1
|
Jang HJ, Min HY, Kang YP, Boo HJ, Kim J, Ahn JH, Oh SH, Jung JH, Park CS, Park JS, Kim SY, Lee HY. Tobacco-induced hyperglycemia promotes lung cancer progression via cancer cell-macrophage interaction through paracrine IGF2/IR/NPM1-driven PD-L1 expression. Nat Commun 2024; 15:4909. [PMID: 38851766 PMCID: PMC11162468 DOI: 10.1038/s41467-024-49199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/23/2024] [Indexed: 06/10/2024] Open
Abstract
Tobacco smoking (TS) is implicated in lung cancer (LC) progression through the development of metabolic syndrome. However, direct evidence linking metabolic syndrome to TS-mediated LC progression remains to be established. Our findings demonstrate that 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene (NNK and BaP; NB), components of tobacco smoke, induce metabolic syndrome characteristics, particularly hyperglycemia, promoting lung cancer progression in male C57BL/6 J mice. NB enhances glucose uptake in tumor-associated macrophages by increasing the expression and surface localization of glucose transporter (GLUT) 1 and 3, thereby leading to transcriptional upregulation of insulin-like growth factor 2 (IGF2), which subsequently activates insulin receptor (IR) in LC cells in a paracrine manner, promoting its nuclear import. Nuclear IR binds to nucleophosmin (NPM1), resulting in IR/NPM1-mediated activation of the CD274 promoter and expression of programmed death ligand-1 (PD-L1). Restricting glycolysis, depleting macrophages, or blocking PD-L1 inhibits NB-mediated LC progression. Analysis of patient tissues and public databases reveals elevated levels of IGF2 and GLUT1 in tumor-associated macrophages, as well as tumoral PD-L1 and phosphorylated insulin-like growth factor 1 receptor/insulin receptor (pIGF-1R/IR) expression, suggesting potential poor prognostic biomarkers for LC patients. Our data indicate that paracrine IGF2/IR/NPM1/PD-L1 signaling, facilitated by NB-induced dysregulation of glucose levels and metabolic reprogramming of macrophages, contributes to TS-mediated LC progression.
Collapse
Affiliation(s)
- Hyun-Ji Jang
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Young Min
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Pyo Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Jin Boo
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Histology, College of Medicine, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jisung Kim
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jee Hwan Ahn
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Ho Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jin Hwa Jung
- PET core, Convergence Medicine Research Center, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Choon-Sik Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, 14584, Republic of Korea
| | - Jong-Sook Park
- Soonchunhyang University Bucheon Hospital, Bucheon-si, Gyeonggi-do, 14584, Republic of Korea
| | - Seog-Young Kim
- PET core, Convergence Medicine Research Center, Asan Medical Center, Seoul, 05505, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Ho-Young Lee
- Creative Research Initiative Center for concurrent control of emphysema and lung cancer, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Algar S, Vázquez-Villa H, Aguilar-Garrido P, Navarro-Aguadero MÁ, Velasco-Estévez M, Sánchez-Merino A, Arribas-Álvarez I, Paradela A, Giner-Arroyo RL, Tamargo-Azpilicueta J, Díaz-Moreno I, Martínez-López J, Gallardo M, López-Rodríguez ML, Benhamú B. Cancer-Stem-Cell Phenotype-Guided Discovery of a Microbiota-Inspired Synthetic Compound Targeting NPM1 for Leukemia. JACS AU 2024; 4:1786-1800. [PMID: 38818079 PMCID: PMC11134387 DOI: 10.1021/jacsau.3c00682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 06/01/2024]
Abstract
The human microbiota plays an important role in human health and disease, through the secretion of metabolites that regulate key biological functions. We propose that microbiota metabolites represent an unexplored chemical space of small drug-like molecules in the search of new hits for drug discovery. Here, we describe the generation of a set of complex chemotypes inspired on selected microbiota metabolites, which have been synthesized using asymmetric organocatalytic reactions. Following a primary screening in CSC models, we identified the novel compound UCM-13369 (4b) whose cytotoxicity was mediated by NPM1. This protein is one of the most frequent mutations of AML, and NPM1-mutated AML is recognized by the WHO as a distinct hematopoietic malignancy. UCM-13369 inhibits NPM1 expression, downregulates the pathway associated with mutant NPM1 C+, and specifically recognizes the C-end DNA-binding domain of NPM1 C+, avoiding the nucleus-cytoplasm translocation involved in the AML tumorological process. The new NPM1 inhibitor triggers apoptosis in AML cell lines and primary cells from AML patients and reduces tumor infiltration in a mouse model of AML with NPM1 C+ mutation. The disclosed phenotype-guided discovery of UCM-13369, a novel small molecule inspired on microbiota metabolites, confirms that CSC death induced by NPM1 inhibition represents a promising therapeutic opportunity for NPM1-mutated AML, a high-mortality disease.
