1
|
Deng K, Yuan L, Xu Z, Qin F, Zheng Z, Huang L, Jiang W, Qin J, Sun Y, Zheng T, Ou X, Zheng L, Li S. Study of LY9 as a potential biomarker for prognosis and prediction of immunotherapy efficacy in lung adenocarcinoma. PeerJ 2024; 12:e17816. [PMID: 39193519 PMCID: PMC11348898 DOI: 10.7717/peerj.17816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/04/2024] [Indexed: 08/29/2024] Open
Abstract
Background Lymphocyte antigen 9 (LY9) participates in the development of several tumors and diseases but has not been reported yet in lung adenocarcinoma (LUAD). Methods First, we analyzed the expression and prognostic value of LY9 in pan-cancer, including LUAD. Additionally, we conducted a correlation analysis of LY9 expression in LUAD with immune cell infiltration using the TIMER database and the CIBERSORT algorithm, and with immune checkpoints using the GEPIA database. Also, we constructed a potential ceRNA network for LY9. Furthermore, we explored LY9-related pathways by Gene Set Enrichment Analysis (GSEA). Finally, validation of differential expression at the mRNA level was obtained from the GEO database. We collected LUAD tissues for Quantitative Real-time PCR (qRT-PCR) to verify the expression of LY9, CD8, and CD4 and calculated the correlation between them. We also conducted immunohistochemistry (IHC) to verify the protein expression of LY9. Results Results showed that LY9 was highly expressed in various tumors, including LUAD. Besides, patients with high LY9 expression presented longer overall survival (OS) and more multiple lymphocyte infiltrations. The expression of LY9 in LUAD strongly and positively correlates with multiple immune cell infiltration and immune checkpoints. The functional enrichment analysis indicated that LY9 was involved in multiple immune-related pathways and non-small cell lung cancer. Moreover, a ceRNA regulatory network of LINC00943-hsa-miR-141-3p-LY9 might be involved. Finally, GSE68465 dataset confirmed differential expression of LY9 mRNA levels in LUAD and the qRT-PCR results verified LY9 had a strong and positive correlation with CD4 and CD8 T cells. Unfortunately, IHC did not detect the expression of LY9 protein level in tumor tissues and WB experiments validated the protein expression of LY9 in the OCI-AML-2 cell line. Conclusions Therefore, we hypothesized that LY9 could serve as a potential, novel prognostic biomarker for LUAD and could predict immunotherapy efficacy at the mRNA level.
Collapse
Affiliation(s)
- Kun Deng
- Department of Thoracic and Cardiovascular Surgery, The Second People’s Hospital of Neijiang, Neijiang, Sichuan, China
| | - Liqiang Yuan
- Department of Thoracic and Cardiovascular Surgery, People’s Hospital of Deyang, Deyang, Sichuan, China
| | - Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fanglu Qin
- Department of Scientific Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiwen Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liuliu Huang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Jiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junqi Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tiaozhan Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinhuai Ou
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liping Zheng
- Catheterization Laboratory of Cardiovascular Institute, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Xu L, Zhang Y, Guo Y, Chen Q, Zhang M, Chen H, Geng J, Huang X. Whole-genome resequencing uncovers diversity and selective sweep in Kazakh cattle. Anim Genet 2024; 55:377-386. [PMID: 38561945 DOI: 10.1111/age.13425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/07/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
The Kazakh cattle in the Xinjiang Uygur Autonomous Region of China are highly adaptable and have multiple uses, including milk and meat production, and use as draft animals. They are an excellent original breed that could be enhanced by breeding and hybrid improvement. However, the genomic diversity and signature of selection underlying the germplasm characteristics require further elucidation. Herein, we evaluated 26 Kazakh cattle genomes in comparison with 103 genomes of seven other cattle breeds from regions around the world to assess the Kazakh cattle genetic variability. We revealed that the relatively low linkage disequilibrium at large SNP distances was strongly correlated with the largest effective population size among Kazakh cattle. Using population structural analysis, we next demonstrated a taurine lineage with restricted Bos indicus introgression among Kazakh cattle. Notably, we identified putative selected genes associated with resistance to disease and body size within Kazakh cattle. Together, our findings shed light on the evolutionary history and breeding profile of Kazakh cattle, as well as offering indispensable resources for germplasm resource conservation and crossbreeding program implementation.
Collapse
Affiliation(s)
- Lei Xu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Yunyun Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Yang Guo
- Xinjiang Uygur Autonomous Region Animal Husbandry Station, Urumqi, China
| | - Qiuming Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Menghua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Hong Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Juan Geng
- Xinjiang Uygur Autonomous Region Animal Husbandry Station, Urumqi, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
3
|
Zhou T, Guan Y, Sun L, Liu W. A review: Mechanisms and molecular pathways of signaling lymphocytic activation molecule family 3 (SLAMF3) in immune modulation and therapeutic prospects. Int Immunopharmacol 2024; 133:112088. [PMID: 38626547 DOI: 10.1016/j.intimp.2024.112088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/18/2024]
Abstract
The signaling lymphocytic activation molecule (SLAM) family participates in the modulation of various innate and adaptive immune responses. SLAM family (SLAMF) receptors include nine transmembrane glycoproteins, of which SLAMF3 (also known as CD229 or Ly9) has important roles in the modulation of immune responses, from the fundamental activation and suppression of immune cells to the regulation of intricate immune networks. SLAMF3 is mainly expressed in immune cells, such as T, B, and natural killer cells. It has a unique molecular structure, including four immunoglobulin-like domains in the extracellular domain and two immunoreceptor tyrosine-based signaling motifs in the intracellular structural domains. These unique structures have important implications for protein functioning. SLAMF3 is involved in pathogenesis of various disease, particularly autoimmune diseases and cancer. However, despite its potential clinical significance, a comprehensive overview of the current paradigm of SLAMF3 research is lacking. This review summarizes the structure, functional mechanisms, and therapeutic implications of SLAMF3. Our findings highlight the significance of SLAMF3 in both physiological and pathological contexts, and underline its dual role in autoimmunity and malignancies, and including disease progression and prognosis. The review also proposes that future studies on SLAMF3 should explore its context-specific inhibitory and stimulatory effects, expand on its potential in disease mapping, investigate related signaling pathways, and explore its value as a drug target. Research in these areas related to SLAMF3 can provide more precise directions for future therapeutic strategies.
Collapse
Affiliation(s)
- Tong Zhou
- Department of Endocrinology and Metabolism, the First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China; National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun 130021, China
| | - Yanjie Guan
- Department of Oncology, the First Hospital of Jilin University, Changchun 130021, China
| | - Lin Sun
- Department of Endocrinology and Metabolism, the First Hospital of Jilin University, Changchun 130021, China
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun 130021, China; National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun 130021, China.
| |
Collapse
|
4
|
Gunes M, Rosen ST, Shachar I, Gunes EG. Signaling lymphocytic activation molecule family receptors as potential immune therapeutic targets in solid tumors. Front Immunol 2024; 15:1297473. [PMID: 38476238 PMCID: PMC10927787 DOI: 10.3389/fimmu.2024.1297473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024] Open
Abstract
Recently, cancer immunotherapy has revolutionized cancer treatment. Various forms of immunotherapy have a manageable safety profile and result in prolongation of overall survival in patients with solid tumors, but only in a proportion of patients. Various factors in the tumor microenvironment play critical roles and may be responsible for this lack of therapeutic response. Signaling lymphocytic activation molecule family (SLAMF) members are increasingly being studied as factors impacting the tumor immune microenvironment. SLAMF members consist of nine receptors mainly expressed in immune cells. However, SLAMF receptors have also been detected in cancer cells, and they may be involved in a spectrum of anti-tumor immune responses. Here, we review the current knowledge of the expression of SLAMF receptors in solid tumors and tumor-infiltrating immune cells and their association with patient outcomes. Furthermore, we discuss the therapeutic potential of targeting SLAMF receptors to improve outcomes of cancer therapy in solid tumors. We believe the research on SLAMF receptor-targeted strategies may enhance anti-cancer immunity in patients with solid tumors and improve clinical outcomes.
Collapse
Affiliation(s)
- Metin Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
| | - Steven T. Rosen
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA, United States
| | - Idit Shachar
- Department of System Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - E. Gulsen Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope, Los Angeles, CA, United States
- Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA, United States
- Toni Stephenson Lymphoma Center, City of Hope, Los Angeles, CA, United States
| |
Collapse
|
5
|
Rescuing SLAMF3 Expression Restores Sorafenib Response in Hepatocellular Carcinoma Cells through the Induction of Mesenchymal-to-Epithelial Transition. Cancers (Basel) 2022; 14:cancers14040910. [PMID: 35205659 PMCID: PMC8869973 DOI: 10.3390/cancers14040910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Acquired resistance to sorafenib in hepatocellular carcinoma (HCC) patients results in poor prognosis. Epithelial-to-mesenchymal transition (EMT) is the major mechanism implicated in the resistance to sorafenib. We have reported the tumor suppressor role of SLAMF3 (signaling lymphocytic activation molecules family 3) in HCC progression and highlighted its implication in controlling the MRP-1 transporter activity. These data suggest the implication of SLAMF3 in sorafenib resistance mechanisms. Methods: We evaluated the resistance to sorafenib in Huh-7 cells treated with progressive doses (Res cells). We investigated the link between acquired resistance to sorafenib and SLAMF3 expression by flow cytometry and Western blot methods. Furthermore, we analyzed the EMT and the stem cell potential of cells resistant to sorafenib. Results: Sorafenib resistance was confirmed in Res cells by analyzing the cell viability in the presence of sorafenib. The mesenchymal transition, in Res cells, was confirmed by high migratory index and the expression of EMT antigens. Interestingly, we found that loss of SLAMF3 expression corresponded to sorafenib-resistant phenotypes. The overexpression of SLAMF3 reversed EMT, decreased metastatic potential and inhibited mTOR/ERK1/2 in Res cells. Conclusions: We propose that rescuing SLAMF3 expression in resistant cells could represent a potential therapeutic strategy to enhance sorafenib efficacy in HCC patients.
Collapse
|
6
|
Meng Q, Duan X, Yang Q, Xue D, Liu Z, Li Y, Jin Q, Guo F, Jia S, Wang Z, Yan W, Chang X, Sun P. SLAMF6/Ly108 promotes the development of hepatocellular carcinoma via facilitating macrophage M2 polarization. Oncol Lett 2022; 23:83. [PMID: 35126725 PMCID: PMC8805185 DOI: 10.3892/ol.2022.13203] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are capable of worsening hepatocellular carcinoma (HCC) prognosis by accelerating tumor growth and progression. Signaling lymphocyte activation molecule family member 6 (SLAMF6; Ly108 in mice) is an immune regulator that is involved in numerous diseases. However, whether SLAMF6 might affect macrophage function in HCC has not yet been reported. Therefore, the present study aimed to determine the relationship between SLAMF6 expression on macrophages and HCC progression. In the present study, the expression of SLAMF6 in human blood samples and mice was analyzed by flow cytometry. Furthermore, macrophage-related polarization markers were detected via reverse transcription quantitative PCR. Clonogenic formation and Transwell assay were performed to determine the proliferation, migration and invasion of HCC cells. In addition, a murine HCC model was established to detect the function of SLAMF6 in vivo. The results demonstrated that SLAMF6 expression was increased in CD14+ cells obtained from patients with HCC. It was also determined that this increase was associated with a positive hepatitis B virus DNA status and high levels of α-fetoprotein. Polarized TAMs from THP-1 cells, murine peritoneal macrophages and murine bone marrow-derived macrophages all exhibited higher levels of SLAMF6 compared with M1 cells. Furthermore, an increased expression of Ly108 was detected in macrophages obtained from mice tumor tissues, indicating that the tumor microenvironment may promote Ly108 expression and macrophage M2 polarization. Ly108 small interfering RNA was applied to macrophages, which resulted in the suppression of M2 polarization. Ly108-silenced macrophages attenuated HCC cell migration and invasion and prevented tumor growth by inhibiting the nuclear factor-κB pathway. Altogether, the results from the present study suggested that SLAMF6/Ly108 was upregulated in TAMs, which may in turn accelerate the development of HCC.
Collapse
Affiliation(s)
- Qi Meng
- School of Cheeloo Clinical Medicine, Shandong University, Jinan, Shandong 250102, P.R. China
| | - Xiuyun Duan
- School of Cheeloo Clinical Medicine, Shandong University, Jinan, Shandong 250102, P.R. China
| | - Qingchao Yang
- School of Cheeloo Clinical Medicine, Shandong University, Jinan, Shandong 250102, P.R. China
| | - Dewen Xue
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zihao Liu
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Yuanyuan Li
- Head and Neck Radiation Oncology Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Qingyan Jin
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Fang Guo
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Shijie Jia
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhaofeng Wang
- Surgical Department, Jinan Jiyang District Hospital of Traditional Chinese Medicine, Jinan, Shandong 251499, P.R. China
| | - Wenjiang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xu Chang
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Peng Sun
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
7
|
Zhang L, Huang Y, Ling J, Zhuo W, Yu Z, Shao M, Luo Y, Zhu Y. Screening and function analysis of hub genes and pathways in hepatocellular carcinoma via bioinformatics approaches. Cancer Biomark 2018; 22:511-521. [PMID: 29843214 DOI: 10.3233/cbm-171160] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Liver carcinoma is a major cause of cancer-related death worldwide. Up to date, the mechanisms of liver cancerigenesis and development have not been fully understood. Multi-genes and pathways were involved in the tumorigenesis of liver cancer. OBJECTIVE The aim of the present study was to screen key genes and pathways in liver cancerigenesis and development by using bioinformatics methods. METHODS A dataset GSE64041 were retrieved from GEO database and the differentially expressed genes (DEGs) were screened out. Then the DEG functions were annotated by gene ontology (GO) and pathway enrichment analysis, respectively. The hub genes were further selected by protein-protein interaction (PPI) analysis. Afterwards, the mRNA and protein expressions as well as the prognostic values of the hub genes were assessed. RESULTS As a result, 208 up-regulated and 82 down-regulated genes were screened out. These DEGs were mainly enriched in cell cycle and metabolism-related pathways. Through PPI analysis, TOP2A, PRDM10, CDK1, AURKA, BUB1, PLK1, CDKN3, NCAPG, BUB1B and CCNA2 were selected as hub genes, which were all over-expressed in liver cancers relative to those in normal tissues, respectively. Among them, PLK1 and CCNA2 were suggested to be prognostic factors for liver carcinoma. CONCLUSION In conclusion, the present study identified several hub genes, and cell cycle and metabolism-related pathways that may play critical roles in the tumorigenesis of liver cancer. Future validation laboratory experiments are required to confirm the results.
Collapse
Affiliation(s)
- Liang Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yi Huang
- Department of Internal Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Junjun Ling
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Wenlei Zhuo
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zhen Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengmeng Shao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yi Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Wen DY, Lin P, Pang YY, Chen G, He Y, Dang YW, Yang H. Expression of the Long Intergenic Non-Protein Coding RNA 665 (LINC00665) Gene and the Cell Cycle in Hepatocellular Carcinoma Using The Cancer Genome Atlas, the Gene Expression Omnibus, and Quantitative Real-Time Polymerase Chain Reaction. Med Sci Monit 2018; 24:2786-2808. [PMID: 29728556 PMCID: PMC5956974 DOI: 10.12659/msm.907389] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) have a role in physiological and pathological processes, including cancer. The aim of this study was to investigate the expression of the long intergenic non-protein coding RNA 665 (LINC00665) gene and the cell cycle in hepatocellular carcinoma (HCC) using database analysis including The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and quantitative real-time polymerase chain reaction (qPCR). Material/Methods Expression levels of LINC00665 were compared between human tissue samples of HCC and adjacent normal liver, clinicopathological correlations were made using TCGA and the GEO, and qPCR was performed to validate the findings. Other public databases were searched for other genes associated with LINC00665 expression, including The Atlas of Noncoding RNAs in Cancer (TANRIC), the Multi Experiment Matrix (MEM), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) networks. Results Overexpression of LINC00665 in patients with HCC was significantly associated with gender, tumor grade, stage, and tumor cell type. Overexpression of LINC00665 in patients with HCC was significantly associated with overall survival (OS) (HR=1.47795%; CI: 1.046–2.086). Bioinformatics analysis identified 469 related genes and further analysis supported a hypothesis that LINC00665 regulates pathways in the cell cycle to facilitate the development and progression of HCC through ten identified core genes: CDK1, BUB1B, BUB1, PLK1, CCNB2, CCNB1, CDC20, ESPL1, MAD2L1, and CCNA2. Conclusions Overexpression of the lncRNA, LINC00665 may be involved in the regulation of cell cycle pathways in HCC through ten identified hub genes.
Collapse
Affiliation(s)
- Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
9
|
Dragovich MA, Mor A. The SLAM family receptors: Potential therapeutic targets for inflammatory and autoimmune diseases. Autoimmun Rev 2018; 17:674-682. [PMID: 29729453 DOI: 10.1016/j.autrev.2018.01.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
Abstract
The signaling lymphocytic activation molecule (SLAM) family is comprised of nine distinct receptors (SLAMF1 through SLAMF9) that are expressed on hematopoietic cells. All of these receptors, with the exception of SLAMF4, are homotypic by nature as downstream signaling occurs when hematopoietic cells that express the same SLAM receptor interact. The SLAM family receptor function is largely controlled via SLAM associated protein (SAP) family adaptors. The SAP family adaptors consist of SAP, Ewing sarcoma associated transcript (EAT)-2, and EAT-2-related transducer (ERT). These adaptors associate with the cytoplasmic domain of the SLAM family receptors through phosphorylated tyrosines. Defects in SLAM family members and SAP adaptors have been implicated in causing immune deficiencies. This is exemplified in patients with X-linked lymphoproliferative (XLP) disease, where SAP undergoes a loss of function mutation. Furthermore, evidence has been accumulating that SLAM family members are potential targets for inflammatory and autoimmune diseases. This review will discuss the structure and function of the SLAM family receptors and SAP family adaptors, their role in immune regulation, and potential approaches to target this family of receptors therapeutically.
Collapse
Affiliation(s)
- Matthew A Dragovich
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Adam Mor
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
10
|
Fouquet G, Marcq I, Debuysscher V, Bayry J, Rabbind Singh A, Bengrine A, Nguyen-Khac E, Naassila M, Bouhlal H. Signaling lymphocytic activation molecules Slam and cancers: friends or foes? Oncotarget 2018; 9:16248-16262. [PMID: 29662641 PMCID: PMC5882332 DOI: 10.18632/oncotarget.24575] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 12/03/2017] [Indexed: 01/01/2023] Open
Abstract
Signaling Lymphocytic Activation Molecules (SLAM) family receptors are initially described in immune cells. These receptors recruit both activating and inhibitory SH2 domain containing proteins through their Immunoreceptor Tyrosine based Switch Motifs (ITSMs). Accumulating evidence suggest that the members of this family are intimately involved in different physiological and pathophysiological events such as regulation of immune responses and entry pathways of certain viruses. Recently, other functions of SLAM, principally in the pathophysiology of neoplastic transformations have also been deciphered. These new findings may prompt SLAM to be considered as new tumor markers, diagnostic tools or potential therapeutic targets for controlling the tumor progression. In this review, we summarize the major observations describing the implications and features of SLAM in oncology and discuss the therapeutic potential attributed to these molecules.
Collapse
Affiliation(s)
- Gregory Fouquet
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Ingrid Marcq
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Véronique Debuysscher
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Jagadeesh Bayry
- INSERM UMRS 1138, Centre de Recherche des Cordeliers-Paris, Paris, France
| | | | | | - Eric Nguyen-Khac
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France.,Service Hepato-Gastroenterologie, Centre Hospitalier Universitaire Sud, Amiens, France
| | - Mickael Naassila
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| | - Hicham Bouhlal
- INSERM 1247-GRAP, Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, CHU Sud, Amiens, France
| |
Collapse
|
11
|
Fouquet G, Debuysscher V, Ouled-Haddou H, Eugenio MS, Demey B, Singh AR, Ossart C, Al Bagami M, Regimbeau JM, Nguyen-Khac E, Naassila M, Marcq I, Bouhlal H. Hepatocyte SLAMF3 reduced specifically the multidrugs resistance protein MRP-1 and increases HCC cells sensitization to anti-cancer drugs. Oncotarget 2018; 7:32493-503. [PMID: 27081035 PMCID: PMC5078028 DOI: 10.18632/oncotarget.8679] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Multidrug resistance MDR proteins (MRPs) are members of the C family of a group of proteins named ATP binding cassette (ABC) transporters. MRPs can transport drugs including anticancer drugs, nucleoside analogs, antimetabolites and tyrosine kinase inhibitors. Drugs used in HCC therapy, such as tyrosine kinase inhibitor sorafenib, are substrates of uptake and/or efflux transporters. Variable expression of MRPs at the plasma membrane of tumor cells may contribute to drug resistance and subsequent clinical response. Recently, we reported that the hepatocyte SLAMF3 expression (Signaling Lymphocytic Activation Molecule Family member 3) was reduced in tumor cells from hepatocellular carcinoma (HCC) compared to its high expression in adjacent tissues. In the present study, we make a strong correlation between induced SLAMF3 overexpression and the specific loss of MRP-1 expression and its functionalities as a drugs resistance transporter. No changes were observed on expression of ABCG2 and MDR. More importantly, we highlight a strong inverse correlation between MRP-1 and SLAMF3 expression in patients with HCC. We propose that the SLAMF3 overexpression in cancerous cells could represent a potential therapeutic strategy to improve the drugs sensibility of resistant cells and thus control the therapeutic failure in HCC patients.
Collapse
Affiliation(s)
- Grégory Fouquet
- INSERM-ERi 24 (GRAP) Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Véronique Debuysscher
- INSERM-ERi 24 (GRAP) Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Hakim Ouled-Haddou
- EA 4666 LNPC, Centre Universitaire de Recherche en Santé CURS, CAP-Santé (FED 4231) Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Mélanie Simoes Eugenio
- INSERM-ERi 24 (GRAP) Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Baptiste Demey
- INSERM-ERi 24 (GRAP) Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Amrathlal Rabbind Singh
- Department of Microbiology, Dr. G. Venkataswamy Eye Research Institute, Aravind Medical Research Foundation, Madurai, India
| | - Christèle Ossart
- Service de Thérapie Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Mohammed Al Bagami
- EA 4666 LNPC, Centre Universitaire de Recherche en Santé CURS, CAP-Santé (FED 4231) Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Jean-Marc Regimbeau
- Service de Chirurgie Digestive Centre Hospitalier Universitaire Sud, Amiens, France
| | - Eric Nguyen-Khac
- INSERM-ERi 24 (GRAP) Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France.,Service Hépato-Gastroenterologie, Centre Hospitalier Universitaire Sud, Amiens, France
| | - Mickael Naassila
- INSERM-ERi 24 (GRAP) Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Ingrid Marcq
- INSERM-ERi 24 (GRAP) Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| | - Hicham Bouhlal
- INSERM-ERi 24 (GRAP) Centre Universitaire de Recherche en Santé CURS, Université de Picardie Jules Verne, Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France.,Service de Thérapie Cellulaire Centre Hospitalier Universitaire Sud, Amiens, France
| |
Collapse
|
12
|
Broustas CG, Xu Y, Harken AD, Garty G, Amundson SA. Comparison of gene expression response to neutron and x-ray irradiation using mouse blood. BMC Genomics 2017; 18:2. [PMID: 28049433 PMCID: PMC5210311 DOI: 10.1186/s12864-016-3436-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Background In the event of an improvised nuclear device detonation, the prompt radiation exposure would consist of photons plus a neutron component that would contribute to the total dose. As neutrons cause more complex and difficult to repair damage to cells that would result in a more severe health burden to affected individuals, it is paramount to be able to estimate the contribution of neutrons to an estimated dose, to provide information for those making treatment decisions. Results Mice exposed to either 0.25 or 1 Gy of neutron or 1 or 4 Gy x-ray radiation were sacrificed at 1 or 7 days after exposure. Whole genome microarray analysis identified 7285 and 5045 differentially expressed genes in the blood of mice exposed to neutron or x-ray radiation, respectively. Neutron exposure resulted in mostly downregulated genes, whereas x-rays showed both down- and up-regulated genes. A total of 34 differentially expressed genes were regulated in response to all ≥1 Gy exposures at both times. Of these, 25 genes were consistently downregulated at days 1 and 7, whereas 9 genes, including the transcription factor E2f2, showed bi-directional regulation; being downregulated at day 1, while upregulated at day 7. Gene ontology analysis revealed that genes involved in nucleic acid metabolism processes were persistently downregulated in neutron irradiated mice, whereas genes involved in lipid metabolism were upregulated in x-ray irradiated animals. Most biological processes significantly enriched at both timepoints were consistently represented by either under- or over-expressed genes. In contrast, cell cycle processes were significant among down-regulated genes at day 1, but among up-regulated genes at day 7 after exposure to either neutron or x-rays. Cell cycle genes downregulated at day 1 were mostly distinct from the cell cycle genes upregulated at day 7. However, five cell cycle genes, Fzr1, Ube2c, Ccna2, Nusap1, and Cdc25b, were both downregulated at day 1 and upregulated at day 7. Conclusions We describe, for the first time, the gene expression profile of mouse blood cells following exposure to neutrons. We have found that neutron radiation results in both distinct and common gene expression patterns compared with x-ray radiation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3436-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Constantinos G Broustas
- Center for Radiological Research, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Yanping Xu
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, 10533, USA
| | - Andrew D Harken
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, 10533, USA
| | - Guy Garty
- Radiological Research Accelerator Facility, Columbia University, Irvington, NY, 10533, USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Medical Center, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|