial setting.
Collapse
Affiliation(s)
- Alessio Bruscaggin
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | | | - Valeria Spina
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | | | - Gabriela Forestieri
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Ferdinando Bonfiglio
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Adalgisa Condoluci
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Wei Wu
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Maria C. Pirosa
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Martin R. Faderl
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Ricardo Koch
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | | | | | | | - Bernhard Gerber
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Georg Stussi
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | | | | | - Davide Rossi
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| |
Collapse
|
20
|
Ye X, Ren W, Liu D, Li X, Li W, Wang X, Meng FL, Yeap LS, Hou Y, Zhu S, Casellas R, Zhang H, Wu K, Pan-Hammarström Q. Genome-wide mutational signatures revealed distinct developmental paths for human B cell lymphomas. J Exp Med 2021; 218:211517. [PMID: 33136155 PMCID: PMC7608067 DOI: 10.1084/jem.20200573] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Both somatic hypermutation (SHM) and class switch recombination (CSR) are initiated by activation-induced cytidine deaminase (AID). Dysregulation of these processes has been linked to B cell lymphomagenesis. Here we performed an in-depth analysis of diffuse large B cell lymphoma (DLBCL) and follicular lymphoma (FL) genomes. We characterized seven genomic mutational signatures, including two B cell tumor-specific signatures, one of which is novel and associated with aberrant SHM. We further identified two major mutational signatures (K1 and K2) of clustered mutations (kataegis) resulting from the activities of AID or error-prone DNA polymerase η, respectively. K1 was associated with the immunoglobulin (Ig) switch region mutations/translocations and the ABC subtype of DLBCL, whereas K2 was related to the Ig variable region mutations and the GCB subtype of DLBCL and FL. Similar patterns were also observed in chronic lymphocytic leukemia subtypes. Thus, alterations associated with aberrant CSR and SHM activities can be linked to distinct developmental paths for different subtypes of B cell lymphomas.
Collapse
Affiliation(s)
- Xiaofei Ye
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,BGI-Shenzhen, Shenzhen, China.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Weicheng Ren
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen, China.,Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Xiaobo Li
- BGI-Shenzhen, Shenzhen, China.,Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Wei Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Fei-Long Meng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Leng-Siew Yeap
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Rafael Casellas
- Genomics and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD.,Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China.,Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Qiang Pan-Hammarström
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
21
|
Dawes JC, Uren AG. Forward and Reverse Genetics of B Cell Malignancies: From Insertional Mutagenesis to CRISPR-Cas. Front Immunol 2021; 12:670280. [PMID: 34484175 PMCID: PMC8414522 DOI: 10.3389/fimmu.2021.670280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/09/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer genome sequencing has identified dozens of mutations with a putative role in lymphomagenesis and leukemogenesis. Validation of driver mutations responsible for B cell neoplasms is complicated by the volume of mutations worthy of investigation and by the complex ways that multiple mutations arising from different stages of B cell development can cooperate. Forward and reverse genetic strategies in mice can provide complementary validation of human driver genes and in some cases comparative genomics of these models with human tumors has directed the identification of new drivers in human malignancies. We review a collection of forward genetic screens performed using insertional mutagenesis, chemical mutagenesis and exome sequencing and discuss how the high coverage of subclonal mutations in insertional mutagenesis screens can identify cooperating mutations at rates not possible using human tumor genomes. We also compare a set of independently conducted screens from Pax5 mutant mice that converge upon a common set of mutations observed in human acute lymphoblastic leukemia (ALL). We also discuss reverse genetic models and screens that use CRISPR-Cas, ORFs and shRNAs to provide high throughput in vivo proof of oncogenic function, with an emphasis on models using adoptive transfer of ex vivo cultured cells. Finally, we summarize mouse models that offer temporal regulation of candidate genes in an in vivo setting to demonstrate the potential of their encoded proteins as therapeutic targets.
Collapse
Affiliation(s)
- Joanna C Dawes
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Anthony G Uren
- Medical Research Council, London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
Characterization of DLBCL with a PMBL gene expression signature. Blood 2021; 138:136-148. [PMID: 33684939 DOI: 10.1182/blood.2020007683] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Primary mediastinal large B-cell lymphoma (PMBL) is a type of aggressive B-cell lymphoma that typically affects young adults, characterized by presence of a bulky anterior mediastinal mass. Lymphomas with gene expression features of PMBL have been described in nonmediastinal sites, raising questions about how these tumors should be classified. Here, we investigated whether these nonmediastinal lymphomas are indeed PMBLs or instead represent a distinct group within diffuse large B-cell lymphoma (DLBCL). From a cohort of 325 de novo DLBCL cases, we identified tumors from patients without evidence of anterior mediastinal involvement that expressed a PMBL expression signature (nm-PMBLsig+; n = 16; 5%). A majority of these tumors expressed MAL and CD23, proteins typically observed in bona fide PMBL (bf-PMBL). Evaluation of clinical features of nm-PMBLsig+ cases revealed close associations with DLBCL, and a majority displayed a germinal center B cell-like cell of origin (GCB). In contrast to patients with bf-PMBL, patients with nm-PMBLsig+ presented at an older age and did not show pleural disease, and bone/bone marrow involvement was observed in 3 cases. However, although clinically distinct from bf-PMBL, nm-PMBLsig+ tumors resembled bf-PMBL at the molecular level, with upregulation of immune response, JAK-STAT, and NF-κB signatures. Mutational analysis revealed frequent somatic gene mutations in SOCS1, IL4R, ITPKB, and STAT6, as well as CD83 and BIRC3, with the latter genes significantly more frequently affected than in GCB DLBCL or bf-PMBL. Our data establish nm-PMBLsig+ lymphomas as a group within DLBCL with distinct phenotypic and genetic features. These findings may have implications for gene expression- and mutation-based subtyping of aggressive B-cell lymphomas and related targeted therapies.
Collapse
|
23
|
Ramis-Zaldivar JE, Gonzalez-Farre B, Nicolae A, Pack S, Clot G, Nadeu F, Mottok A, Horn H, Song JY, Fu K, Wright G, Gascoyne RD, Chan WC, Scott DW, Feldman AL, Valera A, Enjuanes A, Braziel RM, Smeland EB, Staudt LM, Rosenwald A, Rimsza LM, Ott G, Jaffe ES, Salaverria I, Campo E. MAP-kinase and JAK-STAT pathways dysregulation in plasmablastic lymphoma. Haematologica 2021; 106:2682-2693. [PMID: 33951889 PMCID: PMC8485662 DOI: 10.3324/haematol.2020.271957] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 11/09/2022] Open
Abstract
Plasmablastic lymphoma (PBL) is an aggressive B-cell lymphoma with an immunoblastic/large cell morphology and plasmacytic differentiation. The differential diagnosis with Burkitt lymphoma (BL), plasma cell myeloma (PCM) and some variants of diffuse large B-cell lymphoma (DLBCL) may be challenging due to the overlapping morphological, genetic and immunophenotypic features. Furthermore, the genomic landscape in PBL is not well known. To characterize the genetic and molecular heterogeneity of these tumors, we investigated thirty-four PBL using an integrated approach, including fluorescence in situ hybridization, targeted sequencing of 94 B-cell lymphoma related genes, and copy-number arrays. PBL were characterized by high genetic complexity including MYC translocations (87%), gains of 1q21.1-q44, trisomy 7, 8q23.2-q24.21, 11p13-p11.2, 11q14.2-q25, 12p and 19p13.3-p13.13, losses of 1p33, 1p31.1-p22.3, 13q and 17p13.3-p11.2, and recurrent mutations of STAT3 (37%), NRAS and TP53 (33%), MYC and EP300 (19%) and CARD11, SOCS1 and TET2 (11%). Pathway enrichment analysis suggested a cooperative action between MYC alterations and MAPK (49%) and JAK-STAT (40%) signaling pathways. Of note, EBVnegative PBL cases had higher mutational and copy-number load and more frequent TP53, CARD11 and MYC mutations, whereas EBV-positive PBL tended to have more mutations affecting the JAK-STAT pathway. In conclusion, these findings further unravel the distinctive molecular heterogeneity of PBL identifying novel molecular targets and the different genetic profile of these tumors related to EBV infection.