Collapse
Affiliation(s)
- Sergio Algar
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Henar Vázquez-Villa
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Pedro Aguilar-Garrido
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Miguel Ángel Navarro-Aguadero
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - María Velasco-Estévez
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Anabel Sánchez-Merino
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Iván Arribas-Álvarez
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | - Rafael L. Giner-Arroyo
- Institute
for Chemical Research, cicCartuja, University
of Seville, CSIC, E-41092 Sevilla, Spain
| | | | - Irene Díaz-Moreno
- Institute
for Chemical Research, cicCartuja, University
of Seville, CSIC, E-41092 Sevilla, Spain
| | - Joaquín Martínez-López
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - Miguel Gallardo
- Department
of Haematology, Hospital Universitario 12
de Octubre, Instituto de Investigación Sanitaria Hospital 12
de Octubre (imas12), E-28041 Madrid, Spain
- H12O-CNIO
Haematological Malignancies Clinical Research Unit, Spanish National Cancer Research Centre, E-28029 Madrid, Spain
| | - María L. López-Rodríguez
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | - Bellinda Benhamú
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| |
Collapse
|
3
|
Suh YS, Lee J, George J, Seol D, Jeong K, Oh SY, Bang C, Jun Y, Kong SH, Lee HJ, Kim JI, Kim WH, Yang HK, Lee C. RNA expression of 6 genes from metastatic mucosal gastric cancer serves as the global prognostic marker for gastric cancer with functional validation. Br J Cancer 2024; 130:1571-1584. [PMID: 38467827 PMCID: PMC11059174 DOI: 10.1038/s41416-024-02642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/08/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Molecular analysis of advanced tumors can increase tumor heterogeneity and selection bias. We developed a robust prognostic signature for gastric cancer by comparing RNA expression between very rare early gastric cancers invading only mucosal layer (mEGCs) with lymph node metastasis (Npos) and those without metastasis (Nneg). METHODS Out of 1003 mEGCs, all Npos were matched to Nneg using propensity scores. Machine learning approach comparing Npos and Nneg was used to develop prognostic signature. The function and robustness of prognostic signature was validated using cell lines and external datasets. RESULTS Extensive machine learning with cross-validation identified the prognostic classifier consisting of four overexpressed genes (HDAC5, NPM1, DTX3, and PPP3R1) and two downregulated genes (MED12 and TP53), and enabled us to develop the risk score predicting poor prognosis. Cell lines engineered to high-risk score showed increased invasion, migration, and resistance to 5-FU and Oxaliplatin but maintained sensitivity to an HDAC inhibitor. Mouse models after tail vein injection of cell lines with high-risk score revealed increased metastasis. In three external cohorts, our risk score was identified as the independent prognostic factor for overall and recurrence-free survival. CONCLUSION The risk score from the 6-gene classifier can successfully predict the prognosis of gastric cancer.
