1
|
Ma Y, Zhang L, Gao X, Zhu D. GPX3 represses pancreatic cancer cell proliferation, migration and invasion, and improves their chemo‑sensitivity by regulating the JNK/c‑Jun signaling pathway. Exp Ther Med 2024; 27:118. [PMID: 38361519 PMCID: PMC10867734 DOI: 10.3892/etm.2024.12407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/22/2023] [Indexed: 02/17/2024] Open
Abstract
Pancreatic cancer (PC) is a deadly and aggressive disease, which is characterized by poor prognosis. It has been reported that glutathione peroxidase 3 (GPX3) is involved in the development of several types of cancer. The present study aimed to explore the regulatory role of GPX3 in PC and uncover its underlying mechanism. Bioinformatics analysis was initially carried out to predict the expression profile of GPX3 in PC and its association with prognosis. The expression levels of GPX3 were also detected in PC cells by reverse transcription-quantitative PCR and western blot analysis. Following transfection to induce GPX3 overexpression, the proliferation ability of PC cells was assessed by Cell Counting Kit-8, colony formation and 5-ethynyl-2'-deoxyuridine incorporation assays. In addition, wound healing and Transwell assays were performed to evaluate the migration and invasion abilities of PC cells. Cell apoptosis was assessed by flow cytometric analysis. The expression levels of epithelial-mesenchymal transition (EMT)-, apoptosis-, and JNK signaling-related proteins were detected by western blot analysis. Additionally, for rescue experiments, JNK signaling was activated following cell treatment with anisomycin. The results showed that GPX3 was downregulated in PC and its expression was associated with favorable prognosis. In addition, cell transfection-induced GPX3 overexpression markedly inhibited cell proliferation, migration and invasion, and inhibited EMT. In addition, GPX3 improved the chemo-sensitivity of PC and gemcitabine (GEM)-resistant PC cells to GEM. Furthermore, GPX3 significantly suppressed JNK/c-Jun signaling in PC, while anisomycin treatment reversed the inhibitory effects of GPX3 on the malignant behavior and chemo-resistance of PC cells. The results of the present study indicated that GPX3 could serve as a tumor suppressor in PC via inhibiting JNK/c-Jun signaling, thus providing novel insights into the treatment of PC.
Collapse
Affiliation(s)
- Ye Ma
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, P.R. China
| | - Lixing Zhang
- Medical Laboratory, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, P.R. China
| | - Xin Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Dongming Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
2
|
Chen B, Hu H, Chen X. From Basic Science to Clinical Practice: The Role of Cancerous Inhibitor of Protein Phosphatase 2A (CIP2A)/p90 in Cancer. Front Genet 2023; 14:1110656. [PMID: 36911405 PMCID: PMC9998691 DOI: 10.3389/fgene.2023.1110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A), initially reported as a tumor-associated antigen (known as p90), is highly expressed in most solid and hematological tumors. The interaction of CIP2A/p90, protein phosphatase 2A (PP2A), and c-Myc can hinder the function of PP2A toward c-Myc S62 induction, thus stabilizing c-Myc protein, which represents a potential role of CIP2A/p90 in tumorigeneses such as cell proliferation, invasion, and migration, as well as cancer drug resistance. The signaling pathways and regulation networks of CIP2A/p90 are complex and not yet fully understood. Many previous studies have also demonstrated that CIP2A/p90 can be used as a potential therapeutic cancer target. In addition, the autoantibody against CIP2A/p90 in sera may be used as a promising biomarker in the diagnosis of certain types of cancer. In this Review, we focus on recent advances relating to CIP2A/p90 and their implications for future research.
Collapse
Affiliation(s)
- Beibei Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Huihui Hu
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| | - Xiaobing Chen
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China.,Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Cristóbal I, Lamarca A. Role of the PP2A Pathway in Cholangiocarcinoma: State of the Art and Future Perspectives. Cancers (Basel) 2022; 14:5422. [PMID: 36358840 PMCID: PMC9657793 DOI: 10.3390/cancers14215422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
Cholangiocarcinoma represents a heterogeneous disease at both a clinical and molecular level [...].