Collapse
Affiliation(s)
- Joan Enric Ramis-Zaldivar
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Blanca Gonzalez-Farre
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Alina Nicolae
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, Bethesda
| | - Svetlana Pack
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, Bethesda
| | - Guillem Clot
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Ferran Nadeu
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Anja Mottok
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver
| | - Heike Horn
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen
| | - Joo Y Song
- Department of Pathology, City of Hope National Medical Center, Duarte
| | - Kai Fu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha
| | - George Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Randy D Gascoyne
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte
| | - David W Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada; Department of Medicine, University of British Columbia, Vancouver
| | - Andrew L Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Alexandra Valera
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona
| | - Anna Enjuanes
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Rita M Braziel
- Department of Clinical Pathology, Oregon Health and Science University, Oregon
| | - Erlend B Smeland
- Department of Immunology and Centre for Cancer Biomedicine, University of Oslo and Oslo University Hospital, Oslo
| | - Louis M Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Institutes of Health, Bethesda
| | | | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Stuttgart, and Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen
| | - Elaine S Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, Bethesda
| | - Itziar Salaverria
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid
| | - Elias Campo
- Hematopathology Unit, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid.
| |
Collapse
|
24
|
Mosquera Orgueira A, Ferreiro Ferro R, Díaz Arias JÁ, Aliste Santos C, Antelo Rodríguez B, Bao Pérez L, Alonso Vence N, Bendaña López Á, Abuin Blanco A, Melero Valentín P, Peleteiro Raindo A, Cid López M, Pérez Encinas MM, González Pérez MS, Fraga Rodríguez MF, Bello López JL. Detection of new drivers of frequent B-cell lymphoid neoplasms using an integrated analysis of whole genomes. PLoS One 2021; 16:e0248886. [PMID: 33945543 PMCID: PMC8096002 DOI: 10.1371/journal.pone.0248886] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
B-cell lymphoproliferative disorders exhibit a diverse spectrum of diagnostic entities with heterogeneous behaviour. Multiple efforts have focused on the determination of the genomic drivers of B-cell lymphoma subtypes. In the meantime, the aggregation of diverse tumors in pan-cancer genomic studies has become a useful tool to detect new driver genes, while enabling the comparison of mutational patterns across tumors. Here we present an integrated analysis of 354 B-cell lymphoid disorders. 112 recurrently mutated genes were discovered, of which KMT2D, CREBBP, IGLL5 and BCL2 were the most frequent, and 31 genes were putative new drivers. Mutations in CREBBP, TNFRSF14 and KMT2D predominated in follicular lymphoma, whereas those in BTG2, HTA-A and PIM1 were more frequent in diffuse large B-cell lymphoma. Additionally, we discovered 31 significantly mutated protein networks, reinforcing the role of genes such as CREBBP, EEF1A1, STAT6, GNA13 and TP53, but also pointing towards a myriad of infrequent players in lymphomagenesis. Finally, we report aberrant expression of oncogenes and tumor suppressors associated with novel noncoding mutations (DTX1 and S1PR2), and new recurrent copy number aberrations affecting immune check-point regulators (CD83, PVR) and B-cell specific genes (TNFRSF13C). Our analysis expands the number of mutational drivers of B-cell lymphoid neoplasms, and identifies several differential somatic events between disease subtypes.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Roi Ferreiro Ferro
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - José Ángel Díaz Arias
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Carlos Aliste Santos
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Pathology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Beatriz Antelo Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Pathology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Laura Bao Pérez
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Natalia Alonso Vence
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Ággeles Bendaña López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Aitor Abuin Blanco
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Paula Melero Valentín
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - And´res Peleteiro Raindo
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Miguel Cid López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Manuel Mateo Pérez Encinas
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Marta Sonia González Pérez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - Máximo Francisco Fraga Rodríguez
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
- Department of Pathology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
| | - José Luis Bello López
- Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Galicia, Spain
- Department of Hematology, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, Santiago de Compostela, Galicia, Spain
- University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| |
Collapse
|
25
|
How Chaotic Is Genome Chaos? Cancers (Basel) 2021; 13:cancers13061358. [PMID: 33802828 PMCID: PMC8002653 DOI: 10.3390/cancers13061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer genomes can undergo major restructurings involving many chromosomal locations at key stages in tumor development. This restructuring process has been designated “genome chaos” by some authors. In order to examine how chaotic cancer genome restructuring may be, the cell and molecular processes for DNA restructuring are reviewed. Examination of the action of these processes in various cancers reveals a degree of specificity that indicates genome restructuring may be sufficiently reproducible to enable possible therapies that interrupt tumor progression to more lethal forms. Abstract Cancer genomes evolve in a punctuated manner during tumor evolution. Abrupt genome restructuring at key steps in this evolution has been called “genome chaos.” To answer whether widespread genome change is truly chaotic, this review (i) summarizes the limited number of cell and molecular systems that execute genome restructuring, (ii) describes the characteristic signatures of DNA changes that result from activity of those systems, and (iii) examines two cases where genome restructuring is determined to a significant degree by cell type or viral infection. The conclusion is that many restructured cancer genomes display sufficiently unchaotic signatures to identify the cellular systems responsible for major oncogenic transitions, thereby identifying possible targets for therapies to inhibit tumor progression to greater aggressiveness.
Collapse
|
26
|
Lee B, Lee H, Cho J, Yoon SE, Kim SJ, Park WY, Kim WS, Ko YH. Mutational Profile and Clonal Evolution of Relapsed/Refractory Diffuse Large B-Cell Lymphoma. Front Oncol 2021; 11:628807. [PMID: 33777778 PMCID: PMC7992425 DOI: 10.3389/fonc.2021.628807] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Primary refractory/relapsed diffuse large B-cell lymphoma (rrDLBCL) is an unresolved issue for DLBCL treatment and new treatments to overcome resistance is required. To explore the genetic mechanisms underlying treatment resistance in rrDLBCL and to identify candidate genes, we performed targeted deep sequencing of 430 lymphoma-related genes from 58 patients diagnosed with rrDLBCL. Genetic alterations found between the initial biopsy and biopsy at recurrence or refractory disease were investigated. The genes most frequently altered (> 20%) were (in decreasing order of frequency) CDKN2A, PIM1, CD79B, TP53, MYD88, MYC, BTG2, BTG1, CDKN2B, DTX1, CD58, ETV6, and IRF4. Genes mutation of which in pretreatment sample were associated with poor overall survival included NOTCH1, FGFR2, BCL7A, BCL10, SPEN and TP53 (P < 0.05). FGFR2, BCL2, BCL6, BCL10, and TP53 were associated with poor progression-free survival (P < 0.05). Most mutations were truncal and were maintained in both the initial biopsy and post-treatment biopsy with high dynamics of subclones. Immune-evasion genes showed increased overall mutation frequency (CD58, B2M) and variant allele fraction (CD58), and decreased copy number (B2M, CD70) at the post-treatment biopsy. Using the established mutational profiles and integrative analysis of mutational evolution, we identified information about candidate genes that may be useful for the development of future treatment strategies.
