1
|
Liu Y, Wang Y, Liu B, Liu W, Ma Y, Cao Y, Yan S, Zhang P, Zhou L, Zhan Q, Wu N. Targeting lncRNA16 by GalNAc-siRNA conjugates facilitates chemotherapeutic sensibilization via the HBB/NDUFAF5/ROS pathway. SCIENCE CHINA. LIFE SCIENCES 2024; 67:663-679. [PMID: 38155279 DOI: 10.1007/s11427-023-2434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 12/30/2023]
Abstract
Chemoresistance is a significant barrier to effective cancer treatment. Potential mechanisms for chemoresistance include reactive oxygen species (ROS) accumulation and expression of chemoresistance-promoting genes. Here, we report a novel function of lncRNA16 in the inhibition of ROS generation and the progression of chemoresistance. By analyzing the serum levels of lncRNA16 in a cohort of 35 patients with non-small cell lung cancer (NSCLC) and paired serum samples pre- and post-treatment from 10 NSCLC patients receiving neoadjuvant platinum-based chemotherapy, performing immunohistochemistry (IHC) assays on 188 NSCLC tumor samples, using comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) assays, as well as RNA immunoprecipitation (RIP) and RNA pull-down analyses, we discovered that patients with increased serum levels of lncRNA16 exhibited a poor response to platinum-based chemotherapy. The expression of hemoglobin subunit beta (HBB) and NDUFAF5 significantly increases with the development of chemoresistance. LncRNA16 binds to HBB and promotes HBB accumulation by inhibiting autophagy. LncRNA16 can also inhibit ROS generation via the HBB/NDUFAF5 axis and function as a scaffold to facilitate the colocalization of HBB and NDUFAF5 in the mitochondria. Importantly, preclinical studies in mouse models of chemo-resistant NSCLC have suggested that lncRNA16 targeting by trivalent N-acetylgalactosamine (GalNAc)-conjugated siRNA restores chemosensitivity and results in tumor growth inhibition with no detectable toxicity in vivo. Overall, lncRNA16 is a promising therapeutic target for overcoming chemoresistance, and the combination of first-line platinum-based chemotherapy with lncRNA16 intervention can substantially enhance anti-tumor efficacy.
Collapse
Affiliation(s)
- Yanfang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Bing Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Wenzhong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yuanyuan Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yiren Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Shi Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Panpan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Oncology II, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Nan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
2
|
Knockdown of Long Noncoding RNA 01124 Inhibits the Malignant Behaviors of Colon Cancer Cells via miR-654-5p/HAX-1. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1092107. [PMID: 36193129 PMCID: PMC9526654 DOI: 10.1155/2022/1092107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022]
Abstract
Background Previous studies have shown that long noncoding RNAs (lncRNAs) play a key role in cancer, including colon cancer (CC). However, the exact role of long noncoding RNA 01124 (LINC01124) in CC and its mechanisms of action remain unknown. In this study, we investigated the functional effects and the possible mechanism of LINC01124 in CC. Methods We first determined the expression of LINC01124 in CC tissues (The Cancer Genome Atlas (TCGA) database) and cell lines (quantitative real-time polymerase chain reaction (qRT-PCR)). Functional analysis via Cell Counting Kit-8 (CCK-8), colony formation, cell cycle, wound healing and Transwell assays were performed, and a mechanistic experiment was performed with the western blotting. The function of LINC01124 was also determined in vivo using nude BALB/c mice. Results The results showed that LINC01124 was upregulated in CC tissues and cell lines. Functional studies showed that knockdown of LINC01124 significantly suppressed the proliferation, migration, and invasion of colon cancer cells in vitro and in vivo. Subsequent mechanistic experiments indicated that LINC01124 acted as a sponge to suppress microRNA 654-5p, which targeted HAX-1. Downregulation of LINC01124 decreased the expression of HAX-1, and overexpression of the miR-654-5p inhibitor attenuated the sh-LINC01124-induced inhibition of CC cell proliferation, migration, and invasion. Conclusion Collectively, this study revealed that the knockdown of LINC01124 inhibited the malignant behaviors of CC via the miR-654-5p/HAX-1 axis, suggesting that LINC01124 might be a therapeutic target for CC treatment.
Collapse
|
3
|
Wang F, Lin H, Su Q, Li C. Cuproptosis-related lncRNA predict prognosis and immune response of lung adenocarcinoma. World J Surg Oncol 2022; 20:275. [PMID: 36050740 PMCID: PMC9434888 DOI: 10.1186/s12957-022-02727-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) accounts for 50% of lung cancers, with high mortality and poor prognosis. Long non-coding RNA (lncRNA) plays a vital role in the progression of tumors. Cuproptosis is a newly discovered form of cell death that is highly investigated. Therefore, in the present study, we aimed to investigate the role of cuproptosis-related lncRNA signature in clinical prognosis prediction and immunotherapy and the relationship with drug sensitivity. MATERIAL AND METHODS Genomic and clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and cuproptosis-related genes were obtained from cuproptosis-related studies. The prognostic signature was constructed by co-expression analysis and Cox regression analysis. Patients were divided into high and low risk groups, and then, a further series of model validations were carried out to assess the prognostic value of the signature. Subsequently, lncRNAs were analyzed for gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes Enrichment (KEGG), immune-related functions, and tumor mutation burden (TMB). Finally, we used tumor immune dysfunction and exclusion (TIDE) algorithms on immune escape and immunotherapy of cuproptosis-related lncRNAs, thereby identifying its sensitivity toward potential drugs for LUAD. RESULTS A total of 16 cuproptosis-related lncRNAs were obtained, and a prognostic signature was developed. We found that high-risk patients had worse overall survival (OS) and progression-free survival (PFS) and higher mortality. Independent prognostic analyses, ROC, C-index, and nomogram showed that the cuproptosis-related lncRNAs can accurately predict the prognosis of patients. The nomogram and heatmap showed a distinct distribution of the high- and low-risk cuproptosis-related lncRNAs. Enrichment analysis showed that the biological functions of lncRNAs are associated with tumor development. We also found that immune-related functions, such as antiviral activity, were suppressed in high-risk patients who had mutations in oncogenes. OS was poorer in patients with high TMB. TIDE algorithms showed that high-risk patients have a greater potential for immune escape and less effective immunotherapy. CONCLUSION To conclude, the 16 cuproptosis-related lncRNAs can accurately predict the prognosis of patients with LUAD and may provide new insights into clinical applications and immunotherapy.
Collapse
Affiliation(s)
- Fangwei Wang
- grid.412594.f0000 0004 1757 2961Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nan’ning, China
| | - Hongsheng Lin
- grid.256607.00000 0004 1798 2653Department of Microbiology, School of Basic Medical Sciences, Guangxi Medical University, Nan’ning, China
| | - Qisheng Su
- grid.412594.f0000 0004 1757 2961Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nan’ning, China
| | - Chaoqian Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nan'ning, China.
| |
Collapse
|
4
|
Identification of a Two-lncRNA Signature with Prognostic and Diagnostic Value for Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2687455. [PMID: 36213826 PMCID: PMC9546683 DOI: 10.1155/2022/2687455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 12/25/2022]
Abstract
Background Accumulating evidence has revealed the important role of long noncoding RNAs (lncRNA) in tumorigenesis and progression of hepatocellular carcinoma (HCC). This study aimed to identify potential lncRNAs that can serve as diagnostic and prognostic signatures for HCC. Methods Expression profiling analysis was performed to identify differentially expressed lncRNAs (DElncRNA) between HCC and matched normal samples by integrating two independent microarray datasets. Functional Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were explored by Gene Set Variation Analysis. The prognostic and diagnostic models were developed based on two DElncRNAs. Real-time PCR was used to quantify the relative expressions of candidate lncRNAs. Results Two robust DElncRNAs were identified and verified by quantitative PCR between HCC and matched normal samples. Function enrichment analysis revealed that they were associated with the wound healing process. The two lncRNAs were subsequently used to construct a prognostic risk model for HCC. Patients with high-risk scores estimated by the model showed a shorter survival time than low-risk patients (P < 0.001). Besides, the two lncRNA-based HCC diagnostic models exhibited good performance in discriminating HCC from normal samples on both training and test sets. The values of area under the curve (AUC) for early (I–II) and late (III–IV) HCC detection were 0.88 and 0.93, respectively. Conclusions The two wound healing-related DElncRNAs showed robust performance for HCC prognostic prediction and detection, implying their potential role as diagnostic and prognostic markers for HCC.
Collapse
|
5
|
Liu J, Huang J, Cheng X, Liao Z, Gao X. miR-556-3p/Disabled Homolog 2-Interacting Protein (dab2ip) Promotes Cancer Progression by Down-Regulating Bcl-2-Like Protein 11 (BIM) Expression in Colorectal Cancer. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is a major threat affecting human health. Studies have shown that miR-556-3p can regulate dab2ip and promote tumor deterioration, and up-regulation of BIM inhibits CRC cell progression. However, the interaction between miR-556-3p/dab2ip and BIM in CRC is unknown.
We examined miR-556-3p expression in CRC tissues and cells by RT-qPCR. The impact of miR-556-3p/dab2ip and BIM on CRC cell behaviors were assessed by western blot, transwell and MTT assay. miR-556-3p was highly expressed in CRC and its overexpression increased CRC cell proliferation and migration
as well as up-regulated dab2ip and Ki-67 expression. Besides, miR-556-3p could target the BIM and overexpressed miR-556-3p decreased BIM expression. However, silencing of BIM abrogated the impact of overexpressed miR-556-3p on CRC cell proliferation and migration. In conclusion, miR-556-3p/dab2ip
promotes cell growth by down-regulating the expression of BIM, thereby promoting the progression of CRC.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of General Surgery, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| | - Jingping Huang
- Department of Nutrition, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| | - Xueyuan Cheng
- Department of General Surgery, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| | - Zuowei Liao
- Department of General Surgery, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| | - Xueyuan Gao
- Department of General Surgery, Beihai People’s Hospital, Beihai City, Guangxi Zhuang Autonomous Region, 536000, China
| |
Collapse
|
6
|
Li J, Zhang L, Wang J, Jia R, Zhang X, Li X, Fu Y, Song L. Differential expression of long non-coding RNAs in the hippocampus of mice exposed to PM 2.5 in Dalian, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12136-12146. [PMID: 34561797 DOI: 10.1007/s11356-021-16496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Evidence is mounting that PM2.5 exposure could lead to learning disability, memory deficits, and cognitive impairment; however, the underlying mechanisms are still not well demonstrated yet. Long non-coding RNAs (LncRNAs) play a crucial role in many human diseases. Although the relationship of Alzheimer's disease (AD) and lncRNAs have been discovered, the role of lncRNA in AD-like phenotype induced by PM2.5 needs further exploration. In this study, we profiled the expression of messenger RNAs (mRNAs) and lncRNAs in hippocampus after confirming the AD-like changes in mice. Compared with the control group, a total of 478 mRNAs and 151 lncRNAs were dysregulated after PM2.5 exposure. ECM-receptor interaction, focal adhesion, complement and coagulation cascades, and AGE-RAGE signaling pathway were found dysregulated through lncRNA-co-expressed genes analysis based on the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Meanwhile, the genes related to microglia were significantly altered, such as CX3CR1, CD163, lncRNA Gm44750, and lncRNA Gm43509. Above evidences suggested that microglia-related lncRNAs dysregulation probably plays a crucial role in PM2.5exposure-associated learning and memory deficits.