Collapse
Affiliation(s)
- Yun-Suhk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jieun Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Donghyeok Seol
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Kyoungyun Jeong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung-Young Oh
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Chanmi Bang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Yukyung Jun
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
- Center for Supercomputing Applications, Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, South Korea
| | - Seong-Ho Kong
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Woo Ho Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Han-Kwang Yang
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
| |
Collapse
|
4
|
Dai Y, Yu Y, Nie J, Gu K, Pei H. X-ray-downregulated nucleophosmin induces abnormal polarization by anchoring to G-actin. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:81-88. [PMID: 38245352 DOI: 10.1016/j.lssr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 01/22/2024]
Abstract
Ionizing radiation poses significant risks to astronauts during deep space exploration. This study investigates the impact of radiation on nucleophosmin (NPM), a protein involved in DNA repair, cell cycle regulation, and proliferation. Using X-rays, a common space radiation, we found that radiation suppresses NPM expression. Knockdown of NPM increases DNA damage after irradiation, disrupts cell cycle distribution and enhances cellular radiosensitivity. Additionally, NPM interacts with globular actin (G-actin), affecting its translocation and centrosome binding during mitosis. These findings provide insights into the role of NPM in cellular processes in responding to radiation. This article enhances our comprehension of radiation-induced genomic instability and provides a foundational platform for prospective investigations within the realm of space radiation and its implications for cancer therapy.
Collapse
Affiliation(s)
- Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Yongduo Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| |
Collapse
|
5
|
Ding X, Zhu XL, Xu DH, Li S, Yang Q, Feng X, Wei YG, Li H, Yang L, Zhang YJ, Deng XL, Liu KC, Shi SL. NPM promotes hepatotoxin-induced fibrosis by inhibiting ROS-induced apoptosis of hepatic stellate cells and upregulating lncMIAT-induced TGF-β2. Cell Death Dis 2023; 14:575. [PMID: 37648688 PMCID: PMC10469196 DOI: 10.1038/s41419-023-06043-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Liver fibrosis is caused by a variety of chronic liver injuries and has caused significant morbidity and mortality in the world with increasing tendency. Elucidation of the molecular mechanism of liver fibrosis is the basis for intervention of this pathological process and drug development. Nucleophosmin (NPM) is a widely expressed nucleolar phosphorylated protein, which is particularly important for cell proliferation, differentiation and survival. The biological role of NPM in liver fibrosis remains unknown. Here we show that NPM promotes liver fibrosis through multiple pathways. Our study found that NPM was up-regulated in cirrhosis tissues and activated in hepatic stellate cells (HSCs). NPM inhibition reduced liver fibrosis markers expression in HSCs and inhibited the HSCs proliferation and migration. In mice model, NPM knockdown in HSCs or application of specific NPM inhibitor can remarkably attenuate hepatic fibrosis. Mechanistic analysis showed that NPM promotes hepatic fibrosis by inhibiting HSCs apoptosis through Akt/ROS pathway and by upregulating TGF-β2 through Akt-induced lncMIAT. LncMIAT up-regulated TGF-β2 mRNA by competitively sponging miR-16-5p. In response to liver injury, hepatocytes, Kupffer cells and HSCs up-regulated NPM to increase TGF-β2 secretion to activate HSCs in a paracrine or autocrine manner, leading to increased liver fibrosis. Our study demonstrated that NPM regulated hepatotoxin-induced fibrosis through Akt/ROS-induced apoptosis of HSCs and via the Akt/lncMIAT-up-regulated TGF-β2. Inhibition of NPM or application of NPM inhibitor CIGB300 remarkably attenuated liver fibrosis. NPM serves a potential new drug target for liver fibrosis.
