1
|
Dhruba SR, Sahni S, Wang B, Wu D, Rajagopal PS, Schmidt Y, Shulman ED, Sinha S, Sammut SJ, Caldas C, Wang K, Ruppin E. The expression patterns of different cell types and their interactions in the tumor microenvironment are predictive of breast cancer patient response to neoadjuvant chemotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598770. [PMID: 39372749 PMCID: PMC11451622 DOI: 10.1101/2024.06.14.598770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The tumor microenvironment (TME) is a complex ecosystem of diverse cell types whose interactions govern tumor growth and clinical outcome. While the TME's impact on immunotherapy has been extensively studied, its role in chemotherapy response remains less explored. To address this, we developed DECODEM (DEcoupling Cell-type-specific Outcomes using DEconvolution and Machine learning), a generic computational framework leveraging cellular deconvolution of bulk transcriptomics to associate the gene expression of individual cell types in the TME with clinical response. Employing DECODEM to analyze the gene expression of breast cancer (BC) patients treated with neoadjuvant chemotherapy, we find that the gene expression of specific immune cells (myeloid, plasmablasts, B-cells) and stromal cells (endothelial, normal epithelial, CAFs) are highly predictive of chemotherapy response, going beyond that of the malignant cells. These findings are further tested and validated in a single-cell cohort of triple negative breast cancer. To investigate the possible role of immune cell-cell interactions (CCIs) in mediating chemotherapy response, we extended DECODEM to DECODEMi to identify such CCIs, validated in single-cell data. Our findings highlight the importance of active pre-treatment immune infiltration for chemotherapy success. The tools developed here are made publicly available and are applicable for studying the role of the TME in mediating response from readily available bulk tumor expression in a wide range of cancer treatments and indications.
Collapse
Affiliation(s)
- Saugato Rahman Dhruba
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sahil Sahni
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Binbin Wang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Di Wu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Padma Sheila Rajagopal
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yael Schmidt
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eldad D. Shulman
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sanju Sinha
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Stephen-John Sammut
- Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Carlos Caldas
- Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Kun Wang
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Wei PL, Huang CY, Chang TC, Lin JC, Lee CC, Prince GMSH, Makondi PT, Chui AWY, Chang YJ. PCTAIRE Protein Kinase 1 (PCTK1) Suppresses Proliferation, Stemness, and Chemoresistance in Colorectal Cancer through the BMPR1B-Smad1/5/8 Signaling Pathway. Int J Mol Sci 2023; 24:10008. [PMID: 37373155 DOI: 10.3390/ijms241210008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and a leading cause of cancer-related mortality worldwide. Even with advances in therapy, CRC mortality remains high. Therefore, there is an urgent need to develop effective therapeutics for CRC. PCTAIRE protein kinase 1 (PCTK1) is an atypical member of the cyclin-dependent kinase (CDK) family, and the function of PCTK1 in CRC is poorly understood. In this study, we found that patients with elevated PCTK1 levels had a better overall survival rate in CRC based on the TCGA dataset. Functional analysis also showed that PCTK1 suppressed cancer stemness and cell proliferation by using PCTK1 knockdown (PCTK1-KD) or knockout (PCTK1-KO) and PCTK1 overexpression (PCTK1-over) CRC cell lines. Furthermore, overexpression of PCTK1 decreased xenograft tumor growth and knockout of PCTK1 significantly increased in vivo tumor growth. Moreover, knockout of PCTK1 was observed to increase the resistance of CRC cells to both irinotecan (CPT-11) alone and in combination with 5-fluorouracil (5-FU). Additionally, the fold change of the anti-apoptotic molecules (Bcl-2 and Bcl-xL) and the proapoptotic molecules (Bax, c-PARP, p53, and c-caspase3) was reflected in the chemoresistance of PCTK1-KO CRC cells. PCTK1 signaling in the regulation of cancer progression and chemoresponse was analyzed using RNA sequencing and gene set enrichment analysis (GSEA). Furthermore, PCTK1 and Bone Morphogenetic Protein Receptor Type 1B (BMPR1B) in CRC tumors were negatively correlated in CRC patients from the Timer2.0 and cBioPortal database. We also found that BMPR1B was negatively correlated with PCTK1 in CRC cells, and BMPR1B expression was upregulated in PCTK1-KO cells and xenograft tumor tissues. Finally, BMPR1B-KD partially reversed cell proliferation, cancer stemness, and chemoresistance in PCTK1-KO cells. Moreover, the nuclear translocation of Smad1/5/8, a downstream molecule of BMPR1B, was increased in PCTK1-KO cells. Pharmacological inhibition of Smad1/5/8 also suppressed the malignant progression of CRC. Taken together, our results indicated that PCTK1 suppresses proliferation and cancer stemness and increases the chemoresponse of CRC through the BMPR1B-Smad1/5/8 signaling pathway.