Collapse
Affiliation(s)
- Jie Li
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Longying Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, People's Republic of China
| | - Jiaqi Wang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
- The First Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | - Ruxue Jia
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Xiao Zhang
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Xiaojing Li
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Ying Fu
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China
| | - Laiyu Song
- College of Medical Laboratory, Dalian Medical University, Dalian, 116044, Liaoning Province, People's Republic of China.
| |
Collapse
|
7
|
Sheng W, Zhou W, Cao Y, Zhong Y. Revealing the Role of lncRNA CCDC144NL-AS1 and LINC01614 in Gastric Cancer via Integrative Bioinformatics Analysis and Experimental Validation. Front Oncol 2022; 11:769563. [PMID: 35083139 PMCID: PMC8784853 DOI: 10.3389/fonc.2021.769563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are key regulators in the pathophysiology of gastric cancer, and lncRNAs have been regarded as potential biomarkers and therapeutic targets for gastric cancer. The present study performed the WGCNA analysis of the GSE70880 dataset and aimed to identify novel lncRNAs associated with gastric cancer progression. Based on the WGCNA, the lncRNAs and mRNA co-expression network were constructed. A total of four modules were identified and the eigengenes in different modules were involved in various key signaling pathways. Furthermore, the co-expression networks were constructed between the lncRNAs and mRNA; this leads to the identification of 6 modules, which participated in various cellular pathways. The survival analysis showed that high expression of CCDC144NL antisense RNA 1 (CCDC144NL-AS1) and LINC01614 was positively correlated with the poor prognosis of patients with gastric cancer. The in vitro validation results showed that CCDC144NL-AS1 and LINC01614 were both up-regulated in the gastric cancer cells. Silence of CCDC144NL-AS1 and LINC01614 both significantly suppressed the cell proliferation and migration of gastric cancer cells, and also promoted the chemosensitivity of gastric cancer cells to 5-fluorouracil. Collectively, our results suggested that the newly identified two lncRNAs (CCDC144NL-AS1 and LINC01614) may act as oncogenes in gastric cancer.
Collapse
Affiliation(s)
- Weiwei Sheng
- Physical Examination Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Weihong Zhou
- Physical Examination Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yundi Cao
- Department of Oncology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yuejiao Zhong
- Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Zhang H, Liu C, Wang X, Wang Y, Zheng J. SCARA5 inhibits gastric cancer progression via epithelial-mesenchymal transition suppression. J Cancer 2021; 12:2412-2421. [PMID: 33758617 PMCID: PMC7974898 DOI: 10.7150/jca.52426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/30/2021] [Indexed: 12/24/2022] Open
Abstract
Scavenger receptor class A member 5 (SCARA5) has been reported to be implicated in several types of cancer. However, its biological roles and mechanism of SCARA5 in gastric cancer (GC) have not been elucidated. In the present study, SCARA5 expression was found to be downregulated in GC which was associated with promoter methylation. The protein level of SCARA5 was negatively associated with aggressive clinicopathological characteristics, as well as poor prognosis. Moreover, SCARA5 overexpression markedly suppressed the growth, migration and invasion of GC cell lines in vitro. Furthermore, upregulation of SCARA5 inhibited gastric tumor growth and metastasis in a xenograft model. Mechanistic analysis revealed that SCARA5 suppressed the migration and invasion of GC cells via inhibiting epithelial-mesenchymal transition (EMT) and inactivating MMP-2 and MMP-9. Taken together, these results demonstrated that SCARA5 might play vital roles in the GC genesis and progression and could serve as a potential biomarker for diagnosis and therapeutic target of GC.
Collapse
Affiliation(s)
- Hangyu Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Shandong Province, China
| | - Changgang Liu
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Shandong Province, China
| | - Xinbo Wang
- Department of Surgical Oncology, Weifang People's Hospital, Weifang Medical University, Shandong Province, China
| | - Yongfang Wang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Shandong Province, China
| | - Jie Zheng
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Shandong Province, China.,Key Lab of Neurological Disease and Regeneration & Repair, Weifang Medical University, Shandong Province, China
| |
Collapse
|
9
|
Liu Y, Jing J, Yu H, Zhang J, Cao Q, Zhang X, Liu J, Zhang S, Cheng W. Expression profiles of long non-coding RNAs in the cartilage of patients with knee osteoarthritis and normal individuals. Exp Ther Med 2021; 21:365. [PMID: 33732338 PMCID: PMC7903471 DOI: 10.3892/etm.2021.9796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022] Open
Abstract
Knee osteoarthritis is caused by a multifactorial imbalance in the synthesis and degradation of knee chondrocytes, subchondral bone and extracellular matrix. Abnormal expression of long non-coding RNAs (lncRNAs) affects the metabolism, synovitis, autophagy and apoptosis of chondrocytes, as well as the production of cartilage matrix. The aim of the present study was to identify novel targets for the treatment of osteoarthritis and to examine the pathogenesis of the disease. The lncRNA expression profiles of seven patients with knee osteoarthritis and six healthy controls were examined by RNA-sequencing. Differentially expressed lncRNAs were selected for bioinformatics analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Reverse transcription-quantitative PCR (RT-qPCR) was used to further investigate the differential expression of the lncRNAs. A total of 23,583 lncRNAs were identified in osteoarthritis cartilage, including 5,255 upregulated and 5,690 downregulated lncRNAs, compared with normal cartilage. Although there were more downregulated lncRNAs compared with upregulated lncRNAs, among the changed lncRNAs (fold-change >6), there were more upregulated lncRNAs compared with downregulated lncRNAs. Several lncRNAs exhibiting differences were identified as potential therapeutic targets in knee osteoarthritis. GO and KEGG pathway analyses were performed for the target genes of the differentially expressed lncRNAs. RT-qPCR validation was performed on three randomly selected upregulated and downregulated lncRNAs. The results of RT-qPCR were consistent with the findings obtained by RNA-sequencing analysis. The findings from the present study may contribute to the diagnosis of osteoarthritis and may predict the development of osteoarthritis. Furthermore, the differentially expressed lncRNAs may aid in the identification of novel candidate targets for the treatment of knee osteoarthritis.
Collapse
Affiliation(s)
- Yanchang Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Juehua Jing
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Haoran Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jisen Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Qiliang Cao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Xin Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Jianjun Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Shuo Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Wendan Cheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
10
|
MetaDE-Based Analysis of circRNA Expression Profiles Involved in Gastric Cancer. Dig Dis Sci 2020; 65:2884-2895. [PMID: 31894486 DOI: 10.1007/s10620-019-06014-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) could play carcinogenic roles in gastric cancer (GC) and have potential to be biomarkers for GC early diagnosis, which needs to be further excavated and supported by more evidence. AIMS The study aims to identify more authentic circRNA expression profiles that could function as potential biomarkers in GC. METHODS circRNA expression data in three microarrays were downloaded from Gene Expression Omnibus datasets. A systematic meta-analysis based on an integrated dataset pre-processed from the three microarrays was conducted to identify a panel of differentially expressed circRNAs (DEcircs) by using the metaDE package. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes term enrichment were used to note the corresponding functions of DEcircs. Quantitative real-time polymerase chain reaction was applied to verify the DEcircs expression in cancer tissues and adjacent paracancerous tissues. A GC risk-related circRNAs-miRNAs-mRNAs network was further constructed and analyzed. RESULTS MetaDE analysis suggested 64 DEcircs between cancer tissues and adjacent normal tissues. GO and KEGG analysis showed that the parental genes of these DEcircs were mainly associated with histone methylation, Wnt signalosome and histone methylation activity. Hsa_circ_0005927 and hsa_circ_0067934 were verified in GC tissues, and a GC risk-related network was constructed. CONCLUSION MetaDE-based circRNA expression profiles revealed a series of potential biomarkers involved in GC. Two circRNAs, hsa_circ_0005927 and hsa_circ_0067934, could be more authentic biomarkers for GC screening. The GC risk-related network of hsa_circ_0005927/hsa_circ_0067934 and their downstream targets will provide new genetic insights for GC research.
Collapse
|
11
|
Xue BZ, Xiang W, Zhang Q, Wang YH, Wang HF, Yi DY, Xiong NX, Jiang XB, Zhao HY, Fu P. Roles of long non-coding RNAs in the hallmarks of glioma. Oncol Lett 2020; 20:83. [PMID: 32863916 PMCID: PMC7436925 DOI: 10.3892/ol.2020.11944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
Glioma is one of the most common types of tumor of the central nervous system. Due to the aggressiveness and invasiveness of high-level gliomas, the survival time of patients with these tumors is short, at ~15 months, even after combined treatment with surgery, radiotherapy and/or chemotherapy. Recently, a number of studies have demonstrated that long non-coding RNA (lncRNAs) serve crucial roles in the multistep development of human gliomas. Gliomas acquire numerous biological abilities during multistep development that collectively constitute the hallmarks of glioma. Thus, in this review, the roles of lncRNAs associated with glioma hallmarks and the current and future prospects for their development are summarized.
Collapse
Affiliation(s)
- Bing-Zhou Xue
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qing Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yi-Hao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hao-Fei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Dong-Ye Yi
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Nan-Xiang Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
12
|
Zhao T, Khadka VS, Deng Y. Identification of lncRNA biomarkers for lung cancer through integrative cross-platform data analyses. Aging (Albany NY) 2020; 12:14506-14527. [PMID: 32675385 PMCID: PMC7425463 DOI: 10.18632/aging.103496] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
This study was designed to identify lncRNA biomarker candidates using lung cancer data from RNA-Seq and microarray platforms separately. Lung cancer datasets were obtained from the Gene Expression Omnibus (GEO, n = 287) and The Cancer Genome Atlas (TCGA, n = 216) repositories, only common lncRNAs were used. Differentially expressed (DE) lncRNAs in tumors with respect to normal were selected from the Affymetrix and TCGA datasets. A training model consisting of the top 20 DE Affymetrix lncRNAs was used for validation in the TCGA and Agilent datasets. A second similar training model was generated using the TCGA dataset. First, a model using the top 20 DE lncRNAs from Affymetrix for training and validated using TCGA and Agilent, achieved high prediction accuracy for both training (98.5% AUC for Affymetrix) and validation (99.2% AUC for TCGA and 92.8% AUC for Agilent). A similar model using the top 20 DE lncRNAs from TCGA for training and validated using Affymetrix and Agilent, also achieved high prediction accuracy for both training (97.7% AUC for TCGA) and validation (96.5% AUC for Affymetrix and 80.9% AUC for Agilent). Eight lncRNAs were found to be overlapped from these two lists.
Collapse
Affiliation(s)
- Tianying Zhao
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, The University of Hawaii at Manoa, Honolulu, HI 96813, USA.,Department of Molecular Biosciences and Bioengineering, The University of Hawaii at Manoa College of Tropical Agriculture and Human Resources, Agricultural Sciences 218, Honolulu, HI 96822, USA
| | - Vedbar Singh Khadka
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, The University of Hawaii at Manoa, Honolulu, HI 96813, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, The University of Hawaii at Manoa, Honolulu, HI 96813, USA
| |
Collapse
|
13
|
Qi Z, Guo S, Li C, Wang Q, Li Y, Wang Z. Integrative Analysis for the Roles of lncRNAs in the Immune Responses of Mouse PBMC Exposed to Low-Dose Ionizing Radiation. Dose Response 2020; 18:1559325820913800. [PMID: 32269503 PMCID: PMC7093697 DOI: 10.1177/1559325820913800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
It is well accepted that low-dose ionizing radiation (LDIR) modulates a variety
of immune responses that have exhibited the properties of immune hormesis.