Collapse
Affiliation(s)
- Xue Ding
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Xin-Le Zhu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Dong-Hui Xu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
- Department of Hepatic Biliary Pancreatic Vascular Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Shuang Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Qiong Yang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Xian Feng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yong-Gui Wei
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Huan Li
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Ling Yang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Yu-Jun Zhang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Ling Deng
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Kuan-Can Liu
- Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Song-Lin Shi
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Chen CH, Huang YM, Grillet L, Hsieh YC, Yang YW, Lo KY. Gallium maltolate shows synergism with cisplatin and activates nucleolar stress and ferroptosis in human breast carcinoma cells. Cell Oncol (Dordr) 2023; 46:1127-1142. [PMID: 37067747 DOI: 10.1007/s13402-023-00804-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2023] [Indexed: 04/18/2023] Open
Abstract
PURPOSE Breast cancer is the most common cancer in women. Triple-negative breast cancer (TNBC) is an aggressive disease with poor outcomes. TNBC lacks effective targeted treatments, and the development of drug resistance limits the effectiveness of chemotherapy. It is crucial to identify new drugs that can enhance the efficacy of traditional chemotherapy to reduce drug resistance and side effects. METHODS TNBC cell lines, MDA-MB-231 and Hs 578T, and a normal cell line, MCF-10 A, were included in this study. The cells were treated with gallium maltolate (GaM), and their transcriptome was analyzed. Ferroptosis and nucleolar stress markers were detected by qPCR, western blotting, fluorescence microscopy, and flow cytometry. The impairment of ribosome synthesis was evaluated by northern blotting and sucrose gradients. RESULTS GaM triggered cell death via apoptosis and ferroptosis. In addition, GaM impaired translation and activated nucleolar stress. Cisplatin (DDP) is a chemotherapeutic agent for advanced breast cancer. While single treatment with GaM or DDP at low concentrations did not impact cell growth, co-administration enhanced cell death in TNBC but not in normal breast cells. The enhancement of ferroptosis and nucleolar stress could be observed in TNBC cell lines after co-treatment. CONCLUSIONS These results suggest that GaM synergizes with cisplatin via activation of nucleolar stress and ferroptosis in human breast carcinoma cells. GaM is marginally toxic to normal cells but impairs the growth of TNBC cell lines. Thus, GaM has the potential to be used as a therapeutic agent against TNBC.
Collapse
Affiliation(s)
- Chieh-Hsin Chen
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan
| | - Yi-Ming Huang
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan
| | - Louis Grillet
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan
| | - Yu-Chen Hsieh
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan
| | - Ya-Wen Yang
- Department of Surgery, National Taiwan University Hospital, No.7, Chung Shan S. Rd., Zhongzheng Dist, Taipei City, 100225, Taiwan.
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, 1 Sec. 4, Roosevelt Road, Taipei, 6836, 10617, Taiwan.
| |
Collapse
|
7
|
Sakthivel D, Brown-Suedel A, Bouchier-Hayes L. The role of the nucleolus in regulating the cell cycle and the DNA damage response. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:203-241. [PMID: 37061332 DOI: 10.1016/bs.apcsb.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The nucleolus has long been perceived as the site for ribosome biogenesis, but numerous studies suggest that the nucleolus carefully sequesters crucial proteins involved in multiple cellular functions. Among these, the role of nucleolus in cell cycle regulation is the most evident. The nucleolus is the first responder of growth-related signals to mediate normal cell cycle progression. The nucleolus also senses different cellular stress insults by activating diverse pathways that arrest the cell cycle, promote DNA repair, or initiate apoptosis. Here, we review the emerging concepts on how the ribosomal and nonribosomal nucleolar proteins mediate such cellular effects.
Collapse
|
8
|
Mitrea DM, Mittasch M, Gomes BF, Klein IA, Murcko MA. Modulating biomolecular condensates: a novel approach to drug discovery. Nat Rev Drug Discov 2022; 21:841-862. [PMID: 35974095 PMCID: PMC9380678 DOI: 10.1038/s41573-022-00505-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 12/12/2022]
Abstract
In the past decade, membraneless assemblies known as biomolecular condensates have been reported to play key roles in many cellular functions by compartmentalizing specific proteins and nucleic acids in subcellular environments with distinct properties. Furthermore, growing evidence supports the view that biomolecular condensates often form by phase separation, in which a single-phase system demixes into a two-phase system consisting of a condensed phase and a dilute phase of particular biomolecules. Emerging understanding of condensate function in normal and aberrant cellular states, and of the mechanisms of condensate formation, is providing new insights into human disease and revealing novel therapeutic opportunities. In this Perspective, we propose that such insights could enable a previously unexplored drug discovery approach based on identifying condensate-modifying therapeutics (c-mods), and we discuss the strategies, techniques and challenges involved.