Collapse
Affiliation(s)
- Boram Lee
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hyunwoo Lee
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Junhun Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Eun Yoon
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Seok Jin Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Won Seog Kim
- Division of Hematology and Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Young Hyeh Ko
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
LUBAC accelerates B-cell lymphomagenesis by conferring resistance to genotoxic stress on B cells. Blood 2021; 136:684-697. [PMID: 32325488 DOI: 10.1182/blood.2019002654] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is a key regulator of NF-κB signaling. Activating single-nucleotide polymorphisms of HOIP, the catalytic subunit of LUBAC, are enriched in patients with activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL), and expression of HOIP, which parallels LUBAC activity, is elevated in ABC-DLBCL samples. Thus, to clarify the precise roles of LUBAC in lymphomagenesis, we generated a mouse model with augmented expression of HOIP in B cells. Interestingly, augmented HOIP expression facilitated DLBCL-like B-cell lymphomagenesis driven by MYD88-activating mutation. The developed lymphoma cells partly shared somatic gene mutations with human DLBCLs, with increased frequency of a typical AID mutation pattern. In vitro analysis revealed that HOIP overexpression protected B cells from DNA damage-induced cell death through NF-κB activation, and analysis of the human DLBCL database showed that expression of HOIP positively correlated with gene signatures representing regulation of apoptosis signaling, as well as NF-κB signaling. These results indicate that HOIP facilitates lymphomagenesis by preventing cell death and augmenting NF-κB signaling, leading to accumulation of AID-mediated mutations. Furthermore, a natural compound that specifically inhibits LUBAC was shown to suppress the tumor growth in a mouse transplantation model. Collectively, our data indicate that LUBAC is crucially involved in B-cell lymphomagenesis through protection against DNA damage-induced cell death and is a suitable therapeutic target for B-cell lymphomas.
Collapse
|
28
|
The mutational landscape of histiocytic sarcoma associated with lymphoid malignancy. Mod Pathol 2021; 34:336-347. [PMID: 32929178 PMCID: PMC9161669 DOI: 10.1038/s41379-020-00673-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022]
Abstract
Histiocytic sarcoma and tumors with dendritic cell differentiation (HDT) are uncommon neoplasms often with an aggressive clinical course that may occur in association with another hematologic malignancy or mediastinal germ cell tumor (secondary HDT, sHDT). Previous studies have shown mutations in the RAS/MAPK pathway in HDT and have demonstrated a clonal relationship between HDT and associated lymphoid malignancies through common translocations or identical immunoglobulin or T-cell receptor gene rearrangements. We performed whole exome sequencing on 16 cases of sHDT to further evaluate the spectrum of mutations that occur in sHDT in the context of an associated lymphoid malignancy, including cases associated with follicular lymphoma (FL), chronic lymphocytic leukemia/small lymphocytic lymphoma, B- and T-cell acute lymphoblastic leukemia/lymphoma and peripheral T-cell lymphoma, NOS. In addition, we assessed the clonal relationship between the HDT and the associated lymphoid malignancy in three cases for which matched samples were available. We found mutations in RAS/MAPK pathway genes in 14/16 cases of sHDT associated with diverse mature and precursor B-cell and T-cell neoplasms, involving KRAS (8/16), BRAF (2/16), NRAS (2/16), MAP2K1 (1/16), and NF1 (1/16). In addition, we note that FL-associated sHDT frequently shares a similar mutational profile to the associated malignancy, identifying mutations in CREBBP or KMT2D in all cases and "aberrant" somatic hypermutation in 5/6 cases. Our study confirms the role of the RAS/MAPK pathway in the pathogenesis of sHDT, provides further evidence of a common neoplastic precursor and, in the case of FL, gives additional insight into the stage in lymphomagenesis at which transdifferentiation may occur.
Collapse
|
29
|
Mutational mechanisms shaping the coding and noncoding genome of germinal center derived B-cell lymphomas. Leukemia 2021; 35:2002-2016. [PMID: 33953289 PMCID: PMC8257491 DOI: 10.1038/s41375-021-01251-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 02/03/2023]
Abstract
B cells have the unique property to somatically alter their immunoglobulin (IG) genes by V(D)J recombination, somatic hypermutation (SHM) and class-switch recombination (CSR). Aberrant targeting of these mechanisms is implicated in lymphomagenesis, but the mutational processes are poorly understood. By performing whole genome and transcriptome sequencing of 181 germinal center derived B-cell lymphomas (gcBCL) we identified distinct mutational signatures linked to SHM and CSR. We show that not only SHM, but presumably also CSR causes off-target mutations in non-IG genes. Kataegis clusters with high mutational density mainly affected early replicating regions and were enriched for SHM- and CSR-mediated off-target mutations. Moreover, they often co-occurred in loci physically interacting in the nucleus, suggesting that mutation hotspots promote increased mutation targeting of spatially co-localized loci (termed hypermutation by proxy). Only around 1% of somatic small variants were in protein coding sequences, but in about half of the driver genes, a contribution of B-cell specific mutational processes to their mutations was found. The B-cell-specific mutational processes contribute to both lymphoma initiation and intratumoral heterogeneity. Overall, we demonstrate that mutational processes involved in the development of gcBCL are more complex than previously appreciated, and that B cell-specific mutational processes contribute via diverse mechanisms to lymphomagenesis.
Collapse
|
30
|
Bakhshi TJ, Georgel PT. Genetic and epigenetic determinants of diffuse large B-cell lymphoma. Blood Cancer J 2020; 10:123. [PMID: 33277464 PMCID: PMC7718920 DOI: 10.1038/s41408-020-00389-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/25/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma and is notorious for its heterogeneity, aggressive nature, and the frequent development of resistance and/or relapse after treatment with standard chemotherapy. To address these problems, a strong emphasis has been placed on researching the molecular origins and mechanisms of DLBCL to develop effective treatments. One of the major insights produced by such research is that DLBCL almost always stems from genetic damage that occurs during the germinal center (GC) reaction, which is required for the production of high-affinity antibodies. Indeed, there is significant overlap between the mechanisms that govern the GC reaction and those that drive the progression of DLBCL. A second important insight is that some of the most frequent genetic mutations that occur in DLBCL are those related to chromatin and epigenetics, especially those related to proteins that “write” histone post-translational modifications (PTMs). Mutation or deletion of these epigenetic writers often renders cells unable to epigenetically “switch on” critical gene sets that are required to exit the GC reaction, differentiate, repair DNA, and other essential cellular functions. Failure to activate these genes locks cells into a genotoxic state that is conducive to oncogenesis and/or relapse.
Collapse
Affiliation(s)
- Tanner J Bakhshi
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA
| | - Philippe T Georgel
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755, USA. .,Department of Biological Sciences, Cell Differentiation and Development Center, Byrd Biotechnology Science Center, Marshall University, Huntington, WV, 25755, USA.
| |
Collapse
|
31
|
Xu YZ, Jenjaroenpun P, Wongsurawat T, Byrum SD, Shponka V, Tannahill D, Chavez EA, Hung SS, Steidl C, Balasubramanian S, Rimsza LM, Kendrick S. Activation-induced cytidine deaminase localizes to G-quadruplex motifs at mutation hotspots in lymphoma. NAR Cancer 2020; 2:zcaa029. [PMID: 33094287 PMCID: PMC7556405 DOI: 10.1093/narcan/zcaa029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/31/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a molecularly heterogeneous group of malignancies with frequent genetic abnormalities. G-quadruplex (G4) DNA structures may facilitate this genomic instability through association with activation-induced cytidine deaminase (AID), an antibody diversification enzyme implicated in mutation of oncogenes in B-cell lymphomas. Chromatin immunoprecipitation sequencing analyses in this study revealed that AID hotspots in both activated B cells and lymphoma cells in vitro were highly enriched for G4 elements. A representative set of these targeted sequences was validated for characteristic, stable G4 structure formation including previously unknown G4s in lymphoma-associated genes, CBFA2T3, SPIB, BCL6, HLA-DRB5 and MEF2C, along with the established BCL2 and MYC structures. Frequent genome-wide G4 formation was also detected for the first time in DLBCL patient-derived tissues using BG4, a structure-specific G4 antibody. Tumors with greater staining were more likely to have concurrent BCL2 and MYC oncogene amplification and BCL2 mutations. Ninety-seven percent of the BCL2 mutations occurred within G4 sites that overlapped with AID binding. G4 localization at sites of mutation, and within aggressive DLBCL tumors harboring amplified BCL2 and MYC, supports a role for G4 structures in events that lead to a loss of genomic integrity, a critical step in B-cell lymphomagenesis.
Collapse
Affiliation(s)
- Ying-Zhi Xu
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Piroon Jenjaroenpun
- Department of Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thidathip Wongsurawat
- Department of Bioinformatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Division of Bioinformatics and Data Management for Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Volodymyr Shponka
- Department of Pathology, University of Arizona, Tucson, AZ 85721, USA
| | - David Tannahill
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | | | - Stacy S Hung
- British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | | | - Shankar Balasubramanian
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Lisa M Rimsza
- Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Samantha Kendrick
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
32
|
A Hyper-IgM Syndrome Mutation in Activation-Induced Cytidine Deaminase Disrupts G-Quadruplex Binding and Genome-wide Chromatin Localization. Immunity 2020; 53:952-970.e11. [PMID: 33098766 DOI: 10.1016/j.immuni.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/27/2020] [Accepted: 10/06/2020] [Indexed: 01/04/2023]
Abstract
Precise targeting of activation-induced cytidine deaminase (AID) to immunoglobulin (Ig) loci promotes antibody class switch recombination (CSR) and somatic hypermutation (SHM), whereas AID targeting of non-Ig loci can generate oncogenic DNA lesions. Here, we examined the contribution of G-quadruplex (G4) nucleic acid structures to AID targeting in vivo. Mice bearing a mutation in Aicda (AIDG133V) that disrupts AID-G4 binding modeled the pathology of hyper-IgM syndrome patients with an orthologous mutation, lacked CSR and SHM, and had broad defects in genome-wide AIDG133V chromatin localization. Genome-wide analyses also revealed that wild-type AID localized to MHCII genes, and AID expression correlated with decreased MHCII expression in germinal center B cells and diffuse large B cell lymphoma. Our findings indicate a crucial role for G4 binding in AID targeting and suggest that AID activity may extend beyond Ig loci to regulate the expression of genes relevant to the physiology and pathology of activated B cells.
Collapse
|
33
|
Tateishi K, Miyake Y, Kawazu M, Sasaki N, Nakamura T, Sasame J, Yoshii Y, Ueno T, Miyake A, Watanabe J, Matsushita Y, Shiba N, Udaka N, Ohki K, Fink AL, Tummala SS, Natsumeda M, Ikegaya N, Nishi M, Ohtake M, Miyazaki R, Suenaga J, Murata H, Aoki I, Miller JJ, Fujii Y, Ryo A, Yamanaka S, Mano H, Cahill DP, Wakimoto H, Chi AS, Batchelor TT, Nagane M, Ichimura K, Yamamoto T. A Hyperactive RelA/p65-Hexokinase 2 Signaling Axis Drives Primary Central Nervous System Lymphoma. Cancer Res 2020; 80:5330-5343. [PMID: 33067267 DOI: 10.1158/0008-5472.can-20-2425] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 11/16/2022]
Abstract
Primary central nervous system lymphoma (PCNSL) is an isolated type of lymphoma of the central nervous system and has a dismal prognosis despite intensive chemotherapy. Recent genomic analyses have identified highly recurrent mutations of MYD88 and CD79B in immunocompetent PCNSL, whereas LMP1 activation is commonly observed in Epstein-Barr virus (EBV)-positive PCNSL. However, a lack of clinically representative preclinical models has hampered our understanding of the pathogenic mechanisms by which genetic aberrations drive PCNSL disease phenotypes. Here, we establish a panel of 12 orthotopic, patient-derived xenograft (PDX) models from both immunocompetent and EBV-positive PCNSL and secondary CNSL biopsy specimens. PDXs faithfully retained their phenotypic, metabolic, and genetic features, with 100% concordance of MYD88 and CD79B mutations present in PCNSL in immunocompetent patients. These models revealed a convergent functional dependency upon a deregulated RelA/p65-hexokinase 2 signaling axis, codriven by either mutated MYD88/CD79B or LMP1 with Pin1 overactivation in immunocompetent PCNSL and EBV-positive PCNSL, respectively. Notably, distinct molecular alterations used by immunocompetent and EBV-positive PCNSL converged to deregulate RelA/p65 expression and to drive glycolysis, which is critical for intracerebral tumor progression and FDG-PET imaging characteristics. Genetic and pharmacologic inhibition of this key signaling axis potently suppressed PCNSL growth in vitro and in vivo. These patient-derived models offer a platform for predicting clinical chemotherapeutics efficacy and provide critical insights into PCNSL pathogenic mechanisms, accelerating therapeutic discovery for this aggressive disease. SIGNIFICANCE: A set of clinically relevant CNSL xenografts identifies a hyperactive RelA/p65-hexokinase 2 signaling axis as a driver of progression and potential therapeutic target for treatment and provides a foundational preclinical platform. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/23/5330/F1.large.jpg.
Collapse
Affiliation(s)
- Kensuke Tateishi
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan. .,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Yohei Miyake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Masahito Kawazu
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Sasaki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan.,Department of Neurosurgery, Kyorin University Graduate School of Medicine, Mitaka, Tokyo, Japan
| | - Taishi Nakamura
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Jo Sasame
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan.,Neurosurgical-Oncology Laboratory, Yokohama City University, Yokohama, Japan
| | - Yukie Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Akio Miyake
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Jun Watanabe
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuko Matsushita
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Norio Shiba
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Naoko Udaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Alexandria L Fink
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Shilpa S Tummala
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Naoki Ikegaya
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Mayuko Nishi
- Department of Microbiology, Graduate School of Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Makoto Ohtake
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ryohei Miyazaki
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Jun Suenaga
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Hidetoshi Murata
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Ichio Aoki
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Sciences and Technology, Chiba, Japan
| | - Julie J Miller
- Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts.,Stephen E. and Catherine Papas Center for Neuro-Oncology, Division of Hematology/Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Yukihiko Fujii
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akihide Ryo
- Department of Microbiology, Graduate School of Medicine, Yokohama City University Hospital, Yokohama, Japan
| | - Shoji Yamanaka
- Department of Pathology, Yokohama City University Hospital, Yokohama, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts.,Translational-Neurooncology Laboratory, Brain Tumor Research Center, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Motoo Nagane
- Department of Neurosurgery, Kyorin University Faculty of Medicine, Mitaka, Tokyo, Japan
| | - Koichi Ichimura
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Tokyo, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| |
Collapse
|
34
|
Senigl F, Maman Y, Dinesh RK, Alinikula J, Seth RB, Pecnova L, Omer AD, Rao SSP, Weisz D, Buerstedde JM, Aiden EL, Casellas R, Hejnar J, Schatz DG. Topologically Associated Domains Delineate Susceptibility to Somatic Hypermutation. Cell Rep 2020; 29:3902-3915.e8. [PMID: 31851922 PMCID: PMC6980758 DOI: 10.1016/j.celrep.2019.11.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/26/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022] Open
Abstract
Somatic hypermutation (SHM) introduces point mutations into immunoglobulin (Ig) genes but also causes mutations in other parts of the genome. We have used lentiviral SHM reporter vectors to identify regions of the genome that are susceptible (“hot”) and resistant (“cold”) to SHM, revealing that SHM susceptibility and resistance are often properties of entire topologically associated domains (TADs). Comparison of hot and cold TADs reveals that while levels of transcription are equivalent, hot TADs are enriched for the cohesin loader NIPBL, super-enhancers, markers of paused/stalled RNA polymerase 2, and multiple important B cell transcription factors. We demonstrate that at least some hot TADs contain enhancers that possess SHM targeting activity and that insertion of a strong Ig SHM-targeting element into a cold TAD renders it hot. Our findings lead to a model for SHM susceptibility involving the cooperative action of cis-acting SHM targeting elements and the dynamic and architectural properties of TADs. Senigl et al. show that genome susceptibility to somatic hypermutation (SHM) is confined within topologically associated domains (TADs) and is linked to markers of strong enhancers and stalled transcription and high levels of the cohesin loader NIPBL. Insertion of an ectopic SHM targeting element renders an entire TAD susceptible to SHM.
Collapse
Affiliation(s)
- Filip Senigl
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic.
| | - Yaakov Maman
- Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ravi K Dinesh
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Jukka Alinikula
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland
| | - Rashu B Seth
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA
| | - Lubomira Pecnova
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Arina D Omer
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suhas S P Rao
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Weisz
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Erez Lieberman Aiden
- Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Rafael Casellas
- Lymphocyte Nuclear Biology, NIAMS, NIH, Bethesda, MD 20892, USA; Center of Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| | - Jiri Hejnar
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague 4, Czech Republic
| | - David G Schatz
- Department of Immunobiology, Yale School of Medicine, 300 Cedar Street, Box 208011, New Haven, CT 06520-8011, USA.
| |
Collapse
|
35
|
Mas-Ponte D, Supek F. DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. Nat Genet 2020; 52:958-968. [PMID: 32747826 PMCID: PMC7610516 DOI: 10.1038/s41588-020-0674-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 06/30/2020] [Indexed: 01/12/2023]
Abstract
Certain mutagens, including the APOBEC3 (A3) cytosine deaminase enzymes, can create multiple genetic changes in a single event. Activity of A3s results in striking 'mutation showers' occurring near DNA breakpoints; however, less is known about the mechanisms underlying the majority of A3 mutations. We classified the diverse patterns of clustered mutagenesis in tumor genomes, which identified a new A3 pattern: nonrecurrent, diffuse hypermutation (omikli). This mechanism occurs independently of the known focal hypermutation (kataegis), and is associated with activity of the DNA mismatch-repair pathway, which can provide the single-stranded DNA substrate needed by A3, and contributes to a substantial proportion of A3 mutations genome wide. Because mismatch repair is directed towards early-replicating, gene-rich chromosomal domains, A3 mutagenesis has a high propensity to generate impactful mutations, which exceeds that of other common carcinogens such as tobacco smoke and ultraviolet exposure. Cells direct their DNA repair capacity towards more important genomic regions; thus, carcinogens that subvert DNA repair can be remarkably potent.
Collapse
Affiliation(s)
- David Mas-Ponte
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fran Supek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
36
|
Zhang W, Yang L, Guan YQ, Shen KF, Zhang ML, Cai HD, Wang JC, Wang Y, Huang L, Cao Y, Wang N, Tan XH, Young KH, Xiao M, Zhou JF. Novel bioinformatic classification system for genetic signatures identification in diffuse large B-cell lymphoma. BMC Cancer 2020; 20:714. [PMID: 32736575 PMCID: PMC7393908 DOI: 10.1186/s12885-020-07198-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
Background Diffuse large B-cell lymphoma (DLBCL) is a spectrum of disease comprising more than 30% of non-Hodgkin lymphomas. Although studies have identified several molecular subgroups, the heterogeneous genetic background of DLBCL remains ambiguous. In this study we aimed to develop a novel approach and to provide a distinctive classification system to unravel its molecular features. Method A cohort of 342 patient samples diagnosed with DLBCL in our hospital were retrospectively enrolled in this study. A total of 46 genes were included in next-generation sequencing panel. Non-mutually exclusive genetic signatures for the factorization of complex genomic patterns were generated by random forest algorithm. Results A total of four non-mutually exclusive signatures were generated, including those with MYC-translocation (MYC-trans) (n = 62), with BCL2-translocation (BCL2-trans) (n = 69), with BCL6-translocation (BCL6-trans) (n = 108), and those with MYD88 and/or CD79B mutations (MC) signatures (n = 115). Comparison analysis between our model and traditional mutually exclusive Schmitz’s model demonstrated consistent classification pattern. And prognostic heterogeneity existed within EZB subgroup of de novo DLBCL patients. As for prognostic impact, MYC-trans signature was an independent unfavorable prognostic factor. Furthermore, tumors carrying three different signature markers exhibited significantly inferior prognoses compared with their counterparts with no genetic signature. Conclusion Compared with traditional mutually exclusive molecular sub-classification, non-mutually exclusive genetic fingerprint model generated from our study provided novel insight into not only the complex genetic features, but also the prognostic heterogeneity of DLBCL patients.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Li Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Yu' Qi Guan
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Ke' Feng Shen
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Mei' Lan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Hao' Dong Cai
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Jia' Chen Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Ying Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Na Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| | - Xiao' Hong Tan
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, No. 71 Hedi Road, Nanning, Guangxi, 530021, P.R. China
| | - Ken He Young
- Department of Pathology, The University of Duke, Durham, North Carolina, USA
| | - Min Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China.
| | - Jian' Feng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, P.R. China
| |
Collapse
|
37
|
Li Z, Abadir E, Lee K, Clarke C, Bryant CE, Cooper W, Pietersz G, Favaloro J, Silveira PA, Nj Hart D, Ju X, Clark GJ. Targeting CD83 in mantle cell lymphoma with anti-human CD83 antibody. Clin Transl Immunology 2020; 9:e1156. [PMID: 32685149 PMCID: PMC7362189 DOI: 10.1002/cti2.1156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/02/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Objectives Effective antibody-drug conjugates (ADCs) provide potent targeted cancer therapies. CD83 is expressed on activated immune cells including B cells and is a therapeutic target for Hodgkin lymphoma. Our objective was to determine CD83 expression on non-Hodgkin lymphoma (NHL) and its therapeutic potential to treat mantle cell lymphoma (MCL) which is currently an incurable NHL. Methods We analysed CD83 expression on MCL cell lines and the lymph node/bone marrow biopsies of MCL patients. We tested the killing effect of CD83 ADC in vitro and in an in vivo xenograft MCL mouse model. Results CD83 is expressed on MCL, and its upregulation is correlated with the nuclear factor κB (NF-κB) activation. CD83 ADC kills MCL in vitro and in vivo. Doxorubicin and cyclophosphamide (CP), which are included in the current treatment regimen for MCL, enhance the NF-κB activity and increase CD83 expression on MCL cell lines. The combination of CD83 ADC with doxorubicin and CP has synergistic killing effect of MCL. Conclusion This study provides evidence that a novel immunotherapeutic agent CD83 ADC, in combination with chemotherapy, has the potential to enhance the efficacy of current treatments for MCL.
Collapse
Affiliation(s)
- Ziduo Li
- Dendritic Cell Research ANZAC Research Institute Sydney NSW Australia.,Sydney Medical School The University of Sydney Sydney NSW Australia
| | - Edward Abadir
- Dendritic Cell Research ANZAC Research Institute Sydney NSW Australia.,Sydney Medical School The University of Sydney Sydney NSW Australia.,Institute of Haematology Royal Prince Alfred Hospital Sydney NSW Australia
| | - Kenneth Lee
- Sydney Medical School The University of Sydney Sydney NSW Australia.,Anatomical Pathology Concord Repatriation General Hospital Sydney NSW Australia
| | - Candice Clarke
- Anatomical Pathology Concord Repatriation General Hospital Sydney NSW Australia
| | - Christian E Bryant
- Institute of Haematology Royal Prince Alfred Hospital Sydney NSW Australia
| | - Wendy Cooper
- Institute of Haematology Royal Prince Alfred Hospital Sydney NSW Australia
| | - Geoffrey Pietersz
- Inflammation, Cancer and Infection Burnet Institute Melbourne VIC Australia.,Baker Heart and Diabetes Institute Melbourne VIC Australia
| | - James Favaloro
- Institute of Haematology Royal Prince Alfred Hospital Sydney NSW Australia
| | - Pablo A Silveira
- Dendritic Cell Research ANZAC Research Institute Sydney NSW Australia.,Sydney Medical School The University of Sydney Sydney NSW Australia
| | - Derek Nj Hart
- Dendritic Cell Research ANZAC Research Institute Sydney NSW Australia.,Sydney Medical School The University of Sydney Sydney NSW Australia
| | - Xinsheng Ju
- Dendritic Cell Research ANZAC Research Institute Sydney NSW Australia.,Sydney Medical School The University of Sydney Sydney NSW Australia
| | - Georgina J Clark
- Dendritic Cell Research ANZAC Research Institute Sydney NSW Australia.,Sydney Medical School The University of Sydney Sydney NSW Australia
| |
Collapse
|
38
|
Distinct molecular profile of IRF4-rearranged large B-cell lymphoma. Blood 2020; 135:274-286. [PMID: 31738823 DOI: 10.1182/blood.2019002699] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022] Open
Abstract
Pediatric large B-cell lymphomas (LBCLs) share morphological and phenotypic features with adult types but have better prognosis. The higher frequency of some subtypes such as LBCL with IRF4 rearrangement (LBCL-IRF4) in children suggests that some age-related biological differences may exist. To characterize the genetic and molecular heterogeneity of these tumors, we studied 31 diffuse LBCLs (DLBCLs), not otherwise specified (NOS); 20 LBCL-IRF4 cases; and 12 cases of high-grade B-cell lymphoma (HGBCL), NOS in patients ≤25 years using an integrated approach, including targeted gene sequencing, copy-number arrays, and gene expression profiling. Each subgroup displayed different molecular profiles. LBCL-IRF4 had frequent mutations in IRF4 and NF-κB pathway genes (CARD11, CD79B, and MYD88), losses of 17p13 and gains of chromosome 7, 11q12.3-q25, whereas DLBCL, NOS was predominantly of germinal center B-cell (GCB) subtype and carried gene mutations similar to the adult counterpart (eg, SOCS1 and KMT2D), gains of 2p16/REL, and losses of 19p13/CD70. A subset of HGBCL, NOS displayed recurrent alterations of Burkitt lymphoma-related genes such as MYC, ID3, and DDX3X and homozygous deletions of 9p21/CDKN2A, whereas other cases were genetically closer to GCB DLBCL. Factors related to unfavorable outcome were age >18 years; activated B-cell (ABC) DLBCL profile, HGBCL, NOS, high genetic complexity, 1q21-q44 gains, 2p16/REL gains/amplifications, 19p13/CD70 homozygous deletions, and TP53 and MYC mutations. In conclusion, these findings further unravel the molecular heterogeneity of pediatric and young adult LBCL, improve the classification of this group of tumors, and provide new parameters for risk stratification.
Collapse
|
39
|
Frequent mutations in the amino-terminal domain of BCL7A impair its tumor suppressor role in DLBCL. Leukemia 2020; 34:2722-2735. [PMID: 32576963 DOI: 10.1038/s41375-020-0919-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Mutations in genes encoding subunits of the SWI/SNF chromatin remodeling complex are frequently found in different human cancers. While the tumor suppressor function of this complex is widely established in solid tumors, its role in hematologic malignancies is largely unknown. Recurrent point mutations in BCL7A gene, encoding a subunit of the SWI/SNF complex, have been reported in diffuse large B-cell lymphoma (DLBCL), but their functional impact remains to be elucidated. Here we show that BCL7A often undergoes biallelic inactivation, including a previously unnoticed mutational hotspot in the splice donor site of intron one. The splice site mutations render a truncated BCL7A protein, lacking a portion of the amino-terminal domain. Moreover, restoration of wild-type BCL7A expression elicits a tumor suppressor-like phenotype in vitro and in vivo. In contrast, splice site mutations block the tumor suppressor function of BCL7A by preventing its binding to the SWI/SNF complex. We also show that BCL7A restoration induces transcriptomic changes in genes involved in B-cell activation. In addition, we report that SWI/SNF complex subunits harbor mutations in more than half of patients with germinal center B-cell (GCB)-DLBCL. Overall, this work demonstrates the tumor suppressor function of BCL7A in DLBCL, and highlights that the SWI/SNF complex plays a relevant role in DLBCL pathogenesis.
Collapse
|
40
|
Grommes C, Rubenstein JL, DeAngelis LM, Ferreri AJM, Batchelor TT. Comprehensive approach to diagnosis and treatment of newly diagnosed primary CNS lymphoma. Neuro Oncol 2020; 21:296-305. [PMID: 30418592 DOI: 10.1093/neuonc/noy192] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare form of non-Hodgkin lymphoma that affects the brain parenchyma, spinal cord, eyes, and cerebrospinal fluid without evidence of systemic, non-CNS involvement. PCNSL is uncommon and only a few randomized trials have been completed in the first-line setting. Over the past decades, the prognosis of PCNSL has improved, mainly due to the introduction and widespread use of high-dose methotrexate, which is now the backbone of all first-line treatment polychemotherapy regimens. Despite this progress, durable remission is recorded in only 50% of patients, and therapy can be associated with significant late neurotoxicity. Here, we overview the epidemiology, clinical presentation, staging evaluation, prognosis, and current up-to-date treatment of immunocompetent PCNSL patients.
Collapse
Affiliation(s)
- Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - James L Rubenstein
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, California, USA
| | - Lisa M DeAngelis
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andres J M Ferreri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Tracy T Batchelor
- Departments of Neurology and Radiation Oncology, Division of Hematology and Oncology, Boston, Massachusetts
| |
Collapse
|
41
|
Nesic M, El-Galaly TC, Bøgsted M, Pedersen IS, Dybkær K. Mutational landscape of immune surveillance genes in diffuse large B-cell lymphoma. Expert Rev Hematol 2020; 13:655-668. [PMID: 32293210 DOI: 10.1080/17474086.2020.1755958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Immune surveillance is the dynamic process whereby the immune system identifies and kills tumor cells based on their aberrant expression of stress-related surface molecules or presentation of tumor neoantigens. It plays a crucial role in controlling the initiation and progression of hematologic cancers such as leukemia and lymphoma, and it has been reported that diffuse large B-cell lymphoma (DLBCL) fails to express specific cell-surface molecules that are necessary for the recognition and elimination of tumor cells. AREAS COVERED This review is based on a systematic search strategy to identify relevant literature in the PubMed and Embase databases. Ten candidate genes are identified based on mutational frequency, and functions with detailed mapping performed for hotspot alterations that may have a functional impact on malignant transformation and decreased immune surveillance efficacy. EXPERT OPINION Ongoing development of technology and bioinformatics tools combined with data from large clinical cohorts have the potential to define the mutational landscape associated with immune surveillance in DLBCL. Specific functional studies are required to make an unambiguous link between genetic aberrations and biological impact on impaired immune surveillance.
Collapse
Affiliation(s)
- Marijana Nesic
- Department of Hematology, Aalborg University Hospital , Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital , Aalborg, Denmark
| | - Tarec Christoffer El-Galaly
- Department of Hematology, Aalborg University Hospital , Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital , Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| | - Martin Bøgsted
- Department of Hematology, Aalborg University Hospital , Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital , Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| | - Inge Søkilde Pedersen
- Department of Clinical Medicine, Aalborg University , Aalborg, Denmark.,Department of Molecular Diagnostics, Aalborg University Hospital , Aalborg, Denmark
| | - Karen Dybkær
- Department of Hematology, Aalborg University Hospital , Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital , Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University , Aalborg, Denmark
| |
Collapse
|
42
|
Novel Mutation Hotspots within Non-Coding Regulatory Regions of the Chronic Lymphocytic Leukemia Genome. Sci Rep 2020; 10:2407. [PMID: 32051441 PMCID: PMC7015923 DOI: 10.1038/s41598-020-59243-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/27/2020] [Indexed: 01/17/2023] Open
Abstract
Mutations in non-coding DNA regions are increasingly recognized as cancer drivers. These mutations can modify gene expression in cis or by inducing high-order chormatin structure modifications with long-range effects. Previous analysis reported the detection of recurrent and functional non-coding DNA mutations in the chronic lymphocytic leukemia (CLL) genome, such as those in the 3′ untranslated region of NOTCH1 and in the PAX5 super-enhancer. In this report, we used whole genome sequencing data produced by the International Cancer Genome Consortium in order to analyze regions with previously reported regulatory activity. This approach enabled the identification of numerous recurrently mutated regions that were frequently positioned in the proximity of genes involved in immune and oncogenic pathways. By correlating these mutations with expression of their nearest genes, we detected significant transcriptional changes in genes such as PHF2 and S1PR2. More research is needed to clarify the function of these mutations in CLL, particularly those found in intergenic regions.
Collapse
|
43
|
Chung C. Driving toward precision medicine for B cell lymphomas: Targeting the molecular pathogenesis at the gene level. J Oncol Pharm Pract 2020; 26:943-966. [DOI: 10.1177/1078155219895079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lymphomas are a diverse group of hematologic malignancies that arise from either T cell, B cell or the natural killer cell lineage. B cell lymphomas arise from gene mutations with critical functions during normal B cell development. Recent advances in the understanding of molecular pathogenesis demonstrate that many different recurrent genomic and molecular abnormalities and dysregulated oncogenic regulatory pathways exist for many subtypes of B cell lymphomas, both across and within histological subtypes. Pathogenetic processes such as (1) chromosomal aberrations, for example, t(14;18) in follicular lymphoma, t(11;14) in mantle cell lymphoma, t(8;14) in Burkitt lymphoma; dysregulations in signaling pathways of (2) nuclear factor- κB (NF-κB); (3) B cell receptor (BCR); (4) Janus kinase/signal transducers and transcription activators (JAK-STAT); (5) impaired apoptosis/cell cycle regulation due to mutated, rearranged or amplified MYC, BCL-2, BCL-6 proto-oncogenes; (6) epigenetic aberrations may contribute to pathogenesis. More studies are under way to elucidate the molecular heterogeneity underlying many types of lymphomas that account for variable responses to treatment, generation of subclones and treatment resistance. Although significant research is still needed, targeted therapy promises to provide new options for the treatment of patients with lymphomas. This article provides a non-exhaustive overview on the current understanding on the genetics of pathogenesis of B cell lymphomas and their therapeutic implications.
Collapse
Affiliation(s)
- Clement Chung
- Houston Methodist Baytown Hospital, Baytown, TX, USA
| |
Collapse
|
44
|
Molecular Complexity of Diffuse Large B-Cell Lymphoma: Can It Be a Roadmap for Precision Medicine? Cancers (Basel) 2020; 12:cancers12010185. [PMID: 31940809 PMCID: PMC7017344 DOI: 10.3390/cancers12010185] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma; it features extreme molecular heterogeneity regardless of the classical cell-of-origin (COO) classification. Despite this, the standard therapeutic approach is still immunochemotherapy (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone-R-CHOP), which allows a 60% overall survival (OS) rate, but up to 40% of patients experience relapse or refractory (R/R) disease. With the purpose of searching for new clinical parameters and biomarkers helping to make a better DLBCL patient characterization and stratification, in the last years a series of large discovery genomic and transcriptomic studies has been conducted, generating a wealth of information that needs to be put in order. We reviewed these researches, trying ultimately to understand if there are bases offering a roadmap toward personalized and precision medicine also for DLBCL.
Collapse
|
45
|
Pasqualucci L. Molecular pathogenesis of germinal center-derived B cell lymphomas. Immunol Rev 2019; 288:240-261. [PMID: 30874347 DOI: 10.1111/imr.12745] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
B cell lymphomas comprise a heterogeneous group of genetically, biologically, and clinically distinct neoplasms that, in most cases, originate from the clonal expansion of B cells in the germinal center (GC). In recent years, the advent of novel genomics technologies has revolutionized our understanding of the molecular pathogenesis of lymphoid malignancies as a multistep process that requires the progressive accumulation of multiple genetic and epigenetic alterations. A common theme that emerged from these studies is the ability of lymphoma cells to co-opt the same biological programs and signal transduction networks that operate during the normal GC reaction, and misuse them for their own survival advantage. This review summarizes recent progress in the understanding of the genetic and epigenetic mechanisms that drive the malignant transformation of GC B cells. These insights provide a conceptual framework for the identification of cellular pathways that may be explored for precision medicine approaches.
Collapse
Affiliation(s)
- Laura Pasqualucci
- Pathology and Cell Biology, Institute for Cancer Genetics, Columbia University, New York City, New York
| |
Collapse
|
46
|
Wang J, Dayem Ullah AZ, Chelala C. IW-Scoring: an Integrative Weighted Scoring framework for annotating and prioritizing genetic variations in the noncoding genome. Nucleic Acids Res 2019; 46:e47. [PMID: 29390075 PMCID: PMC5934661 DOI: 10.1093/nar/gky057] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/24/2018] [Indexed: 12/16/2022] Open
Abstract
The vast majority of germline and somatic variations occur in the noncoding part of the genome, only a small fraction of which are believed to be functional. From the tens of thousands of noncoding variations detectable in each genome, identifying and prioritizing driver candidates with putative functional significance is challenging. To address this, we implemented IW-Scoring, a new Integrative Weighted Scoring model to annotate and prioritise functionally relevant noncoding variations. We evaluate 11 scoring methods, and apply an unsupervised spectral approach for subsequent selective integration into two linear weighted functional scoring schemas for known and novel variations. IW-Scoring produces stable high-quality performance as the best predictors for three independent data sets. We demonstrate the robustness of IW-Scoring in identifying recurrent functional mutations in the TERT promoter, as well as disease SNPs in proximity to consensus motifs and with gene regulatory effects. Using follicular lymphoma as a paradigmatic cancer model, we apply IW-Scoring to locate 11 recurrently mutated noncoding regions in 14 follicular lymphoma genomes, and validate 9 of these regions in an extension cohort, including the promoter and enhancer regions of PAX5. Overall, IW-Scoring demonstrates greater versatility in identifying trait- and disease-associated noncoding variants. Scores from IW-Scoring as well as other methods are freely available from http://www.snp-nexus.org/IW-Scoring/.
Collapse
Affiliation(s)
- Jun Wang
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Abu Z Dayem Ullah
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.,Centre for Computational Biology, Life Sciences Initiative, Queen Mary University of London, London, UK
| |
Collapse
|
47
|
Leeman-Neill RJ, Lim J, Basu U. The Common Key to Class-Switch Recombination and Somatic Hypermutation: Discovery of AID and Its Role in Antibody Gene Diversification. THE JOURNAL OF IMMUNOLOGY 2019; 201:2527-2529. [PMID: 30348657 DOI: 10.4049/jimmunol.1801246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Rebecca J Leeman-Neill
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and.,Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Junghyun Lim
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| | - Uttiya Basu
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032; and
| |
Collapse
|
48
|
Di Pietro A, Good-Jacobson KL. Disrupting the Code: Epigenetic Dysregulation of Lymphocyte Function during Infectious Disease and Lymphoma Development. THE JOURNAL OF IMMUNOLOGY 2019; 201:1109-1118. [PMID: 30082273 DOI: 10.4049/jimmunol.1800137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
Abstract
Lymphocyte differentiation and identity are controlled by signals in the microenvironment that ultimately mediate gene expression in the nucleus. Although much focus has centered on the strategic and often unique roles transcription factors play within lymphocyte subsets, it is increasingly clear that another level of molecular regulation is crucial for regulating gene expression programs. In particular, epigenetic regulation is critical for appropriately regulated temporal and cell-type-specific gene expression during immune responses. As such, mutations in epigenetic modifiers are linked with lymphomagenesis. Furthermore, certain infections can remodel the epigenome in host cells, either through the microenvironment or by directly co-opting host epigenetic mechanisms, leading to inappropriate gene expression and/or ineffective cellular behavior. This review will focus on how histone modifications and DNA methylation, and the enzymes that regulate the epigenome, underpin lymphocyte differentiation and function in health and disease.
Collapse
Affiliation(s)
- Andrea Di Pietro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
49
|
Distinct subtypes of diffuse large B-cell lymphoma defined by hypermutated genes. Leukemia 2019; 33:2662-2672. [PMID: 31186494 DOI: 10.1038/s41375-019-0509-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 12/24/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a biologically and clinically heterogeneous disease whose personalized clinical management requires robust molecular stratification. Here, we show that somatic hypermutation (SHM) patterns constitute a marker for DLBCL molecular classification. The activity of SHM mutational processes delineated the cell of origin (COO) in DLBCL. Expression of the herein identified 36 SHM target genes stratified DLBCL into four novel SHM subtypes. In a meta-analysis of patients with DLBCL treated with immunochemotherapy, the SHM subtypes were significantly associated with overall survival (1642 patients) and progression-free survival (795 patients). Multivariate analysis of survival indicated that the prognostic impact of the SHM subtypes is independent from the COO classification and the International Prognostic Index. Furthermore, the SHM subtypes had a distinct clinical outcome within each of the COO subtypes, and strikingly, even within unclassified DLBCL. The genetic landscape of the four SHM subtypes indicated unique associations with driver alterations and oncogenic signaling in DLBCL, which suggests a possibility for therapeutic exploitation. These findings provide a biologically driven classification system in DLBCL with potential clinical applications.
Collapse
|
50
|
Li Z, Ju X, Silveira PA, Abadir E, Hsu WH, Hart DNJ, Clark GJ. CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential. Front Immunol 2019; 10:1312. [PMID: 31231400 PMCID: PMC6568190 DOI: 10.3389/fimmu.2019.01312] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/23/2019] [Indexed: 12/17/2022] Open
Abstract
CD83 is a member of the immunoglobulin (Ig) superfamily and is expressed in membrane bound or soluble forms. Membrane CD83 (mCD83) can be detected on a variety of activated immune cells, although it is most highly and stably expressed by mature dendritic cells (DC). mCD83 regulates maturation, activation and homeostasis. Soluble CD83 (sCD83), which is elevated in the serum of patients with autoimmune disease and some hematological malignancies is reported to have an immune suppressive function. While CD83 is emerging as a promising immune modulator with therapeutic potential, some important aspects such as its ligand/s, intracellular signaling pathways and modulators of its expression are unclear. In this review we discuss the recent biological findings and the potential clinical value of CD83 based therapeutics in various conditions including autoimmune disease, graft-vs.-host disease, transplantation and hematological malignancies.
Collapse
Affiliation(s)
- Ziduo Li
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Xinsheng Ju
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Pablo A. Silveira
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Edward Abadir
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Wei-Hsun Hsu
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Derek N. J. Hart
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Georgina J. Clark
- Dendritic Cell Research, ANZAC Research Institute, Sydney, NSW, Australia
- Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|