1
|
Walia HK, Singh N, Sharma S. Association of NAT-2 gene polymorphisms toward lung cancer susceptibility and prognosis in North Indian patients treated with platinum-based chemotherapy. Pharmacogenomics 2021; 23:97-118. [PMID: 34911343 DOI: 10.2217/pgs-2021-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The present study has been carried out to evaluate the association of the N-acetyl transferase 2 (NAT2) variants in North Indian lung cancer patients and healthy controls. Furthermore, we have also determined the effect of the polymorphic variants of the NAT2 gene on the clinical outcomes and overall survival among lung cancer (LC) subjects treated with platinum-based doublet chemotherapy. Methods: This case-control study comprised a total of 550 cases and 550 healthy controls. The genotyping was carried out using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) and the statistical analysis was carried out using MedCalc. Results: There was a lack of any significant association for both 590G>A and 803A>G polymorphisms toward risk for LC, but 857G>A polymorphism exhibited a risk toward LC (p = 0.005). Whereas, variant alleles for the 481C>T polymorphism had a decreased risk for LC (p = 0.0003). Further, 857G>A polymorphism conferred a positive association between genotype and ADCC (p = 0.001) and 481C>T polymorphism had a decreased risk for SQCC (OR = 0.39, p = 0.0006) and SCLC (p = 0.001) subjects. The smokers carrying mutant genotype for the 481C>T polymorphism had a decreased risk toward LC (p < 0.0001) even in light (p = 0.002) as well as heavy smokers (p = 0.001). In case of females, 2.59-fold and 3.66-fold increased risk of LC development was observed in subjects with intermediate and slow acetylator for the 857G>A polymorphism. Whereas, in case of males this polymorphism depicts a reduced risk for LC. On the other hand, 803A>G depicted a 2.82-fold risk of LC in case of female subjects who were slow acetylators. Our study exhibits a significant difference in the overall haplotype distribution between cases and controls. In our study overall, (857G>A, 481C>T, 803A>G) was found to be best model, but was not significant using MDR. Considering the CART results 481C>T polymorphism came out to be the most significant factor in determining the LC risk. For the 803A>G polymorphism, a threefold odds of lymph node invasion were observed for mutant genotype, the recessive model exhibited an odd of 2.8. 590G>A appears to be a potential prognostic factor for OS of SCLC patients after irinotecan therapy as the survival time for such patients was better. Conclusion: These results suggest that NAT2 variant genotype for 590G>A and 803A>G was not found to modulate risk toward LC, but 857G>A polymorphism exhibited a risk toward LC and 481C>T polymorphism had a decreased risk for LC. NAT2 590G>A appears to be a potential prognostic factor for OS of SCLC patients after irinotecan therapy and 481C>T came out to be significant factor using CART.
Collapse
Affiliation(s)
- Harleen Kaur Walia
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Navneet Singh
- Department of Pulmonary Medicine, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
2
|
Malagobadan S, Ho CS, Nagoor NH. MicroRNA-6744-5p promotes anoikis in breast cancer and directly targets NAT1 enzyme. Cancer Biol Med 2020; 17:101-111. [PMID: 32296579 PMCID: PMC7142838 DOI: 10.20892/j.issn.2095-3941.2019.0010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
Objective: Anoikis is apoptosis that is induced when cells detach from the extracellular matrix and neighboring cells. As anoikis serves as a regulatory barrier, cancer cells often acquire resistance towards anoikis during tumorigenesis to become metastatic. MicroRNAs (miRNAs) are short strand RNA molecules that regulate genes post-transcriptionally by binding to mRNAs and reducing the expression of its target genes. This study aimed to elucidate the role of a novel miRNA, miR-6744-5p, in regulating anoikis in breast cancer and identify its target gene. Methods: An anoikis resistant variant of the luminal A type breast cancer MCF-7 cell line (MCF-7-AR) was generated by selecting and amplifying surviving cells after repeated exposure to growth in suspension. MiRNA microarray analysis identified a list of dysregulated miRNAs from which miR-6744-5p was chosen for overexpression and knockdown studies in MCF-7. Additionally, the miRNA was also overexpressed in a triple-negative breast cancer cell line, MDA-MB-231, to evaluate its ability to impair the metastatic potential of breast cancer cells. Results: This study showed that overexpression and knockdown of miR-6744-5p in MCF-7 increased and decreased anoikis sensitivity, respectively. Similarly, overexpression of miR-6744-5p in MDA-MB-231 increased anoikis and also decreased tumor cell invasion in vitro and in vivo. Furthermore, NAT1 enzyme was identified and validated as the direct target of miR-6744-5p. Conclusions: This study has proven the ability of miR-6744-5p to increase anoikis sensitivity in both luminal A and triple negative breast cancer cell lines, highlighting its therapeutic potential in treating breast cancer.
Collapse
Affiliation(s)
- Sharan Malagobadan
- Institute of Biological Sciences (Genetics & Molecular Biology), Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chai San Ho
- Center for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Noor Hasima Nagoor
- Institute of Biological Sciences (Genetics & Molecular Biology), Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Center for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
3
|
Population variability of rhesus macaque (Macaca mulatta) NAT1 gene for arylamine N-acetyltransferase 1: Functional effects and comparison with human. Sci Rep 2019; 9:10937. [PMID: 31358821 PMCID: PMC6662693 DOI: 10.1038/s41598-019-47485-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Human NAT1 gene for N-acetyltransferase 1 modulates xenobiotic metabolism of arylamine drugs and mutagens. Beyond pharmacogenetics, NAT1 is also relevant to breast cancer. The population history of human NAT1 suggests evolution through purifying selection, but it is unclear whether this pattern is evident in other primate lineages where population studies are scarce. We report NAT1 polymorphism in 25 rhesus macaques (Macaca mulatta) and describe the haplotypic and functional characteristics of 12 variants. Seven non-synonymous single nucleotide variations (SNVs) were identified and experimentally demonstrated to compromise enzyme function, mainly through destabilization of NAT1 protein and consequent activity loss. One non-synonymous SNV (c.560G > A, p.Arg187Gln) has also been characterized for human NAT1 with similar effects. Population haplotypic and functional variability of rhesus NAT1 was considerably higher than previously reported for its human orthologue, suggesting different environmental pressures in the two lineages. Known functional elements downstream of human NAT1 were also differentiated in rhesus macaque and other primates. Xenobiotic metabolizing enzymes play roles beyond mere protection from exogenous chemicals. Therefore, any link to disease, particularly carcinogenesis, may be via modulation of xenobiotic mutagenicity or more subtle interference with cell physiology. Comparative analyses add the evolutionary dimension to such investigations, assessing functional conservation/diversification among primates.
Collapse
|
4
|
Carlisle SM, Trainor PJ, Doll MA, Stepp MW, Klinge CM, Hein DW. Knockout of human arylamine N-acetyltransferase 1 (NAT1) in MDA-MB-231 breast cancer cells leads to increased reserve capacity, maximum mitochondrial capacity, and glycolytic reserve capacity. Mol Carcinog 2018; 57:1458-1466. [PMID: 29964355 DOI: 10.1002/mc.22869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/06/2018] [Accepted: 06/28/2018] [Indexed: 01/12/2023]
Abstract
Human arylamine N-acetyltransferase 1 (NAT1) is a phase II xenobiotic metabolizing enzyme found in almost all tissues. NAT1 can also hydrolyze acetyl-coenzyme A (acetyl-CoA) in the absence of an arylamine substrate. Expression of NAT1 varies between individuals and is elevated in several cancers including estrogen receptor positive (ER+) breast cancers. To date, however, the exact mechanism by which NAT1 expression affects mitochondrial bioenergetics in breast cancer cells has not been described. To further evaluate the role of NAT1 in energy metabolism MDA-MB-231 breast cancer cells with parental, increased, and knockout levels of NAT1 activity were compared for bioenergetics profile. Basal oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were measured followed by programmed sequential injection of Oligomycin (ATP synthase inhibitor), FCCP (ETC uncoupler), Antimycin A (Complex III inhibitor), and Rotenone (Complex I inhibitor) to evaluate mitochondrial bioenergetics. Compared to the cell lines with parental NAT1 activity, NAT1 knockout MDA-MB-231 cell lines exhibited significant differences in bioenergetics profile, while those with increased NAT1 did not. Significant increases in reserve capacity, maximum mitochondrial capacity, and glycolytic reserve capacity were observed in NAT1 knockout MDA-MB-231 cell lines compared to those with parental and increased NAT1 activity. These data indicate that NAT1 knockout in MDA-MB-231 breast cancer cells may enhance adaptation to stress by increasing plasticity in response to energy demand.
Collapse
Affiliation(s)
- Samantha M Carlisle
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Patrick J Trainor
- Division of Cardiovascular Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Mark A Doll
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Marcus W Stepp
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Kentucky
| | - David W Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
5
|
Recent technical and biological development in the analysis of biomarker N-deoxyguanosine-C8-4-aminobiphenyl. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1087-1088:49-60. [PMID: 29709872 DOI: 10.1016/j.jchromb.2018.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/12/2022]
Abstract
4-Aminobiphenyl (4-ABP) which is primarily formed during tobacco combustion and overheated meat is a major carcinogen responsible for various cancers. Its adducted form, N-deoxyguanosine-C8-4-aminobiphenyl (dG-C8-4-ABP), has long been employed as a biomarker for assessment of the risk for cancer. In this review, the metabolism and carcinogenisity of 4-ABP will be discussed, followed by a discussion of the current common approaches of analyzing dG-C8-4-ABP. The major part of this review will be on the history and recent development of key methods for detection and quantitation of dG-C8-4-ABP in complex biological samples and their biological applications, from the traditional 2P-postlabelling and immunoassay methods to modern liquid chromatography-mass spectrometry (LC-MS) with the latter as the focus. Many vital biological discoveries based on dG-C8-4-ABP have been published by using the nanoLC-MS with column switching platform in our laboratory, which has also been adopted and further improved by many other researchers. We hope this review can provide a perspective of the challenges that had to be addressed in reaching our present goals and possibly bring new ideas for those who are still working on the frontline of DNA adducts area.
Collapse
|
6
|
Isothiocyanates and Xenobiotic Detoxification. Mol Nutr Food Res 2018; 62:e1700916. [DOI: 10.1002/mnfr.201700916] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/18/2017] [Indexed: 12/22/2022]
|
7
|
Xu X, Mathieu C, Berthelet J, Duval R, Bui LC, Busi F, Dupret JM, Rodrigues-Lima F. Human Arylamine N-Acetyltransferase 1 Is Inhibited by the Dithiocarbamate Pesticide Thiram. Mol Pharmacol 2017; 92:358-365. [DOI: 10.1124/mol.117.108662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
8
|
Xie B, Nagalingam A, Kuppusamy P, Muniraj N, Langford P, Győrffy B, Saxena NK, Sharma D. Benzyl Isothiocyanate potentiates p53 signaling and antitumor effects against breast cancer through activation of p53-LKB1 and p73-LKB1 axes. Sci Rep 2017; 7:40070. [PMID: 28071670 PMCID: PMC5223184 DOI: 10.1038/srep40070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/30/2016] [Indexed: 11/09/2022] Open
Abstract
Functional reactivation of p53 pathway, although arduous, can potentially provide a broad-based strategy for cancer therapy owing to frequent p53 inactivation in human cancer. Using a phosphoprotein-screening array, we found that Benzyl Isothiocynate, (BITC) increases p53 phosphorylation in breast cancer cells and reveal an important role of ERK and PRAS40/MDM2 in BITC-mediated p53 activation. We show that BITC rescues and activates p53-signaling network and inhibits growth of p53-mutant cells. Mechanistically, BITC induces p73 expression in p53-mutant cells, disrupts the interaction of p73 and mutant-p53, thereby releasing p73 from sequestration and allowing it to be transcriptionally active. Furthermore, BITC-induced p53 and p73 axes converge on tumor-suppressor LKB1 which is transcriptionally upregulated by p53 and p73 in p53-wild-type and p53-mutant cells respectively; and in a feed-forward mechanism, LKB1 tethers with p53 and p73 to get recruited to p53-responsive promoters. Analyses of BITC-treated xenografts using LKB1-null cells corroborate in vitro mechanistic findings and establish LKB1 as the key node whereby BITC potentiates as well as rescues p53-pathway in p53-wild-type as well as p53-mutant cells. These data provide first in vitro and in vivo evidence of the integral role of previously unrecognized crosstalk between BITC, p53/LKB1 and p73/LKB1 axes in breast tumor growth-inhibition.
Collapse
Affiliation(s)
- Bei Xie
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore MD 21231, USA
| | - Arumugam Nagalingam
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore MD 21231, USA
| | - Panjamurthy Kuppusamy
- Department of Medicine, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Nethaji Muniraj
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore MD 21231, USA
| | - Peter Langford
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore MD 21231, USA
| | - Balázs Győrffy
- MTA TTK Momentum Cancer Biomarker Research Group, H-1117 Budapest, Semmelweis University, 2nd Dept. of Pediatrics, H-1094 Budapest, Hungary
| | - Neeraj K Saxena
- Department of Medicine, University of Maryland School of Medicine, Baltimore MD 21201, USA
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore MD 21231, USA
| |
Collapse
|