Collapse
Affiliation(s)
- Po-Li Wei
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei 11031, Taiwan
| | - Chien-Yu Huang
- School of Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Tung-Cheng Chang
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Colon and Rectal, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Jang-Chun Lin
- Department of Radiotherapy and Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Cheng-Chin Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - G M Shazzad Hossain Prince
- Department of Surgery, College of Medicine, School of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | | | | | - Yu-Jia Chang
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Clinical Medicines, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Zhang H, Zhao Y, Liu X, Fu L, Gu F, Ma Y. High Expression of Complement Component C7 Indicates Poor Prognosis of Breast Cancer and Is Insensitive to Taxane-Anthracycline Chemotherapy. Front Oncol 2021; 11:724250. [PMID: 34631552 PMCID: PMC8497743 DOI: 10.3389/fonc.2021.724250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background Breast cancer is the most commonly diagnosed cancer worldwide. However, the well-known biomarkers are not enough to meet the needs of precision medicine. Novel targets are desirable and highly valuable for improved patient survival. In this regard, we identified complement component C7 as one of the candidates based on data from the OCOMINE database. Methods C7 expression was examined by immunohistochemistry in 331 cases of invasive ductal carcinoma (IDC), 45 cases of ductal carcinoma in situ (DCIS), and 52 cases of non-neoplastic tissues adjacent to tumor. Then, C7 expression was further confirmed by Western blot analysis based on IDC specimens and non-neoplastic breast specimens. The relationship between the C7 expression and prognosis of breast cancer patients was analyzed in order to investigate the function of C7 in breast cancer patients. Meanwhile, we also analyzed the relationship between the C7 expression and prognosis of 149 patients treated with conventional TE (taxane and anthracycline)-based chemotherapy. Then, a cohort of patients (22 cases) treated with TE neoadjuvant chemotherapy was used to further confirm the relationship between the C7 expression and TE-based chemosensitivity. Results In our present study, we reported for the first time that C7 was an independent prognostic factor of breast cancer and C7 expression of IDC tissues was higher than non-neoplastic tissues adjacent to tumor and DCIS. In a cohort of 331 IDC patients, high expression of C7 indicated poor prognosis especially in the triple negative subtype and luminal B subtype. Furthermore, C7 was also a promoting factor for triple negative subtype patients to develop bone metastasis. Meanwhile, we provided the first evidence that patients with high C7 expression were insensitive to TE (taxane and anthracycline)-based chemotherapy by analyzing a cohort of 149 patients treated with TE-based chemotherapy and another cohort of 22 patients treated with TE neoadjuvant chemotherapy. Conclusions In summary, high expression of C7 may promote breast cancer development and might be insensitive to TE-based chemotherapy. Our present study laid a foundation to help clinicians improve the identification of patients for TE-based chemotherapy by C7 in the era of precision medicine.