Collapse
|
9
|
Döhner H, Wei AH, Roboz GJ, Montesinos P, Thol FR, Ravandi F, Dombret H, Porkka K, Sandhu I, Skikne B, See WL, Ugidos M, Risueño A, Chan ET, Thakurta A, Beach CL, Lopes de Menezes D. Prognostic impact of NPM1 and FLT3 mutations in patients with AML in first remission treated with oral azacitidine. Blood 2022; 140:1674-1685. [PMID: 35960871 PMCID: PMC10653004 DOI: 10.1182/blood.2022016293] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
The randomized, placebo-controlled, phase 3 QUAZAR AML-001 trial (ClinicalTrials.gov identifier: NCT01757535) evaluated oral azacitidine (Oral-AZA) in patients with acute myeloid leukemia (AML) in first remission after intensive chemotherapy (IC) who were not candidates for hematopoietic stem cell transplantation. Eligible patients were randomized 1:1 to Oral-AZA 300 mg or placebo for 14 days per 28-day cycle. We evaluated relapse-free survival (RFS) and overall survival (OS) in patient subgroups defined by NPM1 and FLT3 mutational status at AML diagnosis and whether survival outcomes in these subgroups were influenced by presence of post-IC measurable residual disease (MRD). Gene mutations at diagnosis were collected from patient case report forms; MRD was determined centrally by multiparameter flow cytometry. Overall, 469 of 472 randomized patients (99.4%) had available mutational data; 137 patients (29.2%) had NPM1 mutations (NPM1mut), 66 patients (14.1%) had FLT3 mutations (FLT3mut; with internal tandem duplications [ITD], tyrosine kinase domain mutations [TKDmut], or both), and 30 patients (6.4%) had NPM1mut and FLT3-ITD at diagnosis. Among patients with NPM1mut, OS and RFS were improved with Oral-AZA by 37% (hazard ratio [HR], 0.63; 95% confidence interval [CI], 0.41-0.98) and 45% (HR, 0.55; 95% CI, 0.35-0.84), respectively, vs placebo. Median OS was improved numerically with Oral-AZA among patients with NPM1mut whether without MRD (48.6 months vs 31.4 months with placebo) or with MRD (46.1 months vs 10.0 months with placebo) post-IC. Among patients with FLT3mut, Oral-AZA improved OS and RFS by 37% (HR, 0.63; 95% CI, 0.35-1.12) and 49% (HR, 0.51; 95% CI, 0.27-0.95), respectively, vs placebo. Median OS with Oral-AZA vs placebo was 28.2 months vs 16.2 months, respectively, for patients with FLT3mut and without MRD and 24.0 months vs 8.0 months for patients with FLT3mut and MRD. In multivariate analyses, Oral-AZA significantly improved survival independent of NPM1 or FLT3 mutational status, cytogenetic risk, or post-IC MRD status.