Alterations in messenger RNA (mRNA) and long noncoding RNA (lncRNA) expression
were to crucially underlie these LDIR responses. However, lncRNAs in
LDIR-induced immune responses have been rarely reported, and its functions and
molecular mechanisms have not yet been characterized. Here, we used microarray
profiling to determine lncRNA in BALB/c mice exposed to single (0.5 Gy×1) and
chronic (0.05 Gy×10) low-dose γ-rays radiation (Co60). We observed
that a total of 8274 lncRNAs and 7240 mRNAs were altered in single LDIR, while
2077 lncRNAs and 796 mRNAs in chronic LDIR. The biological functions of these
upregulated mRNAs in both 2 groups using Gene Ontology functional and pathway
enrichment analysis were significantly enriched in immune processes and immune
signaling pathways. Subsequently, we screened out the lncRNAs involved in
regulating these immune signaling pathways and examined their potential
functions by lncRNAs-mRNAs coexpression networks. This is the first study to
comprehensively identify lncRNAs in single and chronic LDIR responses and to
demonstrate the involvement of different lncRNA expression patterns in
LDIR-induced immune signaling pathways. Further systematic research on these
lncRNAs will provide new insights into our understanding of LDIR-modulated
immune hormesis responses.
Collapse
Affiliation(s)
- Zhenhua Qi
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Sitong Guo
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Changyong Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Qi Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yaqiong Li
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zhidong Wang
- Department of Radiobiology, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
14
|
Wu S, Wu E, Wang D, Niu Y, Yue H, Zhang D, Luo J, Chen R. LncRNA HRCEG, regulated by HDAC1, inhibits cells proliferation and epithelial-mesenchymal-transition in gastric cancer. Cancer Genet 2020; 241:25-33. [PMID: 31964588 DOI: 10.1016/j.cancergen.2019.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/25/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Recently, a number of long noncoding RNAs (lncRNAs) have been reported to play significant roles in human tumorigenesis. However, only few gastric cancer related lncRNAs have been well characterized. Here, we identified one lncRNA HRCEG, whose expression was decreased in the gastric cancer tissues compared with adjacent normal tissues. Overexpression of HRCEG significantly promoted cell apoptosis and inhibited cell proliferation. Importantly, we demonstrated that HRCEG levels inversely correlated with EMT process and HRCEG was regulated by the histone deacetylase 1 (HDAC1) in gastric cancer. These findings suggest that HRCEG might be regulated by HDAC1 to inhibit gastric cancer progress and metastatic capability via EMT pathway.
Collapse
Affiliation(s)
- Shuheng Wu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Erzhong Wu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongpeng Wang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwei Niu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyan Yue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongdong Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangdong Geneway Decoding Bio-Tech Co. Ltd, Foshan, 528316, China.
| |
Collapse
|
15
|
Chen X, Sun YZ, Guan NN, Qu J, Huang ZA, Zhu ZX, Li JQ. Computational models for lncRNA function prediction and functional similarity calculation. Brief Funct Genomics 2020; 18:58-82. [PMID: 30247501 DOI: 10.1093/bfgp/ely031] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/17/2018] [Accepted: 08/30/2018] [Indexed: 02/01/2023] Open
Abstract
From transcriptional noise to dark matter of biology, the rapidly changing view of long non-coding RNA (lncRNA) leads to deep understanding of human complex diseases induced by abnormal expression of lncRNAs. There is urgent need to discern potential functional roles of lncRNAs for further study of pathology, diagnosis, therapy, prognosis, prevention of human complex disease and disease biomarker detection at lncRNA level. Computational models are anticipated to be an effective way to combine current related databases for predicting most potential lncRNA functions and calculating lncRNA functional similarity on the large scale. In this review, we firstly illustrated the biological function of lncRNAs from five biological processes and briefly depicted the relationship between mutations or dysfunctions of lncRNAs and human complex diseases involving cancers, nervous system disorders and others. Then, 17 publicly available lncRNA function-related databases containing four types of functional information content were introduced. Based on these databases, dozens of developed computational models are emerging to help characterize the functional roles of lncRNAs. We therefore systematically described and classified both 16 lncRNA function prediction models and 9 lncRNA functional similarity calculation models into 8 types for highlighting their core algorithm and process. Finally, we concluded with discussions about the advantages and limitations of these computational models and future directions of lncRNA function prediction and functional similarity calculation. We believe that constructing systematic functional annotation systems is essential to strengthen the prediction accuracy of computational models, which will accelerate the identification process of novel lncRNA functions in the future.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Ya-Zhou Sun
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Na-Na Guan
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Jia Qu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
| | - Zhi-An Huang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Ze-Xuan Zhu
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
16
|
Liu X, Chen R, Liu L. SP1-DLEU1-miR-4429 feedback loop promotes cell proliferative and anti-apoptotic abilities in human glioblastoma. Biosci Rep 2019; 39:BSR20190994. [PMID: 31713587 PMCID: PMC6900472 DOI: 10.1042/bsr20190994] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/29/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
Mounting studies have revealed that long non-coding RNA (lncRNA) deleted in lymphocytic leukemia 1 (DLEU1) positively regulated the initiation and development of various human malignant tumors. Nevertheless, the function and mechanism of DLEU1 in human glioblastoma multiforme (GBM) remain elusive and ill-defined. The current study was designed to highlight the functional role and disclose the underlying molecular mechanism by which DLEU1 regulated GBM development. We found that DLEU1 was up-regulated in GBM and DLEU1 knockdown significantly inhibited GBM cell proliferation and induced apoptosis. As predicted by bioinformatics analysis and validated in mechanistic assays, SP1 could bind to the promoter region of DLEU1 to activate DLEU1 transcription. Additionally, miR-4429 was verified as a target gene of DLEU1 and negatively modulated by DLEU1. More importantly, miR-4429 overexpression repressed the mRNA and protein levels of SP1 via binding to the 3'UTR of SP1. Overexpression of SP1 or miR-4429 inhibitor could partly abolish the effect of DLEU1 knockdown on cell viability and apoptosis in GBM. Accordingly, our experimental data revealed that SP1-DLEU1-miR-4429 formed a feedback loop to promote GBM development, providing a new evidence for the role of DLEU1 in GBM.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Neurosurgery, Xianyang Hospital of Yan’an University, Xianyang City, Shaanxi Province 712000, P.R. China
| | - Ruwei Chen
- Department of Neurosurgery, Binzhou People’s Hospital, Shandong Province 256610, P.R. China
| | - Lijun Liu
- Department of Neurosurgery, Xiangyang No. 1 People’s Hospital Affiliated to Hubei University of Medicine, Xiangyang 441000, Hubei, P.R. China
| |
Collapse
|
17
|
Jiang H, Shi X, Ye G, Xu Y, Xu J, Lu J, Lu W. Up-regulated long non-coding RNA DUXAP8 promotes cell growth through repressing Krüppel-like factor 2 expression in human hepatocellular carcinoma. Onco Targets Ther 2019; 12:7429-7436. [PMID: 31571902 PMCID: PMC6750713 DOI: 10.2147/ott.s214336] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
Background and aim Long non-coding RNAs (lncRNAs) are implicated as novel factors in tumorigenesis and tumor progression. Although thousands of lncRNAs have been discovered, only a small portion have been functionally determined in hepatocellular carcinoma (HCC). Here, we aimed to comprehensively analyze differentially expressed lncRNAs, evaluate their clinical significance, and explore the functional roles and underlying mechanism in HCC. Methods We identified hundreds of lncRNAs which were dysregulated in HCC tissues through performing integrative analyses using the RNA sequencing data and independent gene microarray data from Gene Expression Omnibus and the Cancer Genome Atlas. Results Dysregulated DUXAP8, LINC01116, LINC01138, and PCAT6 are significantly associated with HCC patients' poor outcomes. Further experimental validation revealed that down-regulation of lncRNA DUXAP8 inhibited HCC cells proliferation and colony formation ability. Mechanistically, DUXAP8 repressed tumor suppressor KLF2 transcription through interacting with histone-lysine N-methyltransferase enzyme enhancer of zeste homolog 2. Conclusion Taken together, our findings can provide a valuable resource of HCC-associated lncRNAs and new insights into the biological functions of lncRNAs in HCC development.
Collapse
Affiliation(s)
- Hao Jiang
- Department of General Surgery, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Xuefei Shi
- Department of Respiratory Medicine, Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, People's Republic of China
| | - Guochao Ye
- Department of General Surgery, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Yongcan Xu
- Department of General Surgery, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Jiewei Xu
- Department of General Surgery, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Jun Lu
- Department of General Surgery, Huzhou Central Hospital, Huzhou, People's Republic of China
| | - Wei Lu
- Department of General Surgery, Huzhou Central Hospital, Huzhou, People's Republic of China
| |
Collapse
|
18
|
He J, Zhao H, Deng D, Wang Y, Zhang X, Zhao H, Xu Z. Screening of significant biomarkers related with prognosis of liver cancer by lncRNA‐associated ceRNAs analysis. J Cell Physiol 2019; 235:2464-2477. [PMID: 31502679 DOI: 10.1002/jcp.29151] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/23/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Jiefeng He
- Department of General Surgery Shanxi Dayi Hospital, Shanxi Medical University Taiyuan China
| | - Haichao Zhao
- Department of General Surgery Shanxi Dayi Hospital, Shanxi Medical University Taiyuan China
| | - Dongfeng Deng
- Department of Hepatobilliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University People's Hospital of Henan University Zhengzhou China
| | - Yadong Wang
- Department of Hepatobilliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University People's Hospital of Henan University Zhengzhou China
| | - Xiao Zhang
- Department of Hepatobilliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University People's Hospital of Henan University Zhengzhou China
| | - Haoliang Zhao
- Department of General Surgery Shanxi Dayi Hospital, Shanxi Medical University Taiyuan China
| | - Zongquan Xu
- Department of Hepatobilliary Pancreatic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University People's Hospital of Henan University Zhengzhou China
| |
Collapse
|
19
|
Comprehensive Analysis of lncRNAs and circRNAs Reveals the Metabolic Specialization in Oxidative and Glycolytic Skeletal Muscles. Int J Mol Sci 2019; 20:ijms20122855. [PMID: 31212733 PMCID: PMC6627206 DOI: 10.3390/ijms20122855] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 12/18/2022] Open
Abstract
The biochemical and functional differences between oxidative and glycolytic muscles could affect human muscle health and animal meat quality. However, present understanding of the epigenetic regulation with respect to lncRNAs and circRNAs is rudimentary. Here, porcine oxidative and glycolytic skeletal muscles, which were at the growth curve inflection point, were sampled to survey variant global expression of lncRNAs and circRNAs using RNA-seq. A total of 4046 lncRNAs were identified, including 911 differentially expressed lncRNAs (p < 0.05). The cis-regulatory analysis identified target genes that were enriched for specific GO terms and pathways (p < 0.05), including the oxidation-reduction process, glycolytic process, and fatty acid metabolic. All these were closely related to different phenotypes between oxidative and glycolytic muscles. Additionally, 810 circRNAs were identified, of which 137 were differentially expressed (p < 0.05). Interestingly, some circRNA-miRNA-mRNA networks were found, which were closely linked to muscle fiber-type switching and mitochondria biogenesis in muscles. Furthermore, 44.69%, 39.19%, and 54.01% of differentially expressed mRNAs, lncRNAs, and circRNAs respectively were significantly enriched in pig quantitative trait loci (QTL) regions for growth and meat quality traits. This study reveals a mass of candidate lncRNAs and circRNAs involved in muscle physiological functions, which may improve understanding of muscle metabolism and development from an epigenetic perspective.
Collapse
|
20
|
Chen H, Li M, Huang P. LncRNA SNHG16 Promotes Hepatocellular Carcinoma Proliferation, Migration and Invasion by Regulating miR-186 Expression. J Cancer 2019; 10:3571-3581. [PMID: 31293662 PMCID: PMC6603422 DOI: 10.7150/jca.28428] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 04/30/2019] [Indexed: 12/11/2022] Open
Abstract
Long non-coding RNA (lncRNA) and microRNA (miRNA) play an important role in genesis and progression of tumors. The aim of this study was to explore the expression, biological function and molecular mechanism of small nucleolar RNA host gene 16 (SNHG16) in HCC. RT-qPCR was conducted to evaluate the expression level of SNHG16 in HCC tissues and cell lines. Our findings showed for the first time that SNHG16 was up-regulated in HCC tissues and cell lines. The expression of SNHG16 in cancer tissues was highly correlated with tumor size, TNM stage, ALT expression level and HBV DNA level. Moreover, cell proliferation, migration and invasion were detected by CCK-8 assay, transwell migration assay and transwell invasion assay, respectively. Xenograft tumor experiment was used to determine the biological function of SNHG16 in vivo. As revealed by our data, SNHG16 accelerated the proliferation, migration and invasion of HCC cell. SNHG16 facilitated tumor formation in vivo. Next, the relationship between SNHG16, miR-186 and ROCK1 were analyzed using bioinformatics analysis, qRT-PCR, luciferase reporter assay and western blot. Further molecular mechanism studies reported that the expression of SNHG16 was negatively correlated with the level of miR-186 and SNHG16 directly bound to miR-186. SNHG16 and miR-186 repressed each other. Notably, rescue experiments were conducted and showed that miR-186 reversed the effect of SNHG16 on cell. Taken together, SNHG16 promoted HCC cell proliferation, migration and invasion by functioning as a competitive endogenous RNA (ceRNA) to negatively regulate miR-186 expression. Our data suggested that SNHG16 might be a potential biomarker and a new therapeutic target for HCC.
Collapse
Affiliation(s)
- Hang Chen
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Molin Li
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, P.R. China
| | - Ping Huang
- National Key Clinical Department, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing 400000, P.R. China
| |
Collapse
|
21
|
Li X, Yan X, Wang F, Yang Q, Luo X, Kong J, Ju S. Down-regulated lncRNA SLC25A5-AS1 facilitates cell growth and inhibits apoptosis via miR-19a-3p/PTEN/PI3K/AKT signalling pathway in gastric cancer. J Cell Mol Med 2019; 23:2920-2932. [PMID: 30793479 PMCID: PMC6433659 DOI: 10.1111/jcmm.14200] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 01/13/2019] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence has illustrated the vital roles of long non-coding RNAs (lncRNAs in gastric cancer (GC). Nevertheless, the majority of their roles and mechanisms in GC are still largely unknown. In this study, we investigate the roles of lncRNA SLC25A5-AS1 on tumourigenesis and explore its potential mechanisms in GC. The results showed that the expressions of SLC25A5-AS1 in GC were significantly lower than that of adjacent normal tissues, which were significantly associated with tumour size, TNM stage and lymph node metastasis. Moreover, SLC25A5-AS1 could inhibit GC cell proliferation, induce G1/G1 cell cycle arrest and cell apoptosis in vitro, as well as GC growth in vivo. Dual-luciferase reporter assay confirmed the direct interaction between SLC25A5-AS1 and miR-19a-3p, rescue experiment showed that co-transfection miR-19a-3p mimics and pcDNA-SLC25A5-AS1 could partially restore the ability of GC cell proliferation and the inhibition of cell apoptosis. The mechanism analyses further found that SLC25A5-AS1 might act as a competing endogenous RNAs (ceRNA), which was involved in the derepression of PTEN expression, a target gene of miR-19a-3p, and regulate malignant phenotype via PI3K/AKT signalling pathway in GC. Taken together, this study indicated that SLC25A5-AS1 was down-regulated in GC and functioned as a suppressor in the progression of GC. Moreover, it could act as a ceRNA to regulate cellular behaviours via miR-19a-3p/PTEN/PI3K/AKT signalling pathway. Thus, SLC25A5-AS1 might be served as a potential target for cancer therapeutics in GC.
Collapse
Affiliation(s)
- Xiwen Li
- Laboratory Medicine CenterAffiliated Hospital of Nantong UniversityNantongChina
- Department of Clinical LaboratoryTraditional Chinese Medicine HospitalKunshanChina
| | - Xin Yan
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Feng Wang
- Laboratory Medicine CenterAffiliated Hospital of Nantong UniversityNantongChina
| | - Qian Yang
- Laboratory Medicine CenterAffiliated Hospital of Nantong UniversityNantongChina
| | - Xi Luo
- Laboratory Medicine CenterAffiliated Hospital of Nantong UniversityNantongChina
| | - Jun Kong
- Laboratory Medicine CenterAffiliated Hospital of Nantong UniversityNantongChina
| | - Shaoqing Ju
- Laboratory Medicine CenterAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
22
|
Li J, Hao Y, Mao W, Xue X, Xu P, Liu L, Yuan J, Zhang D, Li N, Chen H, Zhao L, Sun Z, Luo J, Chen R, Zhao RC. LincK contributes to breast tumorigenesis by promoting proliferation and epithelial-to-mesenchymal transition. J Hematol Oncol 2019; 12:19. [PMID: 30795783 PMCID: PMC6387548 DOI: 10.1186/s13045-019-0707-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 02/13/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Increasing evidence has demonstrated that mesenchymal stem cells (MSCs) play a role in the construction of tumor microenvironments. Co-culture between tumor cells and MSCs provides an easy and useful platform for mimicking tumor microenvironments and identifying the important members involved in tumor progress. The long non-coding RNAs (lncRNAs) have been shown to regulate different tumorigenic processes. In this study, we aimed to examine functional lncRNA deregulations associated with breast cancer malignancy instigated by MSC-MCF-7 co-culture. METHODS The microarrays were used to profile the expression changes of lncRNAs in MCF-7 cells during epithelial-mesenchymal transition (EMT) induced by co-culture with MSCs. We found that an intergenic lncRNA KB-1732A1.1 (termed LincK, partly overlapped with GASL1) was significantly elevated. To investigate the biological function of LincK, the expression of EMT markers, cell migration, invasion, proliferation, and colony formation were evaluated in vitro and xenograft assay in nude mice were performed in vivo. Furthermore, we detected LincK expression in clinical samples using RNAscope® technology and verified aberrant expression of LincK in breast cancer data sets from The Cancer Genome Atlas (TCGA) by bioinformatic analysis. The underlying mechanisms of LincK were investigated using mRNA microarray analyses, Western blot, RNA pull down, and RNA immunoprecipitation. RESULTS LincK induced an EMT progress in breast cancer cells (BCC) MCF-7, MDA-MB-453, and MDA-MB-231. The depletion of LincK decreased the growth, migration, and invasion in BCC, whereas the overexpression of LincK exerted the opposite effects. Moreover, knockdown of LincK repressed tumorigenesis, and ectopic expression of LincK promoted tumor growth in MCF-7 xenograft model. LincK ablation in MDA-MB-231 cells dramatically impaired lung metastasis when incubated intravenously into nude mice. Further, LincK was frequently elevated in breast cancer compared with normal breast tissue in clinical samples. Mechanistically, LincK may share common miRNA response elements with PBK and ZEB1 and regulate the effects of miR-200 s. CONCLUSION LincK plays a significant role in regulating EMT and tumor growth and could be a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Jing Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Yajing Hao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenzhe Mao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Xiaowei Xue
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Pengchao Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Lihui Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Yuan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dongdong Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Na Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Hua Chen
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Lin Zhao
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Zhao Sun
- Department of Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China.
| |
Collapse
|
23
|
Identification of the biological affection of long noncoding RNA BC200 in Alzheimer's disease. Neuroreport 2019; 29:1061-1067. [PMID: 29979260 DOI: 10.1097/wnr.0000000000001057] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BC200 is a long noncoding RNA expressed at high levels in the Alzheimer's disease (AD), and blocking of BC200 by siRNA is assumed to be an effective method for various disease therapy. We have established an AD cell model overexpressing amyloid β-peptide (Aβ)1-42 to observe the effects of BC200 on the cell viability and apoptosis, and to investigate the associated underlying mechanisms. Efficient knockdown and overexpression of BC200 were established using BC200 siRNA and BC200 mimics, respectively. Cell viability following BC200 knockdown and overexpression was assessed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyltetrazolium bromide assay, and cell apoptosis was monitored by flow cytometry. We successfully established an AD cell model overexpressing Aβ1-42 gene, and reported the results of change of BC200 on Aβ1-42 levels. Knockdown of BC200 significantly suppressed b-site amyloid precursor protein-cleaving enzyme 1 (BACE1) expression, and overexpression of BC200 increased BACE1 expression. Besides, inhibition of BC200 significantly increased cell viability and reduced cell apoptosis in the AD model via directly targeting BACE1, which can be increased by overexpression of BC200. BC200 regulated AD cell viability and apoptosis via targeting BACE1, and it may be one of the putative target in AD development and provides potential new insights into genetic therapy against AD.
Collapse
|
24
|
Wu XL, Lu RY, Wang LK, Wang YY, Dai YJ, Wang CY, Yang YJ, Guo F, Xue J, Yang DD. Long noncoding RNA HOTAIR silencing inhibits invasion and proliferation of human colon cancer LoVo cells via regulating IGF2BP2. J Cell Biochem 2019; 120:1221-1231. [PMID: 30335892 DOI: 10.1002/jcb.27079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Abstract
Colon cancer is one of the most life-threatening malignancies worldwide. Long noncoding RNA (lncRNA) HOX transcript antisense RNA (HOTAIR) is a cancer-associated biomarker involved in the metastasis and prognosis of several cancers. However, whether and how HOTAIR affects colon cancer progression is still unclear. Consequently, we used RNA interference to knock down HOTAIR to explore its effects on human colon cancer cells. The dual luciferase reporter gene assay was initially used for testify the regulating relationship between lncRNA HOTAIR and insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). We determined the expressions of HOTAIR, IGF2BP2, E-cadherin, and vimentin. Meanwhile, cell growth, cycle and apoptosis, migration, and invasion were assayed. LoVo cells were transplanted into nude mice, and tumor formation and microvessel density were evaluated. LncRNA HOTAIR positively regulated IGF2BP2. Besides, the expressions of HOTAIR and E-cadherin and the apoptosis were increased, while the expressions of IGF2BP2 and vimentin, the growth, invasion and migration of LoVo cells, the average tumor weight, and microvessel density value were decreased. Of importance, overexpressed IGF2BP2 could reverse the above impacts. Taken together, the current study indicates that silencing of HOTAIR could inhibit the invasion, proliferation, and migration, and promote apoptosis of colon cancer LoVo cells through suppressing IGF2BP2 and the epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Xue-Liang Wu
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Rui-Yun Lu
- Department of Gastrointestinal Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li-Kun Wang
- Department of Ultrasound, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yuan-Yuan Wang
- Department of Gastrointestinal Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong-Jun Dai
- Department of Gastrointestinal Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen-Yu Wang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Yong-Jiang Yang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Fei Guo
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jun Xue
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Dong-Dong Yang
- Department of General Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
25
|
Feature selection of gene expression data for Cancer classification using double RBF-kernels. BMC Bioinformatics 2018; 19:396. [PMID: 30373514 PMCID: PMC6206917 DOI: 10.1186/s12859-018-2400-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Using knowledge-based interpretation to analyze omics data can not only obtain essential information regarding various biological processes, but also reflect the current physiological status of cells and tissue. The major challenge to analyze gene expression data, with a large number of genes and small samples, is to extract disease-related information from a massive amount of redundant data and noise. Gene selection, eliminating redundant and irrelevant genes, has been a key step to address this problem. RESULTS The modified method was tested on four benchmark datasets with either two-class phenotypes or multiclass phenotypes, outperforming previous methods, with relatively higher accuracy, true positive rate, false positive rate and reduced runtime. CONCLUSIONS This paper proposes an effective feature selection method, combining double RBF-kernels with weighted analysis, to extract feature genes from gene expression data, by exploring its nonlinear mapping ability.
Collapse
|
26
|
Liu T, Han Z, Li H, Zhu Y, Sun Z, Zhu A. LncRNA DLEU1 contributes to colorectal cancer progression via activation of KPNA3. Mol Cancer 2018; 17:118. [PMID: 30098595 PMCID: PMC6087004 DOI: 10.1186/s12943-018-0873-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/02/2018] [Indexed: 01/05/2023] Open
Abstract
Background Accumulating evidences show that long noncoding RNAs (lncRNA) play essential roles in the development and progression of various malignancies. However, their functions remains poorly understood and many lncRNAs have not been defined in colorectal cancer (CRC). In this study, we investigated the role of DLEU1 in CRC. Methods Quantitative real-time PCR was used to detect the expression of DLEU1 and survival analysis was adopted to explore the association between DLEU1 expression and the prognosis of CRC patients. CRC cells were stably transfected with lentivirus approach and cell proliferation, migration, invasion and cell apoptosis, as well as tumorigenesis in nude mice were performed to assess the effects of DLEU1 in BCa. Biotin-coupled probe pull down assay, RNA immunoprecipitation and Fluorescence in situ hybridization assays were conducted to confirm the relationship between DLEU1 and SMARCA1. Results Here we revealed that DLEU1 was crucial for activation of KPNA3 by recruiting SMARCA1, an essential subunit of the NURF chromatin remodeling complex, in CRC. DLEU1 was indispensible for the deposition of SMARCA1 at the promoter of KPNA3 gene. Increased expression of DLEU1 and KPNA3 was observed in human CRC tissues. And higher expression of DLEU1 or KPNA3 in patients indicates lower survival rate and poorer prognosis. DLEU1 knockdown remarkably inhibited CRC cell proliferation, migration and invasion in vitro and in vivo while overexpressing KPNA3 in the meantime reversed it. Conclusions Our results identify DLEU1 as a key regulator by a novel DLEU1/SMARCA1/KPNA3 axis in CRC development and progression, which may provide a potential biomarker and therapeutic target for the management of CRC. Electronic supplementary material The online version of this article (10.1186/s12943-018-0873-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianyou Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, #23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China.
| | - Zhiyang Han
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, #23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Huanyu Li
- Department of General Surgery, Mulan Country People's Hospital, Harbin, 150001, China
| | - Yuekun Zhu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, #23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Ziquan Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, #23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| | - Anlong Zhu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, #23 Youzheng Street, Harbin, 150001, Heilongjiang Province, China
| |
Collapse
|
27
|
Xiao B, Huang Z, Zhou R, Zhang J, Yu B. The Prognostic Value of Expression of the Long Noncoding RNA (lncRNA) Small Nucleolar RNA Host Gene 1 (SNHG1) in Patients with Solid Malignant Tumors: A Systematic Review and Meta-Analysis. Med Sci Monit 2018; 24:5462-5472. [PMID: 30080819 PMCID: PMC6091164 DOI: 10.12659/msm.911687] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The long non-coding RNA (lncRNA) small nucleolar RNA host gene 1 (SNHG1) is expressed in solid malignant tumors. The aim of this systematic review and meta-analysis was to determine whether expression of the lncRNA SNHG1 was associated with prognosis in patients with malignancy. MATERIAL AND METHODS A literature review from Jan 1970 to July 2018 identified publications in the English language. Databases searched included: PubMed, OVID, Web of Science, the Cochrane Database, Embase, EBSCO, Google Scholar. Systematic review and meta-analysis were performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The Newcastle-Ottawa Scale (NOS) assessment tool for risk of bias was used. RESULTS Eight publications (570 patients) and eight solid tumors were identified, including osteosarcoma, colorectal cancer, hepatocellular carcinoma, non-small cell lung cancer, esophageal cancer, ovarian cancer, glioma, and gastric cancer. Meta-analysis showed that expression of the lncRNA SNHG1 was significantly correlated with reduced overall survival (OS) (HR=1.917; 95% CI, 1.58-2.31) (P<0.001). Subgroup analysis showed that lncRNA SNHG1 expression was significantly correlated with TNM stage (OR=3.99; 95% CI, 2.48-6.43) and lymph node metastasis (OR=3.12; 95% CI, 1.95-4.98). There were no significant correlations between lncRNA SNHG1 expression and patient gender, tumor subtype, or tumor size. CONCLUSIONS Systematic literature review and meta-analysis identified eight publications that included 570 patients with eight types of solid malignant tumor, and showed that the expression of the lncRNA SNHG1 was significantly associated with worse clinical outcome.
Collapse
Affiliation(s)
- Bufan Xiao
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Zhaohao Huang
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Ruihao Zhou
- The First Clinical Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Jingtao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| | - Bentong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China
| |
Collapse
|
28
|
Cao B, Liu C, Yang G. Down-regulation of lncRNA ADAMTS9-AS2 contributes to gastric cancer development via activation of PI3K/Akt pathway. Biomed Pharmacother 2018; 107:185-193. [PMID: 30089248 DOI: 10.1016/j.biopha.2018.06.146] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/21/2018] [Accepted: 06/27/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE We aimed to investigate the role and regulatory mechanism of lncRNA ADAMTS9-AS2 in the development of gastric cancer. MATERIALS AND METHODS The expression of lncRNA ADAMTS9-AS2 in gastric cancer tissues and cells was detected. According to the expression level of ADAMTS9-AS2, survival analysis for patients with gastric cancer was performed. In addition, SGC-7901 cells were transfected with pc-ADAMTS9-AS2, si-ADAMTS9-AS2 and scramble RNA (control) to investigate the effects of ADAMTS9-AS2 on cell proliferation, migration, invasion and apoptosis. Besides, the expression levels of key molecules involved in PI3K/Akt pathway were detected. RESULTS Results showed that lncRNA ADAMTS9-AS2 was significantly down-regulated in gastric cancer tissues and cells. Decreased expression of lncRNA ADAMTS9-AS2 was associated with poor prognosis in patients with gastric cancer. In comparison with control group, the SGC-7901 cell viability and the number of colony, migrated or invaded SGC-7901 cells of pc-ADAMTS9-AS2 group were significantly decreased while markedly increased in si-ADAMTS9-AS2 group. The percentage of apoptotic SGC-7901 cells in pc-ADAMTS9-AS2 group was significantly increased, while significantly decreased in si-ADAMTS9-AS2 group. Additionally, the expressions of p-PI3K and p-Akt were significantly down-regulated in pc-ADAMTS9-AS2 group compared with control group, while up-regulated in si-ADAMTS9-AS2 group. Furthermore, compared with si-ADAMTS9-AS2 group, treatment of an PI3K inhibitor LY294002 markedly reversed the effects of suppression of ADAMTS9-AS2 alone on SGC-7901 cells by inhibiting cell viability, colony-forming ability, migration, invasion, and increasing apoptosis. CONCLUSIONS Our results indicate that overexpression of ADAMTS9-AS2 may inhibit gastric cancer cell proliferation, suppress cancer cell migration and invasion, and induce cell apoptosis. Activation of PI3K/Akt pathway may be a key regulatory mechanism of ADAMTS9-AS2 in gastric cancer.
Collapse
Affiliation(s)
- Bole Cao
- Department of Gastroenterology, Taizhou People's hospital, Taizhou, Jiangsu 225300, China.
| | - Cuixia Liu
- Department of Gastroenterology, Taizhou People's hospital, Taizhou, Jiangsu 225300, China
| | - Guifeng Yang
- Department of Gastroenterology, Taizhou People's hospital, Taizhou, Jiangsu 225300, China
| |
Collapse
|
29
|
Li L, Wang YY, Mou XZ, Ye ZY, Zhao ZS. Up-regulation of long noncoding RNA M26317 correlates with tumor progression and poor prognosis in gastric cancer. Hum Pathol 2018; 78:44-53. [PMID: 29698700 DOI: 10.1016/j.humpath.2018.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/20/2018] [Accepted: 04/10/2018] [Indexed: 02/01/2023]
Abstract
To investigate the expression and clinical significance of long noncoding RNA (lncRNA) in gastric cancer, we applied microarray analysis to obtain expression profiles of protein-coding genes and lncRNAs in tumor and paired adjacent nontumor tissues. We found that 41 lncRNAs were up-regulated and 31 lncRNAs were down-regulated more than 2-fold in gastric cancer versus noncancerous tissues (ratio >2.0, P < .01). We established a coexpression network of the differentially expressed lncRNAs and targeted coding genes that included 17 lncRNAs and 16 coding genes. Because the results of microarray analysis showed that lncRNA M26317 was up-regulated in gastric cancer tissues, we examined the expression level of M26317 in 103 gastric cancer tissues by reverse-transcription polymerase chain reaction and 436 gastric cancer tissues by in situ hybridization. Our data confirmed that M26317 was up-regulated in gastric cancer tissues. Moreover, expression of M26317 correlated with patient age, size of tumor, Lauren's classification, depth of invasion, lymph node and distant metastasis, TNM stage, and poor prognosis (P < .05), but was not associated with sex, location of tumor, and differentiation (P > .05). M26317 may have an important role in malignant transformation and metastasis of gastric cancer.
Collapse
Affiliation(s)
- Li Li
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Yuan-Yu Wang
- Departments of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, PR China; Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou 310014, PR China.
| | - Xiao Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, PR China
| | - Zai-Yuan Ye
- Departments of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, PR China; Key Laboratory of Gastroenterology of Zhejiang Province, Hangzhou 310014, PR China
| | - Zhong-Sheng Zhao
- Departments of Pathology, Zhejiang Provincial People's Hospital, Hangzhou 310014, PR China
| |
Collapse
|
30
|
LncRNA16 is a potential biomarker for diagnosis of early-stage lung cancer that promotes cell proliferation by regulating the cell cycle. Oncotarget 2018; 8:7867-7877. [PMID: 27999202 PMCID: PMC5352366 DOI: 10.18632/oncotarget.13980] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022] Open
Abstract
Early diagnosis of lung cancer greatly reduces mortality; however, the lack of suitable plasma biomarkers presents a major obstacle. Recent studies showed that long noncoding RNAs (lncRNAs) played important roles in cancer initiation and development. Here, we identified differentially expressed lncRNAs in 20 lung cancer samples by using custom designed microarray and evaluated their expression in 118 lung cancer samples by real-time PCR (qRT-PCR). lncRNA16 (ENST00000539303) expression was significantly higher in lung cancer tissues (80/118) than in adjacent matched normal tissues. Importantly, this increase was similar to that in plasma (53/84) of lung cancer patients, including early stage. The role of lncRNA16 in lung cancer was studied in vitro and in vivo by using the lung cancer cell lines and xenograft mouse models. The results reveal that knockdown of lncRNA16 inhibited proliferation of PC9 cells in vitro and also inhibited tumor growth in xenograft mouse models. Overexpression of lncRNA16 promoted proliferation of A549 cells in vitro and also promoted tumor growth in xenograft mouse models. Specifically, we showed that lncRNA16 promoted G2/M transition by regulating cyclin B1 transcription. Together, our findings suggest that lncRNA16 is a promising biomarker suitable for early diagnosis of lung cancer, and a potential target for lung cancer treatment.
Collapse
|
31
|
Zhen Q, Gao LN, Wang RF, Chu WW, Zhang YX, Zhao XJ, Lv BL, Liu JB. LncRNA PCAT-1 promotes tumour growth and chemoresistance of oesophageal cancer to cisplatin. Cell Biochem Funct 2018; 36:27-33. [PMID: 29314203 DOI: 10.1002/cbf.3314] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 11/18/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022]
Abstract
Oesophageal cancer (OC) is one of the most fatal malignancies in the world, and chemoresistance restricts the therapeutic outcome of OC. Long noncoding RNA (lncRNA) was reported to play roles in multiple cancer types. Yet, the function of lncRNA in chemoresistance of OC has not been reported. A lncRNA gene, PCAT-1, showed higher expression in OC tissues, especially higher in secondary OC compared with normal mucosa tissues. Overexpression of PCAT-1 increased the proliferation rate and growth of OC cells. Inhibition of PCAT-1 decreased proliferation and growth of OC cells, and increased cisplatin chemosensitivity. In a mouse OC xenograft model, PCAT-1 inhibition repressed OC growth in vivo. Therefore, PCAT-1 may potentially serve as a therapeutic target for treating OC. PCAT-1 promotes development of OC and represses the chemoresistance of OC to cisplatin, and silencing of PCAT-1 may be a therapeutic strategy for treating OC.
Collapse
Affiliation(s)
- Qiang Zhen
- Department of Thoracic Surgery, Shijiazhuang No.1 Hospital, Shijiazhuang, Hebei Province, China
| | - Li-Na Gao
- Obstetrical and Reproductive Genetic Department, Hebei General Hospital, Shijiazhuang, Hebei Province, China
| | - Ren-Feng Wang
- Department of Thoracic Surgery, Shijiazhuang No.1 Hospital, Shijiazhuang, Hebei Province, China
| | - Wei-Wei Chu
- Department of Thoracic Surgery, Shijiazhuang No.1 Hospital, Shijiazhuang, Hebei Province, China
| | - Ya-Xiao Zhang
- Department of Thoracic Surgery, Shijiazhuang No.1 Hospital, Shijiazhuang, Hebei Province, China
| | - Xiao-Jian Zhao
- Department of Thoracic Surgery, Shijiazhuang No.1 Hospital, Shijiazhuang, Hebei Province, China
| | - Bao-Lei Lv
- Department of Thoracic Surgery, Shijiazhuang No.1 Hospital, Shijiazhuang, Hebei Province, China
| | - Jia-Bao Liu
- Department of Thoracic Surgery, Shijiazhuang No.1 Hospital, Shijiazhuang, Hebei Province, China
| |
Collapse
|
32
|
Long Non-coding RNAs, Novel Culprits, or Bodyguards in Neurodegenerative Diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2017; 10:269-276. [PMID: 29499939 PMCID: PMC5787881 DOI: 10.1016/j.omtn.2017.12.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/14/2022]
Abstract
Long non-coding RNA (lncRNA) is a kind of non-coding RNA (ncRNA), with a length of 200 nt to 100 kb, that lacks a significant open reading frame (ORF) encoding a protein. lncRNAs are widely implicated in various physiological and pathological processes, such as epigenetic regulation, cell cycle regulation, cell differentiation regulation, cancer, and neurodegenerative diseases, through their interactions with chromatin, protein, and other RNAs. Numerous studies have suggested that lncRNAs are closely linked with the occurrence and development of a variety of diseases, especially neurodegenerative diseases, of which the etiologies are complicated and the underlying mechanisms remain elusive. Determining the roles of lncRNA in the pathogenesis of neurodegenerative diseases will not only deepen understanding of the physiological and pathological processes that occur in those diseases but also provide new ideas and solutions for their diagnosis and prevention. This review aims to highlight the progress of lncRNA research in the pathological and behavioral changes of neurodegenerative diseases. Specifically, we focus on how lncRNA dysfunctions are involved in the pathogenesis of Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and amyotrophic lateral sclerosis.
Collapse
|
33
|
Zhu S, Shuai P, Yang C, Zhang Y, Zhong S, Liu X, Chen K, Ran Q, Yang H, Zhou Y. Prognostic value of long non-coding RNA PVT1 as a novel biomarker in various cancers: a meta-analysis. Oncotarget 2017; 8:113174-113184. [DOI: oi:10.18632/oncotarget.22830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Affiliation(s)
- Shikai Zhu
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, P.R.China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R.China
| | - Ping Shuai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, P.R.China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R.China
| | - Chong Yang
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, P.R.China
| | - Yun Zhang
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, P.R.China
| | - Shan Zhong
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, P.R.China
| | - Xingchao Liu
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, P.R.China
| | - Kai Chen
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, P.R.China
| | - Qin Ran
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, P.R.China
| | - Hongji Yang
- Organ Transplant Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, P.R.China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R.China
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu 610072, Sichuan, P.R.China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, P.R.China
| |
Collapse
|
34
|
Zhang XF, Ye Y, Zhao SJ. LncRNA Gas5 acts as a ceRNA to regulate PTEN expression by sponging miR-222-3p in papillary thyroid carcinoma. Oncotarget 2017; 9:3519-3530. [PMID: 29423063 PMCID: PMC5790480 DOI: 10.18632/oncotarget.23336] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/26/2017] [Indexed: 12/03/2022] Open
Abstract
Accumulating evidence demonstrates that the long non-coding RNA Growth Arrest-Specific 5 (Gas5) has practical significance in cancer progression and metastasis. However, its role and function in papillary thyroid carcinoma (PTC) remains unknown. In this study, we aimed to explore the potential involvement of Gas5 in papillary thyroid carcinogenesis and to highlight the emerging roles of ceRNAs in the biological regulation of PTC cells. The results suggested that Gas5 was markedly downregulated in both PTC tissues and PTC cell lines. Over-expression of Gas5 remarkably suppressed PTC cells proliferation in vitro and inhibited the growth of tumor cells in vivo likewise. Furthermore, Gas5 was identified as a target of miR-222-3p which was aberrantly high in PTC cells. Enhanced expression of miR-222-3p promoted the proliferation of PTC cells while knocking down miR-222-3p could inhibit it. The advanced effects of miR-222-3p on the proliferation of PTC cells could be partly reversed by the upregulation of Gas5 expression. Furthermore, we validated that Gas5 increased the protein level of the PTEN, one of miR-222-3p’s targets, which further activated PTEN/AKT pathway. Taken together, our study identified a tumor suppressive role of Gas5 in PTC cells acting as a ceRNA, effectively becoming a sink for miR-222-3p, modulating the expression of PTEN, which lead to PTEN/AKT pathway activation and proliferation suppression. This finding may offer a new potential therapeutic strategy for PTC.
Collapse
Affiliation(s)
- Xiao-Fang Zhang
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
| | - Yan Ye
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
| | - Shu-Jun Zhao
- Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Metabolic Diseases Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, 300070 Tianjin, China
| |
Collapse
|
35
|
Liu L, Yue H, Liu Q, Yuan J, Li J, Wei G, Chen X, Lu Y, Guo M, Luo J, Chen R. LncRNA MT1JP functions as a tumor suppressor by interacting with TIAR to modulate the p53 pathway. Oncotarget 2017; 7:15787-800. [PMID: 26909858 PMCID: PMC4941277 DOI: 10.18632/oncotarget.7487] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/05/2016] [Indexed: 01/13/2023] Open
Abstract
Accumulating evidence suggests that long noncoding RNAs (lncRNAs) play important roles in transcriptional regulation, whereas the extent to which the lncRNAs also function at the posttranscriptional level is less known. In the present study, we report a lncRNA named MT1JP which acts as a tumor suppressor through a posttranscriptional mechanism. We found that MT1JP is differentially expressed in tumor tissues by analyzing data from a customized microarray applied to 76 pairs of matched normal and cancer tissue samples. By associating with the RNA-binding protein TIAR, MT1JP enhanced the translation of the master transcription factor p53, thereby regulating a series of pathways involving p53, such as the cell cycle, apoptosis and proliferation. When MT1JP was down-regulated, the protein level of p53 declined, which in turn accelerated cell deterioration and tumor formation. Moreover, differential expression of MT1JP in cancerous and normal tissues suggests that it may be a promising prognostic marker and a therapeutic target. Taken together, we identified MT1JP as a critical factor in restraining cell transformation by modulating p53 translation through interactions with TIAR, and this finding is likely to shed new light on future investigations about posttranscriptional or translational effects of lncRNAs during cell transformation.
Collapse
Affiliation(s)
- Lihui Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Yue
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Liu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiao Yuan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Center of Excellence in Tissue Engineering, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Guifeng Wei
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaomin Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Mingzhou Guo
- Department of Gastroenterology and Hepatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Research Network of Computational Biology, RNCB, Beijing 100101, China
| |
Collapse
|
36
|
Prognostic value of long non-coding RNA PVT1 as a novel biomarker in various cancers: a meta-analysis. Oncotarget 2017; 8:113174-113184. [PMID: 29348896 PMCID: PMC5762581 DOI: 10.18632/oncotarget.22830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/02/2017] [Indexed: 12/22/2022] Open
Abstract
Background Plasmacytoma variant translocation 1 (PVT1) has recently been reported to be aberrantly expressed and serves as a prognostic biomarker in many types of cancers. However, its prognostic significance remains controversial. Here, we conducted a meta-analysis to investigate the prognostic value of PVT1 expression in cancers. Results A total of 2109 patients from 20 studies were included. The results showed that elevated PVT1 expression predicted a poor outcome for overall survival (OS) in nine types of cancers (HR = 1.40, 95% CI: 1.21–1.59). Subgroup analysis indicated that there was a significant association between PVT1 overexpression and poor OS of patients with gastric cancer, gynecology cancer and lung cancer. Furthermore, we also found a negative significant relationship between PVT1 expression and disease-free survival (HR = 1.83, 95% CI: 1.39–2.27), progression-free survival (HR = 1.63, 95% CI: 1.34–1.93) and recurrence-free survival (HR = 1.74, 95% CI: 1.01–2.47). In addition, the level of PVT1 expression was positively related to tumor size, TNM stage, lymph node metastasis and distant metastases. Materials and Methods A systematic search was performed through the PubMed, EMBASE, Web of Science, Ovid and Cochrane library databases for eligible studies on prognostic value of PVT1 in cancers from inception up to June, 2017. The pooled hazard ratios (HRs) or odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the association between PVT1 expression and clinical outcomes. Conclusions PVT1 expression positively related to tumor size, TNM stages, lymph node metastasis and distant metastases, and served as a prognostic biomarker in different types of cancers.
Collapse
|
37
|
Cui H, Zhang Y, Zhang Q, Chen W, Zhao H, Liang J. A comprehensive genome-wide analysis of long noncoding RNA expression profile in hepatocellular carcinoma. Cancer Med 2017; 6:2932-2941. [PMID: 29047230 PMCID: PMC5727245 DOI: 10.1002/cam4.1180] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/25/2017] [Accepted: 08/06/2017] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, especially in East Asia and China. Long noncoding RNAs (lncRNAs) are emerging as critical regulators that may be involved in the development and progression of cancers in humans. However, the contributions of lncRNAs to HCC development, metastasis, and recurrence remain largely unknown. In this study, we comprehensively investigated lncRNA expression profile in HCC and normal tissues using TCGA RNA sequencing data, one RNA sequencing dataset, and two microarray datasets from GEO. By analyzing these four datasets, we identified hundreds of expression-dysregulated lncRNAs in HCC tissues compared with normal tissues. Genomic copy number variation analysis showed that many of those lncRNAs disorder are related to the copy number amplification or deletion. Moreover, several lncRNAs expression levels are associated with HCC patients' overall and recurrence-free survival, such as RP1-228H13.5, TMCC1-AS1, LINC00205, and RP11-307C12.11. Furthermore, we identified two lncRNAs termed PVT1 and SNHG7 that may be involved in HCC cells metastasis by comparing lncRNAs expression profiles between early recurrence HCC tissues with metastasis and late recurrence HCC tissues without metastasis. Finally, loss-of-function assays confirmed that knockdown of SNHG7 and PVT1 impaired HCC cells invasion. Taken together, these findings may provide a valuable resource for further identification of novel biomarkers and therapeutic targets for HCC patients.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Cell Movement
- Computational Biology
- DNA Copy Number Variations
- Databases, Genetic
- Disease Progression
- Disease-Free Survival
- Gene Amplification
- Gene Deletion
- Gene Dosage
- Gene Expression Profiling/methods
- Genome-Wide Association Study
- Humans
- Kaplan-Meier Estimate
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local
- Oligonucleotide Array Sequence Analysis
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Time Factors
- Transcriptome
- Transfection
- Treatment Outcome
Collapse
Affiliation(s)
- Hongxia Cui
- Department of MedicineQingdao UniversityQingdaoChina
- Department of OncologyJining First People's HospitalJiningChina
| | - Yunxing Zhang
- Department of Emergency trauma surgeryJining First People's HospitalJiningChina
| | - Qiujie Zhang
- Department of OncologyJining First People's HospitalJiningChina
| | - Wenming Chen
- Department of OncologyJining First People's HospitalJiningChina
| | - Haibo Zhao
- Department of OncologyJining First People's HospitalJiningChina
| | - Jun Liang
- Department of MedicineQingdao UniversityQingdaoChina
- Department of OncologyThe Peking University International Hospital of Peking UniversityBeijingChina
| |
Collapse
|
38
|
Yang B, Wei ZY, Wang BQ, Yang HC, Wang JY, Bu XY. Down-regulation of the long noncoding RNA-HOX transcript antisense intergenic RNA inhibits the occurrence and progression of glioma. J Cell Biochem 2017; 119:2278-2287. [PMID: 28857242 DOI: 10.1002/jcb.26390] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022]
Abstract
This study aims to explore the role of long noncoding RNA (lncRNA)-HOX transcript antisense intergenic RNA (HOTAIR) in the occurrence and progression of glioma. Fresh glioma and normal brain tissues were classified into a glioma group (n = 67) and a normal group (n = 64) respectively. U87 cells were assigned into the blank, sh-NC, and sh-HOTAIR groups. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to determine HOTAIR expression. Cell proliferation, cell cycle and cell apoptosis rates were detected by cell counting kit-8 (CCK-8) and flow cytometry (FCM). Scratch test and transwell assay were conducted for cell migration and invasion. Orthotopic glioma tumor model in nude mice was established by inoculating tumor cell suspension. Hematoxylin-Eosin (HE) staining was used to observe the growth and invasion of orthotopic glioma tumors. The expression of HOTAIR and cell viability was found to be lowest in the sh-HOTAIR group among the three groups. The sh-HOTAIR group exhibited a higher apoptotic rate and lower number of cell migration compared with the blank and sh-NC groups. Additionally, the speed of wound healing was slower, the migration distance decreased and the survival time of nude mice was extended in the sh-HOTAIR compared to the other groups. Moreover, the sh-HOTAIR group demonstrated reduced lesion sizes and inflammation, no convulsions or hemiplegia and lesser number of satellite metastases. Our findings support that down-regulation of HOTAIR could inhibit cell proliferation, promote cell apoptosis as well as suppress cell invasion and migration in the progression of glioma.
Collapse
Affiliation(s)
- Bin Yang
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Zhen-Yu Wei
- Department of Neurosurgery, The 371th Central Hospital of Chinese People's Liberation Army, Xinxiang, P.R. China
| | - Bang-Qing Wang
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Hua-Chao Yang
- Department of Neurology, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Jun-Yi Wang
- Department of Neurology, Henan University of Chinese Medicine, Zhengzhou, P.R. China
| | - Xing-Yao Bu
- Department of Neurosurgery, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
39
|
Yan X, Zhang D, Wu W, Wu S, Qian J, Hao Y, Yan F, Zhu P, Wu J, Huang G, Huang Y, Luo J, Liu X, Liu B, Chen X, Du Y, Chen R, Fan Z. Mesenchymal Stem Cells Promote Hepatocarcinogenesis via lncRNA-MUF Interaction with ANXA2 and miR-34a. Cancer Res 2017; 77:6704-6716. [PMID: 28947421 DOI: 10.1158/0008-5472.can-17-1915] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/20/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023]
Abstract
Accumulating evidence suggests that cancer-associated mesenchymal stem cells (MSC) contribute to the development and metastasis of hepatocellular carcinoma (HCC). Aberrant expression of long noncoding RNAs (lncRNA) has been associated with these processes but cellular mechanisms are obscure. In this study, we report that HCC-associated mesenchymal stem cells (HCC-MSC) promote epithelial-mesenchymal transition (EMT) and liver tumorigenesis. We identified a novel lncRNA that we termed lncRNA-MUF (MSC-upregulated factor) that is highly expressed in HCC tissues and correlated with poor prognosis. Depleting lncRNA-MUF in HCC cells repressed EMT and inhibited their tumorigenic potential. Conversely, lncRNA-MUF overexpression accelerated EMT and malignant capacity. Mechanistic investigations showed that lncRNA-MUF bound Annexin A2 (ANXA2) and activated Wnt/β-catenin signaling and EMT. Furthermore, lncRNA-MUF acted as a competing endogenous RNA for miR-34a, leading to Snail1 upregulation and EMT activation. Collectively, our findings establish a lncRNA-mediated process in MSC that facilitates hepatocarcinogenesis, with potential implications for therapeutic targeting. Cancer Res; 77(23); 6704-16. ©2017 AACR.
Collapse
Affiliation(s)
- Xinlong Yan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China. .,Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongdong Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Wu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuheng Wu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jingfeng Qian
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yajing Hao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fang Yan
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Pingping Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiayi Wu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guanling Huang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yinghui Huang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xinhui Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Benyu Liu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomin Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Yang B, Xia ZA, Zhong B, Xiong X, Sheng C, Wang Y, Gong W, Cao Y, Wang Z, Peng W. Distinct Hippocampal Expression Profiles of Long Non-coding RNAs in an Alzheimer's Disease Model. Mol Neurobiol 2017; 54:4833-4846. [PMID: 27501805 PMCID: PMC5533868 DOI: 10.1007/s12035-016-0038-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia worldwide, is a complex neurodegenerative disease characterized by the progressive loss of memory and other cognitive functions. The pathogenesis of AD is not yet completely understood. Although long non-coding RNAs (lncRNAs) have recently been shown to play a role in AD pathogenesis, the specific influences of lncRNAs in AD remain largely unknown; in particular, hippocampal lncRNA expression profiles in AD rats are lacking. In this study, microarray analysis was performed to investigate the hippocampal expression patterns of dysregulated lncRNAs in a rat model of AD. A total of 315 lncRNAs and 311 mRNAs were found to be significantly dysregulated in the AD model (≥2.0 fold, p < 0.05). Then, quantitative real-time PCR was used to validate the expression of selected lncRNAs and mRNAs. Bioinformatics tools and databases were employed to explore the potential lncRNA functions. This is the first study to comprehensively identify dysregulated hippocampal lncRNAs in AD and to demonstrate the involvement of different lncRNA expression patterns in the hippocampal pathogenesis of AD. This information will enable further research on the pathogenesis of AD and facilitate the development of novel AD therapeutics targeting lncRNAs.
Collapse
Affiliation(s)
- Bo Yang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zi-An Xia
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Bingwu Zhong
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Xingui Xiong
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chenxia Sheng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Gong
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yucheng Cao
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhe Wang
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Weijun Peng
- Department of Integrated Traditional Chinese & Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
41
|
Chen Y, Yu X, Xu Y, Shen H. Identification of dysregulated lncRNAs profiling and metastasis-associated lncRNAs in colorectal cancer by genome-wide analysis. Cancer Med 2017; 6:2321-2330. [PMID: 28857495 PMCID: PMC5633553 DOI: 10.1002/cam4.1168] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 12/23/2022] Open
Abstract
The colorectal cancer (CRC) is one of the leading causes of cancer‐related death worldwide, but the pathogenesis of CRC remains not well‐known. Increasing studies have highlighted the critical roles of long noncoding RNAs (lncRNAs) in tumorigenesis and cancer cells metastasis, however, the expression pattern, biological roles of lncRNAs, and the mechanisms responsible for their function in CRC remain elusive. In this study, we performed a genome‐wide comprehensive analysis of lncRNAs profiling and clinical relevance to identify novel lncRNAs for the further study in CRC. RNA sequencing and microarray data obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were annotated and analyzed to find differentially expressed lncRNAs in CRC. Analysis of these datasets revealed that hundreds of lncRNAs expression are dysregulated in CRC tissues when compared with normal tissues. By genomic variation analyses, we identified that some of these lncRNAs dysregulation is associated with the copy number amplification or deletion. Moreover, many lncRNAs expression levels are significantly associated with CRC patients overall and recurrence‐free survivals, such as H19, LEF1‐AS1, and RP11‐296E3.2. Furthermore, we identified one liver metastasis‐associated lncRNA termed LUCAT1 in CRC by analyzing lncRNAs expression profiles in the CRC tissues from patients with liver metastasis compared with the CRC tissues without metastasis. Finally, loss‐of‐function assays determined that knockdown of LUCAT1 could impair CRC cells invasion. Taken together, aberrantly expressed lncRNAs may play critical roles in the development and liver metastasis of CRC, and our findings may provide useful resource for identification of novel biomarkers of CRC.
Collapse
Affiliation(s)
- Yan Chen
- Department of General Surgery, Huzhou Central Hospital, Huzhou, China
| | - Xiang Yu
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yongcan Xu
- Department of General Surgery, Huzhou Central Hospital, Huzhou, China
| | - Hua Shen
- Department of General Surgery, Huzhou Central Hospital, Huzhou, China
| |
Collapse
|
42
|
Crosstalk in competing endogenous RNA network reveals the complex molecular mechanism underlying lung cancer. Oncotarget 2017; 8:91270-91280. [PMID: 29207642 PMCID: PMC5710922 DOI: 10.18632/oncotarget.20441] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/16/2017] [Indexed: 01/25/2023] Open
Abstract
We investigated the transcriptional mechanism underlying lung cancer development. RNA sequencing analysis was performed on blood samples from lung cancer cases and healthy controls. Differentially expressed microRNAs (miRNAs), circular RNAs (circRNAs), mRNAs (genes), and long non-coding RNAs (lncRNA) were identified, followed by pathway enrichment analysis. Based on miRNA target interactions, a competing endogenous network was established and significant nodes were screened. Differentially expressed transcriptional factors were retrieved from the TRRUST database and the transcriptional factor regulatory network was constructed. The expression of 59 miRNAs, 18,306 genes,232 lncRNAs, and 292 circRNAs were greatly altered in patients with lung cancer. miRNAs were closely associated with cancer-related pathways, such as pathways in cancer, colorectal cancer, and transcriptional misregulation in cancer. Two novel pathways, olfactory transduction and neuroactive ligand-receptor interactions, were significantly enriched by differentially expressed genes. The competing endogenous RNA network revealed 5 hub miRNAs. Hsa-miR-582-3p and hsa-miR-582-5p were greatly enriched in the Wnt signaling pathway. Hsa-miR-665 was closely related with the MAPK signaling pathway. Hsa-miR-582-3p and hsa-miR-582-5p were also present in the TF regulatory network. Transcriptional factors of WT1 (wilms tumor 1) and ETV1 (ETS variant 1) were regulated by hsa-miR-657 and hsa-miR-582-5p, respectively, and controlled androgen receptor gene expression. miR-582-5p, miRNA-582-3p, and miR-657 may play critical regulatory roles in lung tumor development. Our work may explore new mechanism of lung cancer and aid the development of novel therapy.
Collapse
|
43
|
The long noncoding RNA SNHG1 promotes tumor growth through regulating transcription of both local and distal genes. Oncogene 2017; 36:6774-6783. [PMID: 28825722 DOI: 10.1038/onc.2017.286] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 12/12/2022]
Abstract
Increasing evidence indicates that long noncoding RNAs (lncRNAs) have important roles in various physiological processes and dysfunction of lncRNAs could be a prevalent cause in human diseases. Here we functionally characterized the nuclear-enriched lncRNA SNHG1, which is highly expressed in multiple types of cancer. We also provide evidence that SNHG1 promotes cancer cell growth by regulating gene expression both in cis and in trans. SNHG1 was involved in the AKT signaling pathway as it promotes the neighboring transcription of the protein-coding gene SLC3A2 in cis by binding the Mediator complex to facilitate the establishment of enhancer-promoter interaction. In trans, SNHG1 directly interacted with central domain of FUBP1 and antagonize the binding of FBP-interacting repressor to FUBP1, thereby coordinating the expression of the oncogene MYC. Collectively, our findings demonstrate that lncRNA SNHG1 can function both in cis and in trans with distinct mechanisms to regulate transcription, promoting tumorigenesis and cancer progression.