Collapse
Affiliation(s)
- Huikun Zhang
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Yawen Zhao
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Xiaoli Liu
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Li Fu
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Gu
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.,Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yongjie Ma
- Department of Tumor Cell Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| |
Collapse
|
4
|
Dhaka B, Sabarinathan R. Differential chromatin accessibility landscape of gain-of-function mutant p53 tumours. BMC Cancer 2021; 21:669. [PMID: 34090364 PMCID: PMC8180165 DOI: 10.1186/s12885-021-08362-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutations in TP53 not only affect its tumour suppressor activity but also exerts oncogenic gain-of-function activity. While the genome-wide mutant p53 binding sites have been identified in cancer cell lines, the chromatin accessibility landscape driven by mutant p53 in primary tumours is unknown. Here, we leveraged the chromatin accessibility data of primary tumours from The Cancer Genome Atlas (TCGA) to identify differentially accessible regions in mutant p53 tumours compared to wild-type p53 tumours, especially in breast and colon cancers. RESULTS We identified 1587 lost and 984 gained accessible chromatin regions in breast, and 1143 lost and 640 gained regions in colon cancers. However, only less than half of those regions in both cancer types contain sequence motifs for wild-type or mutant p53 binding. Whereas, the remaining showed enrichment for master transcriptional regulators, such as FOX-Family TFs and NF-kB in lost and SMAD and KLF TFs in gained regions of breast. In colon, ATF3 and FOS/JUN TFs were enriched in lost, and CDX family TFs and HNF4A in gained regions. By integrating the gene expression data, we identified known and novel target genes regulated by the mutant p53. CONCLUSION This study reveals the direct and indirect mechanisms by which gain-of-function mutant p53 targets the chromatin and subsequent gene expression patterns in a tumour-type specific manner. This furthers our understanding of the impact of mutant p53 in cancer development.
Collapse
Affiliation(s)
- Bhavya Dhaka
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India
| | - Radhakrishnan Sabarinathan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, 560065, India.
| |
Collapse
|
5
|
Wang Y, Wu Z, Li Y, Zheng Z, Yan J, Tian S, Han L. Long Non-Coding RNA H19 Promotes Proliferation, Migration and Invasion and Inhibits Apoptosis of Breast Cancer Cells by Targeting miR-491-5p/ZNF703 Axis. Cancer Manag Res 2020; 12:9247-9258. [PMID: 33061615 PMCID: PMC7532042 DOI: 10.2147/cmar.s246009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer is one of the most common cancers worldwide. Long non-coding RNAs and microRNAs act as important regulators in human cancers. This study aims to explore the molecular mechanism among H19, miR-491-5p and zinc finger 703 (ZNF703) in breast cancer. Materials and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to detect the expression of H19, miR-491-5p and ZNF703. Cell Counting Kit 8 (CCK-8) assay was performed to evaluate cell proliferation. Cell apoptosis was assessed by flow cytometry assay. The number of migrated and invaded cells was counted by transwell assay. Dual luciferase reporter assay was carried out to test luciferase activity. Protein level of ZNF703 was measured by Western blot assay. Results H19 was highly expressed in breast tissues and cells. H19 knockdown inhibited proliferation, induced apoptosis and blocked migration and invasion. Moreover, H19 bound to miR-491-5p and negatively regulated miR-491-5p expression. MiR-491-5p inhibition abrogated the activities of proliferation, apoptosis, migration and invasion affected by H19 knockdown. Furthermore, miR-491-5p directly targeted ZNF703 and inversely modulated ZNF703 expression. ZNF703 up-regulation rescued the effects of miR-491-5p overexpression on proliferation, apoptosis, migration and invasion. In addition, H19 knockdown reduced ZNF703 expression by targeting miR-491-5p/ZNF703 axis. Conclusion H19 promoted proliferation, migration and invasion and retarded apoptosis of breast cancer cells via sponging miR-491-5p to down-regulate ZNF703 expression.