Collapse
Affiliation(s)
- Hartmut Döhner
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Andrew H Wei
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, Australia
| | - Gail J Roboz
- Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY
- Division of Hematology & Medical Oncology, New York Presbyterian Hospital, New York, NY
| | - Pau Montesinos
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Felicitas R Thol
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Medizinische Hochschule Hannover, Hannover, Germany
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Hervé Dombret
- Leukemia Unit, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
- Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Kimmo Porkka
- Hematology Research Unit Helsinki, HUS Comprehensive Cancer Center, and iCAN Digital Precision Cancer Center Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Irwindeep Sandhu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Barry Skikne
- University of Kansas Medical Center, Kansas City, KS
- Bristol Myers Squibb, Princeton, NJ
| | - Wendy L See
- Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | - Manuel Ugidos
- BMS Center for Innovation and Translational Research Europe (CITRE), a Bristol-Myers Squibb Company, Seville, Spain
| | - Alberto Risueño
- BMS Center for Innovation and Translational Research Europe (CITRE), a Bristol-Myers Squibb Company, Seville, Spain
| | | | - Anjan Thakurta
- Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | | | | |
Collapse
|
10
|
Florio D, Roviello V, La Manna S, Napolitano F, Maria Malfitano A, Marasco D. Small molecules enhancers of amyloid aggregation of C-terminal domain of Nucleophosmin 1 in acute myeloid leukemia. Bioorg Chem 2022; 127:106001. [DOI: 10.1016/j.bioorg.2022.106001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
11
|
Nucleus-translocated mitochondrial cytochrome c liberates nucleophosmin-sequestered ARF tumor suppressor by changing nucleolar liquid–liquid phase separation. Nat Struct Mol Biol 2022; 29:1024-1036. [DOI: 10.1038/s41594-022-00842-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
|
12
|
Current status and future perspectives in targeted therapy of NPM1-mutated AML. Leukemia 2022; 36:2351-2367. [PMID: 36008542 PMCID: PMC9522592 DOI: 10.1038/s41375-022-01666-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022]
Abstract
Nucleophosmin 1 (NPM1) is a nucleus-cytoplasmic shuttling protein which is predominantly located in the nucleolus and exerts multiple functions, including regulation of centrosome duplication, ribosome biogenesis and export, histone assembly, maintenance of genomic stability and response to nucleolar stress. NPM1 mutations are the most common genetic alteration in acute myeloid leukemia (AML), detected in about 30–35% of adult AML and more than 50% of AML with normal karyotype. Because of its peculiar molecular and clinico-pathological features, including aberrant cytoplasmic dislocation of the NPM1 mutant and wild-type proteins, lack of involvement in driving clonal hematopoiesis, mutual exclusion with recurrent cytogenetic abnormalities, association with unique gene expression and micro-RNA profiles and high stability at relapse, NPM1-mutated AML is regarded as a distinct genetic entity in the World Health Organization (WHO) classification of hematopoietic malignancies. Starting from the structure and functions of NPM1, we provide an overview of the potential targeted therapies against NPM1-mutated AML and discuss strategies aimed at interfering with the oligomerization (compound NSC348884) and the abnormal traffic of NPM1 (avrainvillamide, XPO1 inhibitors) as well as at inducing selective NPM1-mutant protein degradation (ATRA/ATO, deguelin, (-)-epigallocatechin-3-gallate, imidazoquinoxaline derivatives) and at targeting the integrity of nucleolar structure (actinomycin D). We also discuss the current therapeutic results obtained in NPM1-mutated AML with the BCL-2 inhibitor venetoclax and the preliminary clinical results using menin inhibitors targeting HOX/MEIS1 expression. Finally, we review various immunotherapeutic approaches in NPM1-mutated AML, including immune check-point inhibitors, CAR and TCR T-cell-based therapies against neoantigens created by the NPM1 mutations.
