1
|
Silva KCS, Tambwe N, Mahfouz DH, Wium M, Cacciatore S, Paccez JD, Zerbini LF. Transcription Factors in Prostate Cancer: Insights for Disease Development and Diagnostic and Therapeutic Approaches. Genes (Basel) 2024; 15:450. [PMID: 38674385 PMCID: PMC11050257 DOI: 10.3390/genes15040450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
Transcription factors (TFs) are proteins essential for the regulation of gene expression, and they regulate the genes involved in different cellular processes, such as proliferation, differentiation, survival, and apoptosis. Although their expression is essential in normal physiological conditions, abnormal regulation of TFs plays critical role in several diseases, including cancer. In prostate cancer, the most common malignancy in men, TFs are known to play crucial roles in the initiation, progression, and resistance to therapy of the disease. Understanding the interplay between these TFs and their downstream targets provides insights into the molecular basis of prostate cancer pathogenesis. In this review, we discuss the involvement of key TFs, including the E26 Transformation-Specific (ETS) Family (ERG and SPDEF), NF-κB, Activating Protein-1 (AP-1), MYC, and androgen receptor (AR), in prostate cancer while focusing on the molecular mechanisms involved in prostate cancer development. We also discuss emerging diagnostic strategies, early detection, and risk stratification using TFs. Furthermore, we explore the development of therapeutic interventions targeting TF pathways, including the use of small molecule inhibitors, gene therapies, and immunotherapies, aimed at disrupting oncogenic TF signaling and improving patient outcomes. Understanding the complex regulation of TFs in prostate cancer provides valuable insights into disease biology, which ultimately may lead to advancing precision approaches for patients.
Collapse
Affiliation(s)
- Karla C. S. Silva
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Nadine Tambwe
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Dalia H. Mahfouz
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Juliano D. Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
| | - Luiz F. Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (K.C.S.S.); (N.T.); (D.H.M.); (M.W.); (S.C.); (J.D.P.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
2
|
Patel K, Murray MG, Whelan KA. Roles for GADD45 in Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:23-39. [DOI: 10.1007/978-3-030-94804-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Ducker C, Shaw PE. Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development. Int J Mol Sci 2021; 22:5119. [PMID: 34066106 PMCID: PMC8151852 DOI: 10.3390/ijms22105119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/16/2022] Open
Abstract
Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers.
Collapse
Affiliation(s)
- Charles Ducker
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Peter E. Shaw
- Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
4
|
Guo JC, Yang YJ, Guo M, Zhang JQ, Zheng JF, Liu Z. Involvement of CDK11B-mediated SPDEF ubiquitination and SPDEF-mediated microRNA-448 activation in the oncogenicity and self-renewal of hepatocellular carcinoma stem cells. Cancer Gene Ther 2020; 28:1136-1149. [PMID: 33328586 DOI: 10.1038/s41417-020-00261-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/25/2020] [Accepted: 11/10/2020] [Indexed: 11/09/2022]
Abstract
Increasing evidence has suggested the crucial role cyclin-dependent kinases (CDKs) in the biology of hepatocellular carcinoma (HCC), a lethal malignancy with high morbidity and mortality. Hence, this study explored the modulatory effect of the putative cyclin-dependent kinase 11B (CDK11B)-mediated ubiquitination on HCC stem cells. The expression of CDK11B, SAM pointed domain-containing ETS transcription factor (SPDEF) and DOT1-like histone lysine methyltransferase (DOT1L) was determined by RT-qPCR and western blot analysis in HCC tissues and cells. The interaction among CDK11B, SPDEF, miR-448, and DOT1L was analyzed by Co-IP, ubiquitination-IP and ChIP assays, whereas their effects on the biological characteristics of HCC stem cells were assessed by sphere formation and colony formation assays. An in vivo xenograft tumor model was developed for validating the regulation of CDK11B in oncogenicity of HCC stem cells. We characterized the aberrant upregulation of CDK11B and downregulation SPDEF in HCC tissues and cells. CDK11B degraded SPDEF through ubiquitin-proteasome pathway, whereas SPDEF could bind to the miR-448 promoter and inhibit the expression of DOT1L by activating miR-448, whereby promoting self-renewal of HCC stem cells. Knockdown of CDK11B attenuated the self-renewal capability of HCC stem cells and their oncogenicity in vivo. These findings highlighted that blocking the CDK11B-induced degradation of SPDEF and enhancing miR-448-dependent inhibition of DOT1L may delay the progression of HCC by restraining self-renewal capability of HCC stem cells, representing novel targets for HCC management.
Collapse
Affiliation(s)
- Jun-Cheng Guo
- Department of Hepatobiliary Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, P. R. China
| | - Yi-Jun Yang
- Department of Hepatobiliary Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, P. R. China.
| | - Min Guo
- Psychological Research Center, Hainan General Hospital, Haikou, 570311, P. R. China
| | - Jian-Quan Zhang
- Department of Hepatobiliary Surgery, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, 570208, P. R. China.
| | - Jin-Fang Zheng
- Department of Hepatobiliary Surgery, Hainan General Hospital, Haikou, 570311, P. R. China
| | - Zhuo Liu
- School of Public Health, Hainan Medical University, Haikou, 571199, P. R. China
| |
Collapse
|
5
|
Ye T, Feng J, Wan X, Xie D, Liu J. Double Agent: SPDEF Gene with Both Oncogenic and Tumor-Suppressor Functions in Breast Cancer. Cancer Manag Res 2020; 12:3891-3902. [PMID: 32547225 PMCID: PMC7259446 DOI: 10.2147/cmar.s243748] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/25/2020] [Indexed: 12/16/2022] Open
Abstract
The dichotomy of cancer-regulatory genes into “oncogenes (OCGs)” and “tumor-suppressor genes (TSGs)” has greatly helped us in learning molecular details of tumor biology. SPDEF, known as the prostate-derived ETS factor, is reported to play a pivotal role in normal cell development and survival, which has also been endowed with dual characteristics in cancers. Breast cancer (BC) is a highly heterogeneous disease which becomes the leading reason for cancer-related fatality among women worldwide. The involvement of SPDEF in many aspects of BC has been postulated, whereas the mechanism governing the regulation of the pro- and anti-oncogenic activities of SPDEF in BC state remains poorly defined. In this review, we summarized SPDEF as the double agent involving in expression profiles, the regulatory mechanism in BC progression, as well as the role in diagnosis, treatment and prognosis of BC. The understanding of SPDEF duality has contributed to gain insight into the tumor biology and also add a new dimension to the new therapy targets for BC.
Collapse
Affiliation(s)
- Ting Ye
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jia Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Xue Wan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Dan Xie
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan 646000, People's Republic of China
| |
Collapse
|
6
|
Chronic exposure to submicromolar arsenite promotes the migration of human esophageal Het1A cells induced by heparin-binding EGF-like growth factor. Arch Toxicol 2019; 93:3523-3534. [DOI: 10.1007/s00204-019-02592-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022]
|
7
|
Xiao B, Kuang Z, Zhang W, Hang J, Chen L, Lei T, He Y, Deng C, Li W, Lu J, Qu J, Zhou Q, Hao W, Sun Z, Li L. Glutamate Ionotropic Receptor Kainate Type Subunit 3 (GRIK3) promotes epithelial-mesenchymal transition in breast cancer cells by regulating SPDEF/CDH1 signaling. Mol Carcinog 2019; 58:1314-1323. [PMID: 30977227 PMCID: PMC6618265 DOI: 10.1002/mc.23014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
Abstract
Glutamate Ionotropic Receptor Kainate Type Subunit 3 (GRIK3) is an important excitatory neurotransmitter receptor that plays a significant role in various neurodegenerative diseases. However, the biological functions of GRIK3 in malignancies are largely unknown because of limited related studies. Here, we primarily reported that the expression of GRIK3 was higher in breast cancer tissues than in adjacent noncancerous tissues. GRIK3 expression was also positively correlated with the prognosis of patients with breast cancer. GRIK3 promoted the proliferation and migration abilities of breast cancer cells and enhanced the growth of orthotopically implanted tumors. Mechanically, GRIK3 influenced a range of signaling pathways and key signal transducers, including two epithelial-mesenchymal transition regulators, SPDEF and CDH1. Heterogenous expression of SPDEF and CDH1 counteracted the migration and invasion abilities, respectively, of breast cancer cells induced by GRIK3. Moreover, overexpression of GRIK3 increased the expression of mesenchymal markers and decreased the expression of epithelial markers, resulting in the translocation of β-catenin into the nucleus and the increased β-catenin transcriptional activity. In conclusion, the present study reported a novel oncogenic role of GRIK3. Meanwhile, GRIK3, as a membrane receptor, may also serve as a potential therapeutic target for the treatment of breast cancer.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Zhenzhan Kuang
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Weiyun Zhang
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Jianfeng Hang
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Lidan Chen
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Ting Lei
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Yongyin He
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Chun Deng
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory ScienceGuizhou Medical UniversityGuiyangChina
| | - Weiwei Li
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory ScienceGuizhou Medical UniversityGuiyangChina
| | - Jingrun Lu
- Department of Basic Clinical Laboratory Medicine, School of Clinical Laboratory ScienceGuizhou Medical UniversityGuiyangChina
| | - Jing Qu
- Department of Laboratory MedicineNanfang Hospital, Southern Medical UniversityGuangzhouChina
| | - Quan Zhou
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Zhaohui Sun
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| | - Linhai Li
- Department of Laboratory MedicineGeneral Hospital of Southern Theatre Command of PLAGuangzhouChina
| |
Collapse
|
8
|
Sumardika IW, Chen Y, Tomonobu N, Kinoshita R, Ruma IMW, Sato H, Kondo E, Inoue Y, Yamauchi A, Murata H, Yamamoto KI, Tomida S, Shien K, Yamamoto H, Soh J, Futami J, Putranto EW, Hibino T, Nishibori M, Toyooka S, Sakaguchi M. Neuroplastin-β mediates S100A8/A9-induced lung cancer disseminative progression. Mol Carcinog 2019; 58:980-995. [PMID: 30720226 DOI: 10.1002/mc.22987] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
Abstract
Compiling evidence indicates an unusual role of extracellular S100A8/A9 in cancer metastasis. S100A8/A9 secreted from either cancer cells or normal cells including epithelial and inflammatory cells stimulates cancer cells through S100A8/A9 sensor receptors in an autocrine or paracrine manner, leading to cancer cell metastatic progression. We previously reported a novel S100A8/A9 receptor, neuroplastin-β (NPTNβ), which plays a critical role in atopic dermatitis when it is highly activated in keratinocytes by an excess amount of extracellular S100A8/A9 in the inflammatory skin lesion. Interestingly, our expression profiling of NPTNβ showed significantly high expression levels in lung cancer cell lines in a consistent manner. We hence aimed to determine the significance of NPTNβ as an S100A8/A9 receptor in lung cancer. Our results showed that NPTNβ has strong ability to induce cancer-related cellular events, including anchorage-independent growth, motility and invasiveness, in lung cancer cells in response to extracellular S100A8/A9, eventually leading to the expression of a cancer disseminative phenotype in lung tissue in vivo. Mechanistic investigation revealed that binding of S100A8/A9 to NPTNβ mediates activation of NFIA and NFIB and following SPDEF transcription factors through orchestrated upstream signals from TRAF2 and RAS, which is linked to anchorage-independent growth, motility and invasiveness. Overall, our results indicate the importance of the S100A8/A9-NPTNβ axis in lung cancer disseminative progression and reveal a pivotal role of its newly identified downstream signaling, TRAF2/RAS-NFIA/NFIB-SPDEF, in linking to the aggressive development of lung cancers.
Collapse
Affiliation(s)
- I Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan.,Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Youyi Chen
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - I Made Winarsa Ruma
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan.,Faculty of Medicine, Udayana University, Denpasar, Bali, Indonesia
| | - Hiroki Sato
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medicine and Dental Sciences, Niigata-shi, Niigata, Japan
| | - Yusuke Inoue
- Faculty of Science and Technology, Division of Molecular Science, Gunma University, Kiryu-shi, Gunma, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki-shi, Okayama, Japan
| | - Hitoshi Murata
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Ken-Ichi Yamamoto
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Shuta Tomida
- Department of Biobank, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kazuhiko Shien
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Hiromasa Yamamoto
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Junichi Soh
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Junichiro Futami
- Department of Medical and Bioengineering Science, Okayama University Graduate School of Natural Science and Technology, Kita-ku, Okayama, Japan
| | - Endy Widya Putranto
- Department of Pediatrics, Dr. Sardjito Hospital/Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Toshihiko Hibino
- Department of Dermatology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Masahiro Nishibori
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Shinichi Toyooka
- Departments of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama-shi, Okayama, Japan
| |
Collapse
|
9
|
Prostate-Derived Ets Factor (PDEF) Inhibits Metastasis by Inducing Epithelial/Luminal Phenotype in Prostate Cancer Cells. Mol Cancer Res 2018; 16:1430-1440. [DOI: 10.1158/1541-7786.mcr-18-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/15/2018] [Accepted: 05/15/2018] [Indexed: 11/16/2022]
|
10
|
Chen W, Li XM, Li AL, Yang G, Hu HN. Hepatitis C Virus Increases Free Fatty Acids Absorption and Promotes its Replication Via Down-Regulating GADD45α Expression. Med Sci Monit 2016; 22:2347-56. [PMID: 27381636 PMCID: PMC4946386 DOI: 10.12659/msm.899591] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatitis C virus (HCV) infection, as a major cause of chronic hepatic diseases, is always accompanied with an abnormality of lipid metabolism. The aim of this study was to investigate the pathogenic role of free fatty acids (FFA) in human HCV infection. MATERIAL AND METHODS Peripheral blood lipid indexes among HCV patients with different viral loads (199 samples) and healthy donors (80 samples) were detected by clinical biochemistry tests. HCV replication and the expression of growth arrest and DNA-damage-inducible gene 45-α (GADD45α) in Huh7 cells and clinical samples were quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Lipid accumulation in Huh7 cells was detected by immunofluorescence. RESULTS In this study, we found that FFA showed a significant positive correlation with viral load in peripheral blood of HCV patients, but not total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), or low-density lipoprotein cholesterol (LDL-C). GADD45α expression in HCV patients dramatically decreased with the increase of viral load. In Huh7 cells, FFA treatment significantly enhanced HCV replication. HCV infection inhibited GADD45α expression, and this effect was further enhanced with the presence of FFA treatment. Ectopic expression of GADD45α in HCV-infected Huh7 cells markedly inhibited the absorption of FFA and HCV replication. However, FFA significantly elevated GADD45α expression without HCV infection. CONCLUSIONS These results demonstrated that HCV down-regulates GADD45α expression to enhance FFA absorption and thus facilitate its replication. GADD45α is an essential mediator for the pathogenesis of HCV infection. Thus, our study provides potential clues in the search for novel therapeutics and fatty lipid control options for HCV patients.
Collapse
Affiliation(s)
- Wei Chen
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Xiao-Ming Li
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China (mainland)
| | - An-Ling Li
- Department of Clinical laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Gui Yang
- Department of Clinical laboratory, Zhongnan Hospital of Wuhan University,, Wuhan, Hubei, China (mainland)
| | - Han-Ning Hu
- Department of Clinical laboratory, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|