Collapse
Affiliation(s)
- Ion Cristóbal
- Cancer Unit for Research on Novel Therapeutic Targets, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
| | - Angela Lamarca
- Medical Oncology Department, Oncohealth Institute, IIS-Fundación Jiménez Díaz-UAM, 28040 Madrid, Spain
| |
Collapse
|
4
|
Ashrafizadeh M, Zarrabi A, Hushmandi K, Kalantari M, Mohammadinejad R, Javaheri T, Sethi G. Association of the Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int J Mol Sci 2020; 21:E4002. [PMID: 32503307 PMCID: PMC7312011 DOI: 10.3390/ijms21114002] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/14/2020] [Accepted: 05/26/2020] [Indexed: 02/08/2023] Open
Abstract
Therapy resistance is a characteristic of cancer cells that significantly reduces the effectiveness of drugs. Despite the popularity of cisplatin (CP) as a chemotherapeutic agent, which is widely used in the treatment of various types of cancer, resistance of cancer cells to CP chemotherapy has been extensively observed. Among various reported mechanism(s), the epithelial-mesenchymal transition (EMT) process can significantly contribute to chemoresistance by converting the motionless epithelial cells into mobile mesenchymal cells and altering cell-cell adhesion as well as the cellular extracellular matrix, leading to invasion of tumor cells. By analyzing the impact of the different molecular pathways such as microRNAs, long non-coding RNAs, nuclear factor-κB (NF-ĸB), phosphoinositide 3-kinase-related protein kinase (PI3K)/Akt, mammalian target rapamycin (mTOR), and Wnt, which play an important role in resistance exhibited to CP therapy, we first give an introduction about the EMT mechanism and its role in drug resistance. We then focus specifically on the molecular pathways involved in drug resistance and the pharmacological strategies that can be used to mitigate this resistance. Overall, we highlight the various targeted signaling pathways that could be considered in future studies to pave the way for the inhibition of EMT-mediated resistance displayed by tumor cells in response to CP exposure.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran;
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417414418, Iran;
- Kazerun Health Technology Incubator, Shiraz University of Medical Sciences, Shiraz 1433671348, Iran
| | - Mahshad Kalantari
- Department of Genetic Science, Tehran Medical Science Branch, Islamic Azad University, Tehran 19168931813, Iran;
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 1355576169, Iran
| | - Tahereh Javaheri
- Health Informatics Lab, Metropolitan College, Boston University, Boston, MA 02215, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore;
| |
Collapse
|
5
|
Feng FF, Cheng P, Sun C, Wang H, Wang W. Inhibitory effects of polyphyllins I and VII on human cisplatin-resistant NSCLC via p53 upregulation and CIP2A/AKT/mTOR signaling axis inhibition. Chin J Nat Med 2020; 17:768-777. [PMID: 31703757 DOI: 10.1016/s1875-5364(19)30093-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Indexed: 01/28/2023]
Abstract
Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a human oncoprotein that is overexpressed in multiple kinds of cancers including non-small cell lung cancer (NSCLC). CIP2A plays an 'oncogenic nexus' to participate in the tumorigenesis and chemoresistance in several cancer types. AKT and mTORC1 overactivation are detected in NSCLC and many other cancers. Previous studies found that the CIP2A/AKT/mTOR pathway controls cell growth, apoptosis, autophagy process. Polyphyllin I (PPI) and polyphyllin VII (PPVII) are natural components extracted from Paris polyphylla that display anti-cancer properties. In the present study, we investigated whether PPI and PPVII can be used in the cisplatin (DDP)-resistant human NSCLC cell line A549/DDP. Results demonstrated that PPI and PPVII treatment significantly suppressed A549/DDP cell proliferation, migration, invasion and EMT, induced apoptosis and autophagy. Further examination of the mechanism revealed that the PPI and PPVII significantly upregulated the p53, induced caspase-dependent apoptosis and suppressed the CIP2A/AKT/mTOR pathway. The activation of autophagy was mediated through PPI and PPVII induced inhibition of mTOR. We propose that PPI and PPVII might be developed as candidate drugs for DDP-resistant NSCLC.
