1
|
Co-existing TP53 and ARID1A mutations promote aggressive endometrial tumorigenesis. PLoS Genet 2021; 17:e1009986. [PMID: 34941867 PMCID: PMC8741038 DOI: 10.1371/journal.pgen.1009986] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/07/2022] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
TP53 and ARID1A are frequently mutated across cancer but rarely in the same primary tumor. Endometrial cancer has the highest TP53-ARID1A mutual exclusivity rate. However, the functional relationship between TP53 and ARID1A mutations in the endometrium has not been elucidated. We used genetically engineered mice and in vivo genomic approaches to discern both unique and overlapping roles of TP53 and ARID1A in the endometrium. TP53 loss with oncogenic PIK3CAH1047R in the endometrial epithelium results in features of endometrial hyperplasia, adenocarcinoma, and intraepithelial carcinoma. Mutant endometrial epithelial cells were transcriptome profiled and compared to control cells and ARID1A/PIK3CA mutant endometrium. In the context of either TP53 or ARID1A loss, PIK3CA mutant endometrium exhibited inflammatory pathway activation, but other gene expression programs differed based on TP53 or ARID1A status, such as epithelial-to-mesenchymal transition. Gene expression patterns observed in the genetic mouse models are reflective of human tumors with each respective genetic alteration. Consistent with TP53-ARID1A mutual exclusivity, the p53 pathway is activated following ARID1A loss in the endometrial epithelium, where ARID1A normally directly represses p53 pathway genes in vivo, including the stress-inducible transcription factor, ATF3. However, co-existing TP53-ARID1A mutations led to invasive adenocarcinoma associated with mutant ARID1A-driven ATF3 induction, reduced apoptosis, TP63+ squamous differentiation and invasion. These data suggest TP53 and ARID1A mutations drive shared and distinct tumorigenic programs in the endometrium and promote invasive endometrial cancer when existing simultaneously. Hence, TP53 and ARID1A mutations may co-occur in a subset of aggressive or metastatic endometrial cancers, with ARID1A loss promoting squamous differentiation and the acquisition of invasive properties. Endometrial cancer is the most commonly diagnosed gynecologic malignancy in the United States, with annual incidence continuing to rise. Although the majority of endometrial cancer patients have an excellent overall prognosis if the disease is confined to the endometrium, myometrial invasion and metastasis to other sites correlate with poor survival. Here, we used genetically engineered mice, in vivo genomics, and public cancer patient data to understand the relationship between TP53 and ARID1A, two of the most commonly mutated genes in endometrial cancer, in the context of mutant PIK3CA. Mutations in TP53 and ARID1A change different aspects of endometrial cell health but also share some similarities. ARID1A mutations specifically promote cancer cells to invade nearby tissue, a hallmark of metastasis, associated with squamous differentiation. Mice with co-existing TP53 and ARID1A mutations developed more invasive disease. Our studies suggest that co-existing TP53 and ARID1A tumor mutations may promote invasion and metastasis.
Collapse
|
2
|
Zhou W, Yang Y, Wang Z, Liu Y, Lari Najafi M. Impact of HSP90 α, CEA, NSE, SCC, and CYFRA21-1 on Lung Cancer Patients. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6929971. [PMID: 34721827 PMCID: PMC8550848 DOI: 10.1155/2021/6929971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022]
Abstract
Lung cancer is a lethal disease, and early diagnosis with the aid of biomarkers such as HSP90α protein can certainly assist the doctors to start treatment of patient at the earliest and can save their lives. To analyse the diagnostic value of HSP90α expression in lung cancer patients by collecting data of patients through IoT devices to avoid delay in treatments, a study has been presented in this paper where the significance of HSP90α biomarker is highlighted in early diagnosis of patients suffering from lung cancer. The second objective of the research study is to examine the correlation between the appearance level of HSP90α biomarker and the clinicopathological features of lung cancer. It is also evaluated whether the changes in HSP90α index are indicative or noteworthy before and after surgery of lung cancer patients. An observatory study of 78 patients with lung cancer in Qinhuangdao Hospital is presented in this paper where the samples were collected from June 2018 to March 2020. Their data were collected through IoT devices used in the latest healthcare facilities of the hospital. The ELISA method was utilized to identify the level of plasma HSP90 and to analyse HSP90 levels between the lung cancer group and healthy group of people. The relationship between HSP90 and the clinical pathological features of 78 patients suffering from lung cancer was analysed. An electrochemical luminescence method was used to detect CEA, NSE, SCC, and CYFRA21-1 levels. ROC curve and box plots were used to determine the analytic value of HSP90 and other biomarkers used in lung cancer diagnosis. Forty-two patients with moderate to early stage lung cancer with surgical correction were selected, and paired sample T test was used to analyse HSP90 levels before and after surgery. The plasma HSP90 level of lung cancer patients was quite higher as compared to the group of healthy people as per the values depicted in the research study. Second, HSP90 levels are substantially higher in pathologic type, differentiation degree, stage, and the existence of the lung, liver, and bone metastases (P < 0.05). The level of HSP90 expression was largely impacted by a few factors such as sex, age, smoking, and tumour location (P > 0.05). The ROC value for HSP90 was 0.599, while the area under the curve of HSP90 combined with other four tumour markers was 0.915 in the presented case study, indicating the presence of lung cancer. Patients with lung cancer had statistically significant differences in HSP90 expression levels before and after surgery (P < 0.05). It is concluded that the expression level of plasma HSP90α in lung cancer patients increases remarkably; therefore, HSP90 can be used to monitor presence of lung cancer before and after surgery in the patients.
Collapse
Affiliation(s)
- Wenwen Zhou
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Yanhong Yang
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Zhenzhen Wang
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao 066000, China
| | - Yan Liu
- Graduate School, Hebei Chengde Medical College, Chengde 067000, China
| | - Moslem Lari Najafi
- Pharmaceutical Science and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
3
|
Duan X, Iwanowycz S, Ngoi S, Hill M, Zhao Q, Liu B. Molecular Chaperone GRP94/GP96 in Cancers: Oncogenesis and Therapeutic Target. Front Oncol 2021; 11:629846. [PMID: 33898309 PMCID: PMC8062746 DOI: 10.3389/fonc.2021.629846] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
During tumor development and progression, intrinsic and extrinsic factors trigger endoplasmic reticulum (ER) stress and the unfolded protein response, resulting in the increased expression of molecular chaperones to cope with the stress and maintain tumor cell survival. Heat shock protein (HSP) GRP94, also known as GP96, is an ER paralog of HSP90 and has been shown to promote survival signaling during tumor-induced stress and modulate the immune response through its multiple clients, including TLRs, integrins, LRP6, GARP, IGF, and HER2. Clinically, elevated expression of GRP94 correlates with an aggressive phenotype and poor clinical outcome in a variety of cancers. Thus, GRP94 is a potential molecular marker and therapeutic target in malignancies. In this review, we will undergo deep molecular profiling of GRP94 in tumor development and summarize the individual roles of GRP94 in common cancers, including breast cancer, colon cancer, lung cancer, liver cancer, multiple myeloma, and others. Finally, we will briefly review the therapeutic potential of selectively targeting GRP94 for the treatment of cancers.
Collapse
Affiliation(s)
- Xiaofeng Duan
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Stephen Iwanowycz
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Soo Ngoi
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Megan Hill
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Bei Liu
- Department of Microbiology & Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- The Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
4
|
Lu T, Wang Y, Xu K, Zhou Z, Gong J, Zhang Y, Gong H, Dai Q, Yang J, Xiong B, Song Z, Yang G. Co-downregulation of GRP78 and GRP94 Induces Apoptosis and Inhibits Migration in Prostate Cancer Cells. Open Life Sci 2019; 14:384-391. [PMID: 33817173 PMCID: PMC7874808 DOI: 10.1515/biol-2019-0043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022] Open
Abstract
Background Both glucose-regulated protein 78 kDa (GRP78) and glucose-regulated protein 94 kDa (GRP94) are important molecular chaperones that play critical roles in maintaining tumor survival and progression. This study investigated the effects in prostate cancer cells following the downregulation of GRP78 and GRP94. Methods RNA interference was used to downregulate GRP78 and GRP94 expression in the prostate cancer cell line, PC-3. The effects on apoptosis and cell migration was examined along with expression of these related proteins. Results Small interfering RNAs targeting GRP78 and GRP94 successfully down-regulated their expression. This resulted in the induction of apoptosis and inhibition of cell migration. Preliminary mechanistic studies indicated that caspase-9 (cleaved) and Bax expression levels were upregulated while Bcl-2 and vimentin expression levels were downregulated. Conclusion Co-downregulation of GRP78 and GRP94 expression induces apoptosis and inhibits migration in prostate cancer cells.
Collapse
Affiliation(s)
- Tong Lu
- Department of Urology, The First People's Hospital of Tianmen City, East No.1, Renmin Avenue, Tianmen City, Hubei 431700, P.R.China
| | - Yue Wang
- Sinopharm Wuhan Plasma-derived Biotherapies Co. Ltd., No.1 attached No.1, Zhengdian Gold Industrial Park Road, Jiangxia District, Wuhan, Hubei 430070, P.R.China
| | - Kang Xu
- Department of Urology, The First People's Hospital of Tianmen City, East No.1, Renmin Avenue, Tianmen City, Hubei 431700, P.R.China
| | - Zhijun Zhou
- Department of Urology, The First People's Hospital of Tianmen City, East No.1, Renmin Avenue, Tianmen City, Hubei 431700, P.R.China
| | - Juan Gong
- Department of Urology, The First People's Hospital of Tianmen City, East No.1, Renmin Avenue, Tianmen City, Hubei 431700, P.R.China
| | - Yingang Zhang
- Department of Urology, The First People's Hospital of Tianmen City, East No.1, Renmin Avenue, Tianmen City, Hubei 431700, P.R.China
| | - Hua Gong
- Department of Urology, The First People's Hospital of Tianmen City, East No.1, Renmin Avenue, Tianmen City, Hubei 431700, P.R.China
| | - Qiang Dai
- Department of Urology, The First People's Hospital of Tianmen City, East No.1, Renmin Avenue, Tianmen City, Hubei 431700, P.R.China
| | - Jun Yang
- Department of Urology, The First People's Hospital of Tianmen City, East No.1, Renmin Avenue, Tianmen City, Hubei 431700, P.R.China
| | - Biao Xiong
- Department of Urology, The First People's Hospital of Tianmen City, East No.1, Renmin Avenue, Tianmen City, Hubei 431700, P.R.China
| | - Ze Song
- Department of Urology, The First People's Hospital of Tianmen City, East No.1, Renmin Avenue, Tianmen City, Hubei 431700, P.R.China
| | - Gang Yang
- Department of Urology, The First People's Hospital of Tianmen City, East No.1, Renmin Avenue, Tianmen City, Hubei 431700, P.R.China
| |
Collapse
|
5
|
Jiang F, Guo AP, Xu JC, You QD, Xu XL. Discovery of a Potent Grp94 Selective Inhibitor with Anti-Inflammatory Efficacy in a Mouse Model of Ulcerative Colitis. J Med Chem 2018; 61:9513-9533. [PMID: 30351001 DOI: 10.1021/acs.jmedchem.8b00800] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
As the endoplasmic reticulum paralogue of Hsp90, Grp94 chaperones a small set of client proteins associated with some diseases, including cancer, primary open-angle glaucoma, and inflammatory disorders. Grp94-selective inhibition has been a potential therapeutic strategy for these diseases. In this study, inspired by the conclusion that ligand-induced "Phe199 shift" effect is the structural basis of Grp94-selective inhibition, a series of novel Grp94 selective inhibitors incorporating "benzamide" moiety were developed, among which compound 54 manifested the most potent Grp94 inhibitory activity with an IC50 value of 2 nM and over 1000-fold selectivity to Grp94 against Hsp90α. In a DSS-induced mouse model of ulcerative colitis (UC), compound 54 exhibited significant anti-inflammatory efficacy. This work provides a potent Grp94 selective inhibitor as probe compound for the biological study of Grp94 and represents the first study that confirms the potential therapeutic efficacy of Grp94-selective inhibitors against UC.
Collapse
Affiliation(s)
- Fen Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - An-Ping Guo
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Jia-Chen Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China.,Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
6
|
Kim MK. Analysis of the Correlation between Expressions of HSP90α, HSP90β, and GRP94, and the Clinicopathologic Characteristics in Tissues of Non-Small Cell Lung Cancer Patients. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2017. [DOI: 10.15324/kjcls.2017.49.4.460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Mi Kyeong Kim
- Department of Clinical Laboratory Science, Gimhae College, Gimhae, Korea
| |
Collapse
|
7
|
Shen J, Rangel DF, Ha D, Lee AS. New role of endoplasmic reticulum chaperones in regulating metaplasia during tumorigenesis. Mol Cell Oncol 2017; 4:e1345350. [PMID: 29209644 DOI: 10.1080/23723556.2017.1345350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 06/16/2017] [Accepted: 06/17/2017] [Indexed: 10/19/2022]
Abstract
Metaplasia is emerging as a key process in tumorigenesis. We discovered that 2 essential endoplasmic reticulum (ER) chaperones, 78-kilodalton glucose-regulated protein (GRP78) and 94-kilodalton glucose-regulated protein (GRP94) have a role in metaplasia. Grp78 haploinsufficiency in the mouse pancreas impairs acinar-to-ductal metaplasia, whereas in the uterus, Grp94 loss induces squamous cell metaplasia; both resulting in tumor suppression.
Collapse
Affiliation(s)
- Jieli Shen
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daisy F Rangel
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Dat Ha
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Song Q, Zhou H, Han Q, Diao X. Toxic responses of Perna viridis hepatopancreas exposed to DDT, benzo(a)pyrene and their mixture uncovered by iTRAQ-based proteomics and NMR-based metabolomics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:48-57. [PMID: 28917945 DOI: 10.1016/j.aquatox.2017.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) and benzo(a)pyrene (BaP) are environmental estrogens (EEs) that are ubiquitous in the marine environment. In the present study, we integrated isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic and nuclear magnetic resonance (NMR)-based metabolomic approaches to explore the toxic responses of green mussel hepatopancreas exposed to DDT (10μg/L), BaP (10μg/L) and their mixture. The metabolic responses indicated that BaP primarily disturbed energy metabolism and osmotic regulation in the hepatopancreas of the male green mussel P. viridis. Both DDT and the mixture of DDT and BaP perturbed the energy metabolism and osmotic regulation in P. viridis. The proteomic responses revealed that BaP affected the proteins involved in energy metabolism, material transformation, cytoskeleton, stress responses, reproduction and development in green mussels. DDT exposure could change the proteins involved in primary metabolism, stress responses, cytoskeleton and signal transduction. However, the mixture of DDT and BaP altered proteins associated with material and energy metabolism, stress responses, signal transduction, reproduction and development, cytoskeleton and apoptosis. This study showed that iTRAQ-based proteomic and NMR-based metabolomic approaches could effectively elucidate the essential molecular mechanism of disturbances in hepatopancreas function of green mussels exposed to environmental estrogens.
Collapse
Affiliation(s)
- Qinqin Song
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Key Laboratory of Coastal Zone Environment Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Hailong Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Qian Han
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiaoping Diao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China; Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|