Collapse
|
44
|
Xu C, Qi R, Ping Y, Li J, Zhao H, Wang L, Du MY, Xiao Y, Li X. Systemically identifying and prioritizing risk lncRNAs through integration of pan-cancer phenotype associations. Oncotarget 2017; 8:12041-12051. [PMID: 28076842 PMCID: PMC5355324 DOI: 10.18632/oncotarget.14510] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 12/12/2016] [Indexed: 02/01/2023] Open
Abstract
LncRNAs have emerged as a major class of regulatory molecules involved in normal cellular physiology and disease, our knowledge of lncRNAs is very limited and it has become a major research challenge in discovering novel disease-related lncRNAs in cancers. Based on the assumption that diverse diseases with similar phenotype associations show similar molecular mechanisms, we presented a pan-cancer network-based prioritization approach to systematically identify disease-specific risk lncRNAs by integrating disease phenotype associations. We applied this strategy to approximately 2800 tumor samples from 14 cancer types for prioritizing disease risk lncRNAs. Our approach yielded an average area under the ROC curve (AUC) of 80.66%, with the highest AUC (98.14%) for medulloblastoma. When evaluated using leave-one-out cross-validation (LOOCV) for prioritization of disease candidate genes, the average AUC score of 97.16% was achieved. Moreover, we demonstrated the robustness as well as the integrative importance of this approach, including disease phenotype associations, known disease genes and the numbers of cancer types. Taking glioblastoma multiforme as a case study, we identified a candidate lncRNA gene SNHG1 as a novel disease risk factor for disease diagnosis and prognosis. In summary, we provided a novel lncRNA prioritization approach by integrating pan-cancer phenotype associations that could help researchers better understand the important roles of lncRNAs in human cancers.
Collapse
Affiliation(s)
- Chaohan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanyan Ping
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jie Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Li Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | | | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
45
|
Xie ZC, Dang YW, Wei DM, Chen P, Tang RX, Huang Q, Liu JH, Luo DZ. Clinical significance and prospective molecular mechanism of MALAT1 in pancreatic cancer exploration: a comprehensive study based on the GeneChip, GEO, Oncomine, and TCGA databases. Onco Targets Ther 2017; 10:3991-4005. [PMID: 28860807 PMCID: PMC5558580 DOI: 10.2147/ott.s136878] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Long noncoding RNAs (lncRNAs) are known to function as regulators in the development and occurrence of various tumors. MALAT1 is a highly conserved lncRNA and has vital functions in diverse tumors, including pancreatic cancer (PC). However, the underlying molecular regulatory mechanism involved in the occurrence and development of PC remains largely unknown. Thus, it is important to explore MALAT1 in PC and elucidate its function, which might offer a new perspective for clinical diagnosis and therapy. Methods First, we used the Gene Expression Omnibus, Oncomine, and The Cancer Genome Atlas databases to determine the clinical diagnostic and prognostic values of MALAT1. We next used our own GeneChip and The Cancer Genome Atlas database to collect the possible target genes of MALAT1 and further utilized a bioinformatics analysis to explore the underlying significant pathways that might be crucial in PC. Finally, we identified several key target genes of MALAT1 and hope to offer references for future research. Results We found that the expression of MALAT1 was significantly elevated in patients with PC. A receiver operating characteristics curve analysis showed a moderate diagnostic value (area under the curve =0.75, sensitivity =0.66, specificity =0.72). A total of 224 important overlapping genes were collected, and six hub genes (CCND1, MAPK8, VEGFA, FOS, CDH1, and HSP90AA1) were identified, of which CCND1, MAPK8, and VEGFA, are important genes in PC. Several pathways, including the mTOR signaling pathway, pathways in cancer, and the MAPK signaling pathway, were suggested to be the vital MALAT1 pathways in PC. Conclusion MALAT1 is suggested to be a promising diagnostic biomarker in PC. Six hub genes (CCND1, MAPK8, VEGFA, FOS, CDH1, and HSP90AA1), and specifically CCND1, MAPK8, and VEGFA, might be key MALAT1 target genes in PC. Due to their possible clinical significance in PC, several pathways, such as the mTOR signaling pathway, pathways in cancer, and the MAPK signaling pathway, are worthy of further study.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiang-Hua Liu
- Department of Pathology.,Department of Emergency Medicine, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | | |
Collapse
|
46
|
Hao Y, Yang X, Zhang D, Luo J, Chen R. Long noncoding RNA LINC01186, regulated by TGF-β/SMAD3, inhibits migration and invasion through Epithelial-Mesenchymal-Transition in lung cancer. Gene 2017; 608:1-12. [PMID: 28119085 DOI: 10.1016/j.gene.2017.01.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/05/2017] [Accepted: 01/20/2017] [Indexed: 01/13/2023]
Abstract
Accumulating evidence suggests that long noncoding RNAs (lncRNAs) are crucial regulators of the Epithelial-Mesenchymal-Transition (EMT). TGF-β signaling is a major inducer of EMT and can facilitate lung cancer metastasis. However, the role of lncRNAs in this process remains largely unknown. Here, we have identified 291 lncRNAs which were differentially expressed in lung cancer tissues compared with adjacent normal tissues. Of these, the gene body or vicinity of 19 transcripts were also bound by SMAD3. The expression of LINC01186 was significantly decreased in A549 cells treated with TGF-β1. Furthermore, LINC01186 was stably down-regulated in lung cancer tissues compared with normal tissues in TCGA data sets and another published lung cancer data sets. The bioinformatics analysis suggested that LINC01186 was associated with TGF-β and might participate in EMT process. Moreover, knocking-down LINC01186 promoted cell migration and invasion, whereas, LINC01186 overexpression prevented cell metastasis. Importantly, LINC01186 expression was regulated by SMAD3. And LINC01186 affected several EMT markers expression. These findings suggest that LINC01186, a mediator of TGF-β signaling, can play a significant role in the regulation of EMT and lung cancer cell migration and invasion.
Collapse
Affiliation(s)
- Yajing Hao
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinling Yang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Dongdong Zhang
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Luo
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Runsheng Chen
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Beijing Key Laboratory of Noncoding RNA, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
47
|
Xue D, Zhou C, Lu H, Xu R, Xu X, He X. LncRNA GAS5 inhibits proliferation and progression of prostate cancer by targeting miR-103 through AKT/mTOR signaling pathway. Tumour Biol 2016; 37:10.1007/s13277-016-5429-8. [PMID: 27743383 DOI: 10.1007/s13277-016-5429-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022] Open
Abstract
In prior research, evidence has been found for a relation between low exposure of long non-coding RNAs (lncRNAs) and prostate tumor genesis. This study aims to clarify the underlying mechanisms of lncRNA GAS5 in prostate cancer (PCa). In total, 118 pairs of PCa tissues and matched adjacent non-tumor tissues were collected. Additionally, lncRNA GAS5 exposure levels were determined using RT-PCR and in situ hybridization. In addition, dual-luciferase report assay was performed to verify the target effect of lncRNA GAS5 on miR-103. The exposure levels of the proteins related to the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) axis, including AKT, mTOR, and S6K1, were measured by western blot PC3 cells infected with lncRNA GAS5 mimic; lncRNA GAS5 siRNA; or a combination of lncRNA and miR-103. The proliferation, invasion, and migration ability of PC3 cells after being infected were tested by MTT assay, wound healing assay, and transwell assays. Finally, nude mouse xenograft models were used to measure lncRNA GAS5 effects on prostate tumor growth in vivo. The lncRNA GAS5 levels were reduced significantly in the PCa tissues and cell lines (P < 0.05). A low exposure of lncRNA GAS5 caused AKT/mTOR signaling pathway activation in PC3 cells (P < 0.05). In addition, over-exposure of lncRNA GAS5 was proven to significantly decelerate PCa cell progression in vitro and tumor growth in vivo through inactivating the AKT/mTOR signaling pathway (P < 0.05). This study proves that lncRNA GAS5 plays a significant role in the decelerating PCa development via mediating the AKT/mTOR signaling pathway through targeting miR-103.
Collapse
Affiliation(s)
- Dong Xue
- Department of Urology, Third Affiliated Hospital, Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Cuixing Zhou
- Department of Urology, Third Affiliated Hospital, Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Hao Lu
- Department of Urology, Third Affiliated Hospital, Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Renfang Xu
- Department of Urology, Third Affiliated Hospital, Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Xianlin Xu
- Department of Urology, Third Affiliated Hospital, Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China
| | - Xiaozhou He
- Department of Urology, Third Affiliated Hospital, Suzhou University, No. 185 Juqian Street, Changzhou, Jiangsu, 213003, China.
| |
Collapse
|
48
|
Shuai P, Zhou Y, Gong B, Jiang Z, Yang C, Yang H, Zhang D, Zhu S. Long noncoding RNA MALAT1 can serve as a valuable biomarker for prognosis and lymph node metastasis in various cancers: a meta-analysis. SPRINGERPLUS 2016; 5:1721. [PMID: 27777857 PMCID: PMC5052238 DOI: 10.1186/s40064-016-3342-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 09/21/2016] [Indexed: 02/08/2023]
Abstract
Background Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a newly discovered long intergenic noncoding RNA (lincRNA), has been reported to be aberrantly expressed in various cancers, and may serve as a novel potential biomarker for cancer prognosis. This meta-analysis was conducted to investigate the effects of MALAT1 on cancer prognosis and lymph node metastasis. Methods A quantitative meta-analysis was performed using a systematic search of PubMed, Medline and Web of Science databases to identify eligible papers on prognostic value of MALAT1 in cancers. The pooled hazard ratios (HRs) or odds ratios (OR) with a 95 % confidence interval (95 % Cl) were calculated to evaluate its prognostic value. Results A total of 2094 patients from 17 studies between 2003 and 2016 were included. The results revealed that elevated MALAT1 expression was significantly associated with poor overall survival (OS) in 11 types of cancers (HR = 1.91, 95 % CI 1.49–2.34). Furthermore, subgroup analysis indicated that region of study (Germany, Japan or China), cancer type (digestive system cancers, urinary system cancers or respiratory system cancers) and sample size (more or less than 100) did not alter the significant predictive value of MALAT1 in OS from various types of cancer. In addition, upregulation of MALAT1 expression was significantly associated with poor disease-free survival (HR = 2.29, 95 % CI 1.24–3.35), and recurrence-free survival (HR = 2.09, 95 % CI 0.81–3.37). The results showed that the incidence of lymph node metastasis was higher in high MALAT1 expression group than that in low MALAT1 expression group (OR = 1.67, 95 % CI 1.30–2.15). Conclusions This meta-analysis revealed that elevated MALAT1 expression may serve as a novel predictive biomarker for poor survival and lymph node metastasis in different types of cancer.
Collapse
Affiliation(s)
- Ping Shuai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan People's Republic of China.,Health Management Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan People's Republic of China
| | - Yu Zhou
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan People's Republic of China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan People's Republic of China
| | - Bo Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan People's Republic of China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan People's Republic of China
| | - Zhilin Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan People's Republic of China
| | - Chong Yang
- Organ Transplant Centre, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan People's Republic of China
| | - Hongji Yang
- Organ Transplant Centre, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan People's Republic of China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan People's Republic of China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan People's Republic of China.,Health Management Center, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan People's Republic of China
| | - Shikai Zhu
- Organ Transplant Centre, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, 610072 Sichuan People's Republic of China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072 Sichuan People's Republic of China
| |
Collapse
|