Collapse
Affiliation(s)
- Fei-Fei Feng
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan 250033, China
| | - Peng Cheng
- Department of Neural Medicine, The Second Hospital of Shandong University, Jinan 250033, China
| | - Chao Sun
- Department of Central Laboratory, The Second Hospital of Shandong University, Jinan 250033, China
| | - Hui Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan 250033, China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan 250033, China.
| |
Collapse
|
6
|
Liu Z, Liu L, Sun R, Liu C. BAF45D knockdown decreases cell viability, inhibits colony formation, induces cell apoptosis and S-phase arrest in human pancreatic cancer cells. Biosci Biotechnol Biochem 2020; 84:1146-1152. [PMID: 32024442 DOI: 10.1080/09168451.2020.1717923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer, an extremely aggressive malignancy, is resistant to chemo- or radiotherapy. The rapid progression of pancreatic cancer without distinctive clinical sign makes early diagnosing and/or treating very difficult. BAF45D, a member of the d4 domain family, is involved in oncogenic processes. However, the role of BAF45D in pancreatic tumorigenesis is largely unclear. Our goal is to examine BAF45D protein expression after lentivirus-mediated Baf45d RNAi and explore the effects of BAF45D knockdown on cell proliferation, cell apoptosis, and cell cycle of human pancreatic cancer cells. Here our results showed that Baf45d RNAi downregulated BAF45D protein levels and decreased cell viability, increased cell apoptosis, and decreased colony formation in BxPC-3 cells. Moreover, BAF45D knockdown induced S-phase arrest in BxPC-3 cells. Our results here suggest that BAF45D may play a crucial role in tumorigenic properties of human pancreatic cancer cells.
Collapse
Affiliation(s)
- Zengyi Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Ruyu Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Chao Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Feng F, Cheng P, Wang C, Wang Y, Wang W. Polyphyllin I and VII potentiate the chemosensitivity of A549/DDP cells to cisplatin by enhancing apoptosis, reversing EMT and suppressing the CIP2A/AKT/mTOR signaling axis. Oncol Lett 2019; 18:5428-5436. [PMID: 31612051 PMCID: PMC6781722 DOI: 10.3892/ol.2019.10895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/14/2019] [Indexed: 11/23/2022] Open
Abstract
Poor response and resistance to cisplatin (DDP)-based chemotherapy frequently leads to treatment failure in advanced non-small cell lung cancer (NSCLC). The underlying molecular mechanism is extremely complex and currently remains unclear. The overexpression of cancerous inhibitor of protein phosphatase 2A (CIP2A) indicates poor prognosis and promotes the epithelial-to-mesenchymal transition (EMT) and metastasis. The EMT has been reported to promote drug resistance in numerous previous studies. CIP2A and its downstream protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway also plays a role in mediating DDP resistance. Polyphyllin I (PPI) and polyphyllin VII (PPVII) are natural components extracted from Paris polyphylla that display anti-cancer properties. In the present study, the chemosensitizing effects of PPI and PPVII were investigated in the DDP-resistant NSCLC cell line A549/DDP, as well as the underlying molecular mechanisms. The results demonstrated that PPI and PPVII could significantly inhibit cell proliferation and enhance the sensitivities of A549/DDP cells to DDP. When assessing the underlying molecular mechanism, it was revealed that PPI and PPVII enhanced DDP-induced apoptosis in A549/DDP cells via p53 upregulation and the caspase-dependent pathway. Furthermore, PPI and PPVII reversed the EMT and suppressed CIP2A and its downstream AKT/mTOR signaling cascade in A549/DDP cells. Overall, the results from the present study demonstrated that PPI and PPVII may function as chemosensitizers by enhancing apoptosis via the p53 pathway, reversing EMT and suppressing the CIP2A/AKT/mTOR signaling axis, and the combination with DDP may be a promising strategy for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Feifei Feng
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Peng Cheng
- Department of Neural Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chaochao Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yongbin Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
8
|
Allen-Petersen BL, Risom T, Feng Z, Wang Z, Jenny ZP, Thoma MC, Pelz KR, Morton JP, Sansom OJ, Lopez CD, Sheppard B, Christensen DJ, Ohlmeyer M, Narla G, Sears RC. Activation of PP2A and Inhibition of mTOR Synergistically Reduce MYC Signaling and Decrease Tumor Growth in Pancreatic Ductal Adenocarcinoma. Cancer Res 2019; 79:209-219. [PMID: 30389701 PMCID: PMC6318036 DOI: 10.1158/0008-5472.can-18-0717] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/16/2018] [Accepted: 10/26/2018] [Indexed: 12/26/2022]
Abstract
In cancer, kinases are often activated and phosphatases suppressed, leading to aberrant activation of signaling pathways driving cellular proliferation, survival, and therapeutic resistance. Although pancreatic ductal adenocarcinoma (PDA) has historically been refractory to kinase inhibition, therapeutic activation of phosphatases is emerging as a promising strategy to restore balance to these hyperactive signaling cascades. In this study, we hypothesized that phosphatase activation combined with kinase inhibition could deplete oncogenic survival signals to reduce tumor growth. We screened PDA cell lines for kinase inhibitors that could synergize with activation of protein phosphatase 2A (PP2A), a tumor suppressor phosphatase, and determined that activation of PP2A and inhibition of mTOR synergistically increase apoptosis and reduce oncogenic phenotypes in vitro and in vivo. This combination treatment resulted in suppression of AKT/mTOR signaling coupled with reduced expression of c-MYC, an oncoprotein implicated in tumor progression and therapeutic resistance. Forced expression of c-MYC or loss of PP2A B56α, the specific PP2A subunit shown to negatively regulate c-MYC, increased resistance to mTOR inhibition. Conversely, decreased c-MYC expression increased the sensitivity of PDA cells to mTOR inhibition. Together, these studies demonstrate that combined targeting of PP2A and mTOR suppresses proliferative signaling and induces cell death and implicates this combination as a promising therapeutic strategy for patients with PDA. SIGNIFICANCE: These findings present a combinatorial strategy targeting serine/threonine protein phosphatase PP2A and mTOR in PDA, a cancer for which there are currently no targeted therapeutic options.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/1/209/F1.large.jpg.
Collapse
Affiliation(s)
- Brittany L Allen-Petersen
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Tyler Risom
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Zipei Feng
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon
| | - Zhiping Wang
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Zina P Jenny
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Mary C Thoma
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Katherine R Pelz
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| | - Jennifer P Morton
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Owen J Sansom
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Charles D Lopez
- Department of Hematology and Oncology, Oregon Health and Science University, Portland, Oregon
| | - Brett Sheppard
- Department of Surgery, Oregon Health and Science University, Portland, Oregon
| | | | | | - Goutham Narla
- School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Rosalie C Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
9
|
Zhang Y, Fang L, Zang Y, Ren J, Xu Z. CIP2A Promotes Proliferation, Invasion and Chemoresistance to Cisplatin in Renal Cell Carcinoma. J Cancer 2018; 9:4029-4038. [PMID: 30410608 PMCID: PMC6218763 DOI: 10.7150/jca.25005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022] Open
Abstract
CIP2A is a well-known oncoprotein whose expression is elevated in multiple human solid tumor types. However, its role in renal cell carcinoma (RCC) development is poorly understood. Thus, in our present study, we used the renal cancer cell lines 786-O, A498 and CAKI-1 and the renal epithelial cell line HK-2 to clarify the function of CIP2A in RCC. We found that CIP2A expression is much higher in the RCC cells than in the normal renal epithelial cell. Lentivirus covered coding region CIP2A cDNA sequence and CIP2A siRNA were used to up and down regulate CIP2A expression in vitro. We found that overexpression of CIP2A promoted G1/S transition and cell proliferation. In addition, up-regulation of CIP2A significantly enhanced the invasion and migration capabilities of the cells. Furthermore, CIP2A promoted epithelial-mesenchymal transformation (EMT) and chemoresistance to cisplatin in RCC cells. Taken together, our findings demonstrate that CIP2A plays an important role in proliferation, invasion and chemoresistance to cisplatin in RCC cells. CIP2A may serve as an ideal molecular target for RCC therapeutics.
Collapse
Affiliation(s)
- Yongzhen Zhang
- Department of Urology, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan 250012, PRC
- Department of Cancer Biology, University of Cincinnati, Cincinnati 45219, USA
| | - Liang Fang
- Department of Urology, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan 250012, PRC
| | - Yuanwei Zang
- Department of Urology, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan 250012, PRC
| | - Juchao Ren
- Department of Urology, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan 250012, PRC
| | - Zhonghua Xu
- Department of Urology, Qilu Hospital, Shandong University, 107# Wenhua Xi Road, Jinan 250012, PRC
| |
Collapse
|
10
|
Gao F, Wang X, Chen S, Xu T, Wang X, Shen Y, Dong F, Zhong S, Shen Z. CIP2A depletion potentiates the chemosensitivity of cisplatin by inducing increased apoptosis in bladder cancer cells. Oncol Rep 2018; 40:2445-2454. [PMID: 30106121 PMCID: PMC6151887 DOI: 10.3892/or.2018.6641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/17/2018] [Indexed: 01/10/2023] Open
Abstract
Poor response and chemotherapy resistance to cisplatin (DDP)-based therapy frequently lead to treatment failure in advanced bladder cancer; however the underlying mechanism is extremely complex and unclear. Furthermore, cancerous inhibitor of protein phosphatase 2A (CIP2A), a recently identified human oncoprotein, has been shown to play important regulatory roles in cancer cell survival. The present study aimed to investigate the correlation of CIP2A with sensitivity to DDP in bladder cancer cells. In the present study, knockdown of CIP2A was performed using short hairpin-RNA. IC50 determination was used to estimate the chemosensitivity of cells to DDP. Apoptosis and DNA damage indicators were tested in vitro and in vivo to clarify the role of CIP2A in enhancing DDP sensitivity. We observed that CIP2A knockdown enhanced DDP sensitivity. CIP2A depletion accelerated the process of DNA damage caused by DDP treatment. Furthermore, DDP triggered inhibition of CIP2A by preventing AKT Ser473 phosphorylation. In vivo, CIP2A suppression increased the cytotoxicity of DDP, which resulted in a decrease in the subcutaneous tumor growth in a xenograft mouse model. Our findings revealed that the mechanism underlying the involvement of CIP2A in DDP sensitivity enhancement is that CIP2A mediates DDP-induced cell apoptosis and DNA damage. CIP2A is a potential target to improve the response to DDP-based therapy in bladder cancer patients.
Collapse
Affiliation(s)
- Fengbin Gao
- Department of Urology, Ruijin Hospital Affiliated to The School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Xiaojing Wang
- Department of Urology, Ruijin Hospital Affiliated to The School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Shanwen Chen
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Tianyuan Xu
- Department of Urology, Ruijin Hospital Affiliated to The School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| | - Xianjin Wang
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Yifan Shen
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Fan Dong
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Shan Zhong
- Department of Urology, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Zhoujun Shen
- Department of Urology, Ruijin Hospital Affiliated to The School of Medicine, Shanghai Jiaotong University, Shanghai 200025, P.R. China
| |
Collapse
|
11
|
The role of CIP2A in cancer: A review and update. Biomed Pharmacother 2017; 96:626-633. [DOI: 10.1016/j.biopha.2017.08.146] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/01/2017] [Accepted: 08/13/2017] [Indexed: 12/11/2022] Open
|
12
|
Silvestris N, Brunetti O, Vasile E, Cellini F, Cataldo I, Pusceddu V, Cattaneo M, Partelli S, Scartozzi M, Aprile G, Casadei Gardini A, Morganti AG, Valentini V, Scarpa A, Falconi M, Calabrese A, Lorusso V, Reni M, Cascinu S. Multimodal treatment of resectable pancreatic ductal adenocarcinoma. Crit Rev Oncol Hematol 2017; 111:152-165. [PMID: 28259290 DOI: 10.1016/j.critrevonc.2017.01.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 01/17/2023] Open
Abstract
After a timing preoperative staging, treatment of resectable pancreatic adenocarcinoma (PDAC) includes surgery and adjuvant therapies, the former representing the initial therapeutic option and the latter aiming to reduce the incidence of both distant metastases (chemotherapy) and locoregional failures (chemoradiotherapy). Herein, we provide a critical overview on the role of multimodal treatment in PDAC and on new opportunities related to current more active poli-chemotherapy regimens, targeted therapies, and the more recent immunotherapy approaches. Moreover, an analysis of pathological markers and clinical features able to help clinicians in the selection of the best therapeutic strategy will be discussed. Lastly, the role of neoadjuvant treatment of initially resectable disease will be considered mostly in patients whose malignancy shows morphological but not clinical or biological criteria of resectability. Depending on the results of these investigational studies, today a multidisciplinary approach can offer the best address therapy for these patients.
Collapse
Affiliation(s)
- Nicola Silvestris
- Medical Oncology Unit, Cancer Institute "Giovanni Paolo II", Bari, Italy.
| | - Oronzo Brunetti
- Medical Oncology Unit, Cancer Institute "Giovanni Paolo II", Bari, Italy.
| | - Enrico Vasile
- Department of Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.
| | - Francesco Cellini
- Radiation Oncology Department, Gemelli ART, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Ivana Cataldo
- ARC-NET Research Centre, University of Verona, Verona, Italy.
| | | | - Monica Cattaneo
- Department of Medical Oncology, University and General Hospital, Udine, Italy.
| | - Stefano Partelli
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Centre, San Raffaele Scientific Institute, 'Vita-Salute' University, Milan, Italy.
| | - Mario Scartozzi
- Medical Oncology Unit, University of Cagliari, Cagliari, Italy.
| | - Giuseppe Aprile
- Department of Medical Oncology, University and General Hospital, Udine, Italy; Department of Medical Oncology, General Hospital of Vicenza, Vicenza, Italy.
| | | | - Alessio Giuseppe Morganti
- Radiation Oncology Center, Dept. of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, Italy.
| | - Vincenzo Valentini
- Radiation Oncology Department, Gemelli ART, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Aldo Scarpa
- ARC-NET Research Centre, University of Verona, Verona, Italy.
| | - Massimo Falconi
- Pancreatic Surgery Unit, Pancreas Translational and Clinical Research Centre, San Raffaele Scientific Institute, 'Vita-Salute' University, Milan, Italy.
| | - Angela Calabrese
- Radiology Unit, Cancer Institute "Giovanni Paolo II", Bari, Italy.
| | - Vito Lorusso
- Medical Oncology Unit, Cancer Institute "Giovanni Paolo II", Bari, Italy.
| | - Michele Reni
- Medical Oncology Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Stefano Cascinu
- Modena Cancer Center, Policlinico di Modena Università di Modena e Reggio Emilia, Italy.
| |
Collapse
|