Collapse
Affiliation(s)
- Yongkun Wang
- Department of Thyroid Surgery, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Zhen Wu
- Department of Thyroid Surgery, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Yingxue Li
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Zheng Zheng
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Jinqiang Yan
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Shuyan Tian
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| | - Lin Han
- Department of Pathology, Liaocheng People's Hospital (Clinical Hospital of Shandong First Medical University) Liaocheng, Shandong, People's Republic of China
| |
Collapse
|
6
|
Aquaporin 1 promotes sensitivity of anthracycline chemotherapy in breast cancer by inhibiting β-catenin degradation to enhance TopoIIα activity. Cell Death Differ 2020; 28:382-400. [PMID: 32814878 PMCID: PMC7852611 DOI: 10.1038/s41418-020-00607-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
Anthracyclines are a class of conventional and commonly used frontline chemotherapy drugs to treat breast cancer. However, the anthracycline-based regimens can only reduce breast cancer mortality by 20–30%. Furthermore, there is no appropriate biomarker for predicting responses to this kind of chemotherapy currently. Here we report our findings that may fill this gap by showing the AQP1 (Aquaporin1) protein as a potential response predictor in the anthracycline chemotherapy. We showed that breast cancer patients with a high level of AQP1 expression who underwent the anthracycline treatment had a better clinical outcome relative to those with a low level of AQP1 expression. In the exploration of the underlying mechanisms, we found that the AQP1 and glycogen synthase kinase-3β (GSK3β) competitively interacted with the 12 armadillo repeats of β-catenin, followed by the inhibition of the β-catenin degradation that led to β-catenin’s accumulation in the cytoplasm and nuclear translocation. The nuclear β-catenin interacted with TopoIIα and enhanced TopoIIα’s activity, which resulted in a high sensitivity of breast cancer cells to anthracyclines. We also found, the miR-320a-3p can attenuate the anthracycline’s chemosensitivity by inhibiting the AQP1 expression. Taken together, our findings suggest the efficacy of AQP1 as a response predictor in the anthracycline chemotherapy. The application of our study includes, but is not limited to, facilitating screening of the most appropriate breast cancer patients (who have a high AQP1 expression) for better anthracycline chemotherapy and improved prognosis purposes.
Collapse
|
7
|
TrkB Inhibits the BMP Signaling-Mediated Growth Inhibition of Cancer Cells. Cancers (Basel) 2020; 12:cancers12082095. [PMID: 32731498 PMCID: PMC7464134 DOI: 10.3390/cancers12082095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023] Open
Abstract
We have previously observed that tropomyosin receptor kinase B (TrkB) induces breast cancer metastasis by activating both the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) and phosphatidylinositol-3-Kinase (PI3K)/AKT signaling pathways and inhibiting runt-related transcription factor 3 (RUNX3) and kelch-like ECH-associated protein 1 (KEAP1). These studies indicated that TrkB expression is crucial to the pathogenesis of breast cancer. However, how TrkB regulates bone morphogenetic protein (BMP) signaling and tumor suppression is largely unknown. Herein, we report that TrkB is a key regulator of BMP-mediated tumor suppression. TrkB enhances the metastatic potential of cancer cells by promoting cell anchorage-independent growth, migration, and suppressing BMP-2-mediated growth inhibition. TrkB inhibits the BMP-mediated activation of SMAD family member 1 (SMAD1) by promoting the formation of the TrkB/BMP type II receptor complex and suppresses RUNX3 by depleting BMP receptor I (BMPRI) expression. In addition, the knockdown of TrkB restored the tumor-inhibitory effect of BMP-2 via the activation of SMAD1. Moreover, the TrkB kinase activity was required for its effect on BMP signaling. Our study identified a unique role of TrkB in the regulation of BMP-mediated growth inhibition and BMP-2-induced RUNX3 expression.