Collapse
|
13
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
14
|
D'Agostino M, Beji S, Sileno S, Lulli D, Mercurio L, Madonna S, Cirielli C, Pallotta S, Albanesi C, Capogrossi MC, Avitabile D, Melillo G, Magenta A. Extracellular Nucleophosmin Is Increased in Psoriasis and Correlates With the Determinants of Cardiovascular Diseases. Front Cardiovasc Med 2022; 9:867813. [PMID: 35571214 PMCID: PMC9095901 DOI: 10.3389/fcvm.2022.867813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
We previously showed that genotoxic stress induced an active extracellular release of nucleophosmin (NPM) in human cardiac mesenchymal progenitor cells, and that serum deprivation provokes NPM secretion from human endothelial cells, eliciting inflammation via nuclear factor kappa B (NF-kB) transcriptional activation. In this study, we wanted to determine whether NPM was similarly modulated in the skin and plasma of psoriatic patients (Pso). We found that NPM was induced in 6 skin biopsies compared to 6 normal skin biopsies and was markedly increased in lesional (LS) vs. non-lesional skin (NLS) biopsies. Moreover, NPM was also increased at the transcriptional levels in LS vs. NLS. Both the innate stimuli, such as lipopolysaccharides and Poly inositol–cytosine and adaptive stimuli, that is, cytokine mix, were able to induce the extracellular release of NPM in immortalized keratinocytes and human skin fibroblasts in the absence of cytotoxicity. Interestingly, NPM interacts with Toll-like receptor (TLR)4 in these cells and activates an NF-kB-dependent inflammatory pathway upregulating interleukin IL-6 and COX-2 gene expression. Finally, circulating NPM was increased in the plasma of 29 Pso compared to 29 healthy controls, and positively correlates with psoriasis area severity index (PASI) and with determinants of cardiovascular diseases (CVDs), such as pulse wave velocity, systolic pressure, and left ventricular mass. Furthermore, NPM positively correlates with miR-200c circulating levels, which we previously showed to increase in Pso and correlate with CVD progression. Our data show that circulating miR-200c is physically associated with extracellular NPM, which most probably is responsible for its extracellular release and protection upon cytokine mix via a TLR4-mechanism. In conclusion, NPM is increased in psoriasis both in the skin and plasma and might be considered a novel biologic target to counteract chronic inflammation associated with CVD risk.
Collapse
Affiliation(s)
- Marco D'Agostino
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Sara Beji
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Sara Sileno
- National Research Council of Italy (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
| | - Daniela Lulli
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Laura Mercurio
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Stefania Madonna
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Corrado Cirielli
- Unit of Vascular Surgery, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Sabatino Pallotta
- Division of Dermatology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Cristina Albanesi
- Experimental Immunology Laboratory, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Maurizio C. Capogrossi
- Division of Cardiology, Johns Hopkins Bayview Medical Center, Johns Hopkins University, Baltimore, MD, United States
- Laboratory of Cardiovascular Science, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, United States
| | | | - Guido Melillo
- Unit of Cardiology, Istituto Dermopatico dell'Immacolata (IDI-IRCCS), Rome, Italy
| | - Alessandra Magenta
- National Research Council of Italy (CNR), Institute of Translational Pharmacology (IFT), Rome, Italy
- *Correspondence: Alessandra Magenta
| |
Collapse
|
15
|
Morganti C, Ito K, Yanase C, Verma A, Teruya‐Feldstein J, Ito K. NPM1 ablation induces HSC aging and inflammation to develop myelodysplastic syndrome exacerbated by p53 loss. EMBO Rep 2022; 23:e54262. [PMID: 35229971 PMCID: PMC9066051 DOI: 10.15252/embr.202154262] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is characterized by ineffective hematopoiesis with morphologic dysplasia and a propensity to transform into overt acute myeloid leukemia (AML). Our analysis of two cohorts of 20 MDS and 49 AML with multi-lineage dysplasia patients shows a reduction in Nucleophosmin 1 (NPM1) expression in 70% and 90% of cases, respectively. A mouse model of Npm1 conditional knockout (cKO) in hematopoietic cells reveals that Npm1 loss causes premature aging of hematopoietic stem cells (HSCs). Mitochondrial activation in Npm1-deficient HSCs leads to aberrant activation of the NLRP3 inflammasome, which correlates with a developing MDS-like phenotype. Npm1 cKO mice exhibit shortened survival times, and expansion of both the intra- and extra-medullary myeloid populations, while evoking a p53-dependent response. After transfer into a p53 mutant background, the resulting Npm1/p53 double KO mice develop fatal leukemia within 6 months. Our findings identify NPM1 as a regulator of HSC aging and inflammation and highlight the role of p53 in MDS progression to leukemia.
Collapse
Affiliation(s)
- Claudia Morganti
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNYUSA,Departments of Cell Biology and Stem Cell InstituteAlