1
|
Karras F, Kunz M. Patient-derived melanoma models. Pathol Res Pract 2024; 259:155231. [PMID: 38508996 DOI: 10.1016/j.prp.2024.155231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
Melanoma is a very aggressive, rapidly metastasizing tumor that has been studied intensively in the past regarding the underlying genetic and molecular mechanisms. More recently developed treatment modalities have improved response rates and overall survival of patients. However, the majority of patients suffer from secondary treatment resistance, which requires in depth analyses of the underlying mechanisms. Here, melanoma models based on patients-derived material may play an important role. Consequently, a plethora of different experimental techniques have been developed in the past years. Among these are 3D and 4D culture techniques, organotypic skin reconstructs, melanoma-on-chip models and patient-derived xenografts, Every technique has its own strengths but also weaknesses regarding throughput, reproducibility, and reflection of the human situation. Here, we provide a comprehensive overview of currently used techniques and discuss their use in different experimental settings.
Collapse
Affiliation(s)
- Franziska Karras
- Institute of Pathology, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg 39120, Germany.
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University Medical Center Leipzig, Philipp-Rosenthal-Str. 23, Leipzig 04103, Germany
| |
Collapse
|
2
|
Piotrowska A, Zaucha R, Król O, Żmijewski MA. Vitamin D Modulates the Response of Patient-Derived Metastatic Melanoma Cells to Anticancer Drugs. Int J Mol Sci 2023; 24:ijms24098037. [PMID: 37175742 PMCID: PMC10178305 DOI: 10.3390/ijms24098037] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is considered a lethal and treatment-resistant skin cancer with a high risk of recurrence, making it a major clinical challenge. Our earlier studies documented that 1,25(OH)2D3 and its low-calcaemic analogues potentiate the effectiveness of dacarbazine and cediranib, a pan-VEGFR inhibitor. In the current study, a set of patient-derived melanoma cultures was established and characterised as a preclinical model of human melanoma. Thus, patient-derived cells were preconditioned with 1,25(OH)2D3 and treated with cediranib or vemurafenib, a BRAF inhibitor, depending on the BRAF mutation status of the patients enrolled in the study. 1,25(OH)2D3 preconditioning exacerbated the inhibition of patient-derived melanoma cell growth and motility in comparison to monotherapy with cediranib. A significant decrease in mitochondrial respiration parameters, such as non-mitochondrial oxygen consumption, basal respiration and ATP-linked respiration, was observed. It seems that 1,25(OH)2D3 preconditioning enhanced cediranib efficacy via the modulation of mitochondrial bioenergetics. Additionally, 1,25(OH)2D3 also decreased the viability and mobility of the BRAF+ patient-derived cells treated with vemurafenib. Interestingly, regardless of the strict selection, cancer-derived fibroblasts (CAFs) became the major fraction of cultured cells over time, suggesting that melanoma growth is dependent on CAFs. In conclusion, the results of our study strongly emphasise that the active form of vitamin D, 1,25(OH)2D3, might be considered as an adjuvant agent in the treatment of malignant melanoma.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Renata Zaucha
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Oliwia Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | | |
Collapse
|
3
|
Biederstädt A, Hassan Z, Schneeweis C, Schick M, Schneider L, Muckenhuber A, Hong Y, Siegers G, Nilsson L, Wirth M, Dantes Z, Steiger K, Schunck K, Langston S, Lenhof HP, Coluccio A, Orben F, Slawska J, Scherger A, Saur D, Müller S, Rad R, Weichert W, Nilsson J, Reichert M, Schneider G, Keller U. SUMO pathway inhibition targets an aggressive pancreatic cancer subtype. Gut 2020; 69:1472-1482. [PMID: 32001555 PMCID: PMC7398468 DOI: 10.1136/gutjnl-2018-317856] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) still carries a dismal prognosis with an overall 5-year survival rate of 9%. Conventional combination chemotherapies are a clear advance in the treatment of PDAC; however, subtypes of the disease exist, which exhibit extensive resistance to such therapies. Genomic MYC amplifications represent a distinct subset of PDAC with an aggressive tumour biology. It is clear that hyperactivation of MYC generates dependencies that can be exploited therapeutically. The aim of the study was to find and to target MYC-associated dependencies. DESIGN We analysed human PDAC gene expression datasets. Results were corroborated by the analysis of the small ubiquitin-like modifier (SUMO) pathway in a large PDAC cohort using immunohistochemistry. A SUMO inhibitor was used and characterised using human and murine two-dimensional, organoid and in vivo models of PDAC. RESULTS We observed that MYC is connected to the SUMOylation machinery in PDAC. Components of the SUMO pathway characterise a PDAC subtype with a dismal prognosis and we provide evidence that hyperactivation of MYC is connected to an increased sensitivity to pharmacological SUMO inhibition. CONCLUSION SUMO inhibitor-based therapies should be further developed for an aggressive PDAC subtype.
Collapse
Affiliation(s)
- Alexander Biederstädt
- Medical Clinic and Policlinic III, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Zonera Hassan
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Christian Schneeweis
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Markus Schick
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lara Schneider
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany,Saarbrücken Graduate School of Computer Science, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | | | - Yingfen Hong
- Medical Clinic and Policlinic III, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Gerrit Siegers
- Medical Clinic and Policlinic III, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Lisa Nilsson
- Department of Surgery, Sahlgrenska Cancer Center, Gothenburg University, Gothenburg, Sweden
| | - Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Zahra Dantes
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University Munich, München, Germany,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Kathrin Schunck
- Goethe University, Medical School, Institute of Biochemistry II, Frankfurt, Germany
| | - Steve Langston
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - H-P Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Andrea Coluccio
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany,Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, München, Germany
| | - Felix Orben
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Jolanta Slawska
- Medical Clinic and Policlinic III, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Anna Scherger
- Medical Clinic and Policlinic III, Klinikum rechts der Isar, Technical University Munich, München, Germany
| | - Dieter Saur
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany,Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, München, Germany
| | - Stefan Müller
- Goethe University, Medical School, Institute of Biochemistry II, Frankfurt, Germany
| | - Roland Rad
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany,Institute of Molecular Oncology and Functional Genomics, Technical University Munich, München, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University Munich, München, Germany,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jonas Nilsson
- Department of Surgery, Sahlgrenska Cancer Center, Gothenburg University, Gothenburg, Sweden
| | - Maximilian Reichert
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Günter Schneider
- Medical Clinic and Polyclinic II, Klinikum rechts der Isar, Technical University Munich, München, Germany .,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Ulrich Keller
- Department of Hematology, Oncology and Tumor Immunology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Berlin, Germany .,German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
4
|
Rebecca VW, Somasundaram R, Herlyn M. Pre-clinical modeling of cutaneous melanoma. Nat Commun 2020; 11:2858. [PMID: 32504051 PMCID: PMC7275051 DOI: 10.1038/s41467-020-15546-9] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/16/2020] [Indexed: 12/19/2022] Open
Abstract
Metastatic melanoma is challenging to manage. Although targeted- and immune therapies have extended survival, most patients experience therapy resistance. The adaptability of melanoma cells in nutrient- and therapeutically-challenged environments distinguishes melanoma as an ideal model for investigating therapy resistance. In this review, we discuss the current available repertoire of melanoma models including two- and three-dimensional tissue cultures, organoids, genetically engineered mice and patient-derived xenograft. In particular, we highlight how each system recapitulates different features of melanoma adaptability and can be used to better understand melanoma development, progression and therapy resistance. Despite the new targeted and immunotherapies for metastatic melanoma, several patients show therapeutic plateau. Here, the authors review the current pre-clinical models of cutaneous melanoma and discuss their strengths and limitations that may help with overcoming therapeutic plateau.
Collapse
Affiliation(s)
- Vito W Rebecca
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA
| | | | - Meenhard Herlyn
- The Wistar Institute, Melanoma Research Center, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Linck-Paulus L, Hellerbrand C, Bosserhoff AK, Dietrich P. Dissimilar Appearances Are Deceptive-Common microRNAs and Therapeutic Strategies in Liver Cancer and Melanoma. Cells 2020; 9:E114. [PMID: 31906510 PMCID: PMC7017070 DOI: 10.3390/cells9010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
: In this review, we summarize the current knowledge on miRNAs as therapeutic targets in two cancer types that were frequently described to be driven by miRNAs-melanoma and hepatocellular carcinoma (HCC). By focusing on common microRNAs and associated pathways in these-at first sight-dissimilar cancer types, we aim at revealing similar molecular mechanisms that are evolved in microRNA-biology to drive cancer progression. Thereby, we also want to outlay potential novel therapeutic strategies. After providing a brief introduction to general miRNA biology and basic information about HCC and melanoma, this review depicts prominent examples of potent oncomiRs and tumor-suppressor miRNAs, which have been proven to drive diverse cancer types including melanoma and HCC. To develop and apply miRNA-based therapeutics for cancer treatment in the future, it is essential to understand how miRNA dysregulation evolves during malignant transformation. Therefore, we highlight important aspects such as genetic alterations, miRNA editing and transcriptional regulation based on concrete examples. Furthermore, we expand our illustration by focusing on miRNA-associated proteins as well as other regulators of miRNAs which could also provide therapeutic targets. Finally, design and delivery strategies of miRNA-associated therapeutic agents as well as potential drawbacks are discussed to address the question of how miRNAs might contribute to cancer therapy in the future.
Collapse
Affiliation(s)
- Lisa Linck-Paulus
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.L.-P.); (C.H.)
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
6
|
Osrodek M, Hartman ML, Czyz M. Physiologically Relevant Oxygen Concentration (6% O 2) as an Important Component of the Microenvironment Impacting Melanoma Phenotype and Melanoma Response to Targeted Therapeutics In Vitro. Int J Mol Sci 2019; 20:ijms20174203. [PMID: 31461993 PMCID: PMC6747123 DOI: 10.3390/ijms20174203] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer cell phenotype largely depends on oxygen availability. The atmospheric oxygen concentration (21%) used in in vitro studies is much higher than in any human tissue. Using well-characterized patient-derived melanoma cell lines, we compared: (i) activities of several signaling pathways, and (ii) the effects of vemurafenib and trametinib in hyperoxia (21% O2), normoxia (6% O2) and hypoxia (1% O2). A high plasticity of melanoma cells in response to changes in oxygen supplementation and drug treatment was observed, and the transcriptional reprograming and phenotypic changes varied between cell lines. Normoxia enhanced the expression of vascular endothelial growth factor (VEGF), glucose metabolism/transport-related genes, and changed percentages of NGFR- and MITF-positive cells in cell line-dependent manner. Increased protein stability might be responsible for high PGC1α level in MITFlow melanoma cells. Vemurafenib and trametinib while targeting the activity of MAPK/ERK pathway irrespective of oxygen concentration, were less effective in normoxia than hyperoxia in reducing levels of VEGF, PGC1α, SLC7A11 and Ki-67-positive cells in cell line-dependent manner. In conclusion, in vitro studies performed in atmospheric oxygen concentration provide different information on melanoma cell phenotype and response to drugs than performed in normoxia, which might partially explain the discrepancies between results obtained in vitro and in clinical settings.
Collapse
Affiliation(s)
- Marta Osrodek
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| |
Collapse
|
7
|
Forsberg EMV, Lindberg MF, Jespersen H, Alsén S, Bagge RO, Donia M, Svane IM, Nilsson O, Ny L, Nilsson LM, Nilsson JA. HER2 CAR-T Cells Eradicate Uveal Melanoma and T-cell Therapy-Resistant Human Melanoma in IL2 Transgenic NOD/SCID IL2 Receptor Knockout Mice. Cancer Res 2019; 79:899-904. [PMID: 30622115 DOI: 10.1158/0008-5472.can-18-3158] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/27/2018] [Accepted: 01/04/2019] [Indexed: 11/16/2022]
Abstract
Chimeric antigen receptors (CAR) can transmit signals akin to those from activated T-cell receptors when bound to a cell surface target. CAR-expressing T cells against CD19 can cause curative effects in leukemia and lymphoma and is approved for clinical use. However, no CAR-T therapy is currently approved for use in solid tumors. We hypothesize that the resistance of solid tumors to CAR-T can be overcome by similar means as those used to reactivate tumor-infiltrating T lymphocytes (TIL), for example, by cytokines or immune checkpoint blockade. Here we demonstrate that CAR-T cells directed against HER2 can kill uveal and cutaneous melanoma cells in vitro and in vivo. Curative effects in vivo were only observed in xenografts grown in a NOD/SCID IL2 receptor gamma (NOG) knockout mouse strain transgenic for human IL2. The effect was target-specific, as CRISPR/Cas9-mediated disruption of HER2 in the melanoma cells abrogated the killing effect of the CAR-T cells. The CAR-T cells were also able to kill melanoma cells from patients resistant to adoptive T-cell transfer (ACT) of autologous TILs. Thus, CAR-T therapy represents an option for patients that do not respond to immunotherapy with ACT of TIL or immune checkpoint blockade. In addition, our data highlight the use of IL2 transgenic NOG mice as models to prove efficacy of CAR-T-cell products, possibly even in a personalized manner. SIGNIFICANCE: These findings demonstrate that a novel humanized mouse model can help clinical translation of CAR-T cells against uveal and cutaneous melanoma that do not respond to TIL therapy or immune checkpoint blockade.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Humans
- Immunotherapy, Adoptive/methods
- Interleukin Receptor Common gamma Subunit/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/transplantation
- Melanoma/enzymology
- Melanoma/immunology
- Melanoma/therapy
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Skin Neoplasms/enzymology
- Skin Neoplasms/immunology
- Skin Neoplasms/therapy
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Uveal Neoplasms/enzymology
- Uveal Neoplasms/immunology
- Uveal Neoplasms/therapy
- Xenograft Model Antitumor Assays
- Melanoma, Cutaneous Malignant
Collapse
Affiliation(s)
- Elin M V Forsberg
- The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mattias F Lindberg
- The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Henrik Jespersen
- The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Samuel Alsén
- The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marco Donia
- The Center of Cancer Immunotherapy, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- The Center of Cancer Immunotherapy, Copenhagen University Hospital, Herlev, Denmark
| | - Ola Nilsson
- Department of Pathology, Institute of Biomedicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Ny
- The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
- Department of Oncology, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lisa M Nilsson
- The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jonas A Nilsson
- The Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.
- Department of Surgery, Institute of Clinical Sciences, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
8
|
Leung EY, Askarian-Amiri ME, Singleton DC, Ferraro-Peyret C, Joseph WR, Finlay GJ, Broom RJ, Kakadia PM, Bohlander SK, Marshall E, Baguley BC. Derivation of Breast Cancer Cell Lines Under Physiological (5%) Oxygen Concentrations. Front Oncol 2018; 8:425. [PMID: 30370249 PMCID: PMC6194255 DOI: 10.3389/fonc.2018.00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
Background: Most human breast cancer cell lines currently in use were developed and are cultured under ambient (21%) oxygen conditions. While this is convenient in practical terms, higher ambient oxygen could increase oxygen radical production, potentially modulating signaling pathways. We have derived and grown a series of four human breast cancer cell lines under 5% oxygen, and have compared their properties to those of established breast cancer lines growing under ambient oxygen. Methods: Cell lines were characterized in terms of appearance, cellular DNA content, mutation spectrum, hormone receptor status, pathway utilization and drug sensitivity. Results: Three of the four lines (NZBR1, NZBR2, and NZBR4) were triple negative (ER-, PR-, HER2-), with NZBR1 also over-expressing EGFR. NZBR3 was HER2+ and ER+ and also over-expressed EGFR. Cell lines grown in 5% oxygen showed increased expression of the hypoxia-inducible factor 1 (HIF-1) target gene carbonic anhydrase 9 (CA9) and decreased levels of ROS. As determined by protein phosphorylation, NZBR1 showed low AKT pathway utilization while NZBR2 and NZBR4 showed low p70S6K and rpS6 pathway utilization. The lines were characterized for sensitivity to 7-hydroxytamoxifen, doxorubicin, paclitaxel, the PI3K inhibitor BEZ235 and the HER inhibitors lapatinib, afatinib, dacomitinib, and ARRY-380. In some cases they were compared to established breast cancer lines. Of particular note was the high sensitivity of NZBR3 to HER inhibitors. The spectrum of mutations in the NZBR lines was generally similar to that found in commonly used breast cancer cell lines but TP53 mutations were absent and mutations in EVI2B, LRP1B, and PMS2, which have not been reported in other breast cancer lines, were detected. The results suggest that the properties of cell lines developed under low oxygen conditions (5% O2) are similar to those of commonly used breast cancer cell lines. Although reduced ROS production and increased HIF-1 activity under 5% oxygen can potentially influence experimental outcomes, no difference in sensitivity to estrogen or doxorubicin was observed between cell lines cultured in 5 vs. 21% oxygen.
Collapse
Affiliation(s)
- Euphemia Y Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Marjan E Askarian-Amiri
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Dean C Singleton
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Carole Ferraro-Peyret
- Univ Lyon, Claude Bernard University, Cancer Research Center of Lyon, INSERM 1052, CNRS5286, Faculty of Pharmacy, Lyon, France.,Hospices Civils de Lyon, Molecular Biology of Tumors, GHE Hospital, Bron, France
| | - Wayne R Joseph
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Graeme J Finlay
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Reuben J Broom
- Auckland City Hospital-Oncology, Grafton, Auckland, New Zealand
| | - Purvi M Kakadia
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Stefan K Bohlander
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Elaine Marshall
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Bruce C Baguley
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
9
|
Muralidharan SV, Einarsdottir BO, Bhadury J, Lindberg MF, Wu J, Campeau E, Bagge RO, Stierner U, Ny L, Nilsson LM, Nilsson JA. BET bromodomain inhibitors synergize with ATR inhibitors in melanoma. Cell Death Dis 2017; 8:e2982. [PMID: 28796244 PMCID: PMC5596569 DOI: 10.1038/cddis.2017.383] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/25/2017] [Accepted: 07/02/2017] [Indexed: 01/21/2023]
Abstract
Metastatic malignant melanoma continues to be a challenging disease despite clinical translation of the comprehensive understanding of driver mutations and how melanoma cells evade immune attack. In Myc-driven lymphoma, efficacy of epigenetic inhibitors of the bromodomain and extra-terminal domain (BET) family of bromodomain proteins can be enhanced by combination therapy with inhibitors of the DNA damage response kinase ATR. Whether this combination is active in solid malignancies like melanoma, and how it relates to immune therapy, has not previously investigated. To test efficacy and molecular consequences of combination therapies cultured melanoma cells were used. To assess tumor responses to therapies in vivo we use patient-derived xenografts and B6 mice transplanted with B16F10 melanoma cells. Concomitant inhibition of BET proteins and ATR of cultured melanoma cells resulted in similar effects as recently shown in lymphoma, such as induction of apoptosis and p62, implicated in autophagy, senescence-associated secretory pathway and ER stress. In vivo, apoptosis and suppression of subcutaneous growth of patient-derived melanoma and B16F10 cells were observed. Our data suggest that ATRI/BETI combination therapies are effective in melanoma.
Collapse
Affiliation(s)
| | | | - Joydeep Bhadury
- Sahlgrenska Cancer Center, Department of Surgery or University Hospital, Gothenburg, Sweden.,The Institute of Medical Science, Division of Stem Cell Therapy, The University of Tokyo, Tokyo, Japan
| | - Mattias F Lindberg
- Sahlgrenska Cancer Center, Department of Surgery or University Hospital, Gothenburg, Sweden
| | - Jin Wu
- Zenith Epigenetics Ltd, Calgary, Canada
| | | | - Roger Olofsson Bagge
- Sahlgrenska Cancer Center, Department of Surgery or University Hospital, Gothenburg, Sweden
| | - Ulrika Stierner
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and The Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Ny
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and The Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lisa M Nilsson
- Sahlgrenska Cancer Center, Department of Surgery or University Hospital, Gothenburg, Sweden
| | - Jonas A Nilsson
- Sahlgrenska Cancer Center, Department of Surgery or University Hospital, Gothenburg, Sweden
| |
Collapse
|