Collapse
|
8
|
SETD3 acts as a prognostic marker in breast cancer patients and modulates the viability and invasion of breast cancer cells. Sci Rep 2020; 10:2262. [PMID: 32042016 PMCID: PMC7010743 DOI: 10.1038/s41598-020-59057-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
In several carcinomas, the SET Domain Containing 3, Actin Histidine Methyltransferase (SETD3) is associated with oncogenesis. However, there is little knowledge about the role of SETD3 in the progression and prognosis of breast cancer. In this study, we first analyzed the prognostic value of SETD3 in breast cancer patients using the database of the public Kaplan-Meier plotter. Moreover, in vitro assays were performed to assess the role of SETD3 in the viability and capacity of invasion of human breast cancer cell lines. We observed that the high expression of SETD3 was associated with better relapse-free survival (RFS) of the whole collective of 3,951 patients, of Estrogen Receptor-positive, and of Luminal A-type breast cancer patients. However, in patients lacking expression of estrogen-, progesterone- and HER2-receptor, and those affected by a p53-mutation, SETD3 was associated with poor RFS. In vitro analysis showed that SETD3 siRNA depletion affects the viability of triple-negative cells as well as the cytoskeletal function and capacity of invasion of highly invasive MDA-MB-231 cells. Interestingly, SETD3 regulates the expression of other genes associated with cancer such as β-actin, FOXM1, FBXW7, Fascin, eNOS, and MMP-2. Our study suggests that SETD3 expression can act as a subtype-specific biomarker for breast cancer progression and prognosis.
Collapse
|
9
|
He SN, Guan SH, Wu MY, Li W, Xu MD, Tao M. Down-regulated hsa_circ_0067934 facilitated the progression of gastric cancer by sponging hsa-mir-4705 to downgrade the expression of BMPR1B. Transl Cancer Res 2019; 8:2691-2703. [PMID: 35117027 PMCID: PMC8798177 DOI: 10.21037/tcr.2019.10.32] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/10/2019] [Indexed: 01/01/2023]
Abstract
Background Gastric cancer is the third most lethal cancer worldwide. Finding a novel marker is essential to targeted therapy and the diagnosis of gastric cancer. As newly discovered markers, circRNAs have aroused widespread attention on a global scale. Our research aims to understand the role of circRNAs in gastric cancer and to explore the underlying pathogenesis. Methods Raw expression data of circRNAs were obtained from the GEO database. Integrated bioinformatics analysis was used to screen differentially expressed circRNAs (DECs) by RobustRankAggreg package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed to predict the functions of DECs. Then, the miRNAs and mRNAs at the downstream of DECs were predicted. Expression data of miRNAs and mRNAs were downloaded from The Cancer Genome Atlas (TCGA). The aberrantly expressed miRNAs and mRNAs were selected using the edgeR package. Results Four datasets (GSE78092, GSE83521, GSE89143, and GSE93541) were downloaded from the GEO database. Among them, two DECs (hsa_circ_0007991 and hsa_circ_0067934) were screened. The functional analyses of DECs confirmed that they were cancer-related circRNAs. Furthermore, hsa-mir-4705 (miRNA) and BMPR1B (mRNA) at the downstream of hsa_circ_0067934 were found differentially expressed in gastric cancer by expression data from TCGA database. Conclusions Our study discovered the critical roles of hsa_circ_0007991 and hsa_circ_0067934 in the development of gastric cancer, and they could be novel markers for targeted therapy and assist the diagnosis of early-stage gastric cancer. Moreover, we discovered that the hsa_circ_0067934/hsa-mir-4705/BMPR1B axis might be involved in the carcinogenesis of gastric cancer.
Collapse
Affiliation(s)
- Shen-Nan He
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shi-Hua Guan
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Meng-Yao Wu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wei Li
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou 215021, China.,Comprehensive Cancer Center, Suzhou Xiangcheng People's Hospital, Suzhou 215000, China
| | - Meng-Dan Xu
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Min Tao
- Department of Oncology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou 215021, China
| |
Collapse
|
10
|
Rodriguez-Ruiz ME, Buqué A, Hensler M, Chen J, Bloy N, Petroni G, Sato A, Yamazaki T, Fucikova J, Galluzzi L. Apoptotic caspases inhibit abscopal responses to radiation and identify a new prognostic biomarker for breast cancer patients. Oncoimmunology 2019; 8:e1655964. [PMID: 31646105 DOI: 10.1080/2162402x.2019.1655964] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 01/19/2023] Open
Abstract
Caspase 3 (CASP3) has a key role in the execution of apoptosis, and many cancer cells are believed to disable CASP3 as a mechanism of resistance to cytotoxic therapeutics. Alongside, CASP3 regulates stress-responsive immunomodulatory pathways, including secretion of type I interferon (IFN). Here, we report that mouse mammary carcinoma TSA cells lacking Casp3 or subjected to chemical caspase inhibition were as sensitive to the cytostatic and cytotoxic effects of radiation therapy (RT) in vitro as their control counterparts, yet secreted increased levels of type I IFN. This effect originated from the accrued accumulation of irradiated cells with cytosolic DNA, likely reflecting the delayed breakdown of cells experiencing mitochondrial permeabilization in the absence of CASP3. Casp3-/- TSA cells growing in immunocompetent syngeneic mice were more sensitive to RT than their CASP3-proficient counterparts, and superior at generating bona fide abscopal responses in the presence of an immune checkpoint blocker. Finally, multiple genetic signatures of apoptotic proficiency were unexpectedly found to have robust negative (rather than positive) prognostic significance in a public cohort of breast cancer patients. However, these latter findings were not consistent with genetic signatures of defective type I IFN signaling, which were rather associated with improved prognosis. Differential gene expression analysis on patient subgroups with divergent prognosis (as stratified by independent signatures of apoptotic proficiency) identified SLC7A2 as a new biomarker with independent prognostic value in breast cancer patients. With the caveats associated with the retrospective investigation of heterogeneous, public databases, our data suggest that apoptotic caspases may influence the survival of breast cancer patients (or at least some subsets thereof) via mechanisms not necessarily related to type I IFN signaling as they identify a novel independent prognostic biomarker that awaits prospective validation.
Collapse
Affiliation(s)
- Maria Esperanza Rodriguez-Ruiz
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Department of Radiation Oncology, University of Navarra Clinic and CIMA, Pamplona, Spain
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | | | - Jonathan Chen
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Norma Bloy
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ai Sato
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Department of Immunology, Charles University, 2nd Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université Paris Descartes/Paris V, Paris, France
| |
Collapse
|
11
|
Wang J, Liu H, Li M. Downregulation of miR-505 promotes cell proliferation, migration and invasion, and predicts poor prognosis in breast cancer. Oncol Lett 2019; 18:247-254. [PMID: 31289494 DOI: 10.3892/ol.2019.10334] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 04/15/2019] [Indexed: 12/17/2022] Open
Abstract
microRNAs are involved in the tumor progression of various cancer types. The present study aimed to determine the prognostic significance of microRNA-505 (miR-505) in patients with breast cancer and investigate the functional role of miR-505 in BCa progression. The expression of miR-505 was estimated using reverse transcription-quantitative polymerase chain reaction. Kaplan-Meier survival curves and Cox regression analysis were used to evaluate the prognostic value of miR-505 in patients with BCa. Cell experiments were performed to assess the biological function of miR-505 during BCa progression. A significant downregulated expression level of miR-505 was observed in BCa tissues and cells compared with the corresponding controls (P<0.001). The expression of miR-505 was significantly associated with distant metastasis status (P=0.013) and Tumor-Node-Metastasis staging (P=0.002). Furthermore, the overall survival time was significantly shorter for patients with low miR-505 expression compared with those with high miR-505 expression (P<0.001). In addition, miR-505 was identified as an independent prognostic factor for BCa. The results of cell experiments revealed that an overexpression of miR-505 could significantly inhibit BCa cell proliferation, migration and invasion, whereas a downregulation of miR-505 significantly enhanced BCa cell proliferation, migration and invasion (P<0.05). In summary, all data indicated that a low miR-505 expression level is associated with a poor prognosis for patients with BCa and promotes tumor cell proliferation, migration and invasion. Therefore, the aberrant expression of miR-505 may serve as a therapeutic target for BCa.
Collapse
Affiliation(s)
- Jian Wang
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Haibo Liu
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| | - Minghong Li
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong 262500, P.R. China
| |
Collapse
|
12
|
Abstract
Breast cancer is the most prevalent type of cancer amongst women worldwide. The mortality rate for patients with early-stage breast cancer has been decreasing, however, the 5-year survival rate for patients with metastatic disease remains poor, currently at 27%. Here, we have reviewed the current understanding of the role of bone morphogenetic protein (BMP) signaling in breast cancer progression, and have highlighted the discordant results that are reported in different studies. We propose that some of these contradictory outcomes may result from signaling through either the canonical or non-canonical pathways in different cell lines and tumors, or from different tumor-stromal interactions that occur in vivo.
Collapse
Affiliation(s)
- Lap Hing Chi
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Allan D Burrows
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
| | - Robin L Anderson
- a Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute , Heidelberg , Australia
- b School of Cancer Medicine, La Trobe University , Bundoora , Australia
- c Department of Clinical Pathology, The University of Melbourne , Parkville , VIC , Australia
- d Sir Peter MacCallum Department of Oncology, The University of Melbourne , Parkville , Australia
| |
Collapse
|
13
|
Abstract
Bone morphogenetic proteins (BMPs) are a diverse class of molecules with over 20 growth factor proteins that belong to the transforming growth factor-β (TGF-β) family and are highly associated with bone formation and disease development. Aberrant expression of various BMPs has been reported in several cancer tissues. Biological function studies have elicited the dual role of BMPs in both cancer development and suppression. Furthermore, a variety of BMP antagonists, ligands, and receptors have been shown to reduce or enhance tumorigenesis and metastasis. Knockout mouse models of BMP signaling components have also revealed that the suppression of BMP signaling impairs cancer metastasis. Herein, we highlight the basic clinical background and involvement of BMPs in modulating cancer progression and their dynamic interactions (e.g., with microRNAs) in the tumor microenvironment in addition to their mutations and roles in chemoprevention. We also suggest that BMPs should be considered a powerful putative therapeutic target in tumorigenesis and bone metastasis.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul 151-742, Republic of Korea
| |
Collapse
|
14
|
Jue C, Zhifeng W, Zhisheng Z, Lin C, Yayun Q, Feng J, Hao G, Shintaro I, Hisamitsu T, Shiyu G, Yanqing L. Vasculogenic mimicry in hepatocellular carcinoma contributes to portal vein invasion. Oncotarget 2018; 7:77987-77997. [PMID: 27793002 PMCID: PMC5363638 DOI: 10.18632/oncotarget.12867] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/12/2016] [Indexed: 01/10/2023] Open
Abstract
Portal vein invasion (PVI) is common in hepatocellular carcinoma (HCC) and largely contributes to tumor recurrence after radical tumor resection or liver transplantation. Vasculogenic mimicry (VM) was an independent vascular system lined with tumor cells and associated with poor prognosis of HCC. The present study was conducted to evaluate the relationship between VM and portal vein invasion. A total of 44 HCC cases receiving anatomic liver resection were included in the study and were divided into groups with and without PVI. The prevalence of VM in each group was examined by CD34-PAS dual staining. The regulatory molecules of VM formation such as Notch1, Vimentin and matrix metalloproteinases (MMPs) were investigated by immunohistochemical staining. Analysis was performed to explore the association of PVI, VM and the VM regulatory molecules. PVI was found in 40.91% (18/44) cases and VM was found in 38.64% (17/44) cases in total samples. The incidence of VM was 72.22% (13/18) in PVI group while it was 15.38% (4/26) in non-PVI group (P<0.001), VM formation was positively correlated with PVI (r=0.574, P<0.001). The VM forming regulatory molecules such as Notch1, Vimentin, MMP-2 and MMP-9 were found to be correlated with PVI in HCC patients. Taken together, our results suggested that VM formation, alone with its regulatory molecules, is the promoting factor of PVI in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Chen Jue
- Institution of Integrated Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.,Department of Oncology, The Second People's Hospital of Taizhou Affiliated to Yangzhou University, Taizhou, Jiangsu, China.,Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Wu Zhifeng
- Department of Oncology, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhang Zhisheng
- Department of Oncology, The Second People's Hospital of Taizhou Affiliated to Yangzhou University, Taizhou, Jiangsu, China
| | - Cui Lin
- Department of Oncology, The Second People's Hospital of Taizhou Affiliated to Yangzhou University, Taizhou, Jiangsu, China
| | - Qian Yayun
- Institution of Integrated Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jin Feng
- Institution of Integrated Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gu Hao
- Institution of Integrated Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ishikawa Shintaro
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Tadashi Hisamitsu
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Guo Shiyu
- Department of Physiology, School of Medicine, Showa University, Tokyo, Japan
| | - Liu Yanqing
- Institution of Integrated Traditional Chinese and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
15
|
Grenier JK, Foureman PA, Sloma EA, Miller AD. RNA-seq transcriptome analysis of formalin fixed, paraffin-embedded canine meningioma. PLoS One 2017; 12:e0187150. [PMID: 29073243 PMCID: PMC5658167 DOI: 10.1371/journal.pone.0187150] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 10/14/2017] [Indexed: 12/21/2022] Open
Abstract
Meningiomas are the most commonly reported primary intracranial tumor in dogs and humans and between the two species there are similarities in histology and biologic behavior. Due to these similarities, dogs have been proposed as models for meningioma pathobiology. However, little is known about specific pathways and individual genes that are involved in the development and progression of canine meningioma. In addition, studies are lacking that utilize RNAseq to characterize gene expression in clinical cases of canine meningioma. The primary objective of this study was to develop a technique for which high quality RNA can be extracted from formalin-fixed, paraffin embedded tissue and then used for transcriptome analysis to determine patterns of gene expression. RNA was extracted from thirteen canine meningiomas-eleven from formalin fixed and two flash-frozen. These represented six grade I and seven grade II meningiomas based on the World Health Organization classification system for human meningioma. RNA was also extracted from fresh frozen leptomeninges from three control dogs for comparison. RNAseq libraries made from formalin fixed tissue were of sufficient quality to successfully identify 125 significantly differentially expressed genes, the majority of which were related to oncogenic processes. Twelve genes (AQP1, BMPER, FBLN2, FRZB, MEDAG, MYC, PAMR1, PDGFRL, PDPN, PECAM1, PERP, ZC2HC1C) were validated using qPCR. Among the differentially expressed genes were oncogenes, tumor suppressors, transcription factors, VEGF-related genes, and members of the WNT pathway. Our work demonstrates that RNA of sufficient quality can be extracted from FFPE canine meningioma samples to provide biologically relevant transcriptome analyses using a next-generation sequencing technique, such as RNA-seq.
Collapse
Affiliation(s)
- Jennifer K. Grenier
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, United States of America
| | - Polly A. Foureman
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, United States of America
- Division of Biological Sciences, Chandler-Gilbert Community College, Chandler, Arizona, United States of America
| | - Erica A. Sloma
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, United States of America
| | - Andrew D. Miller
- Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, United States of America
| |
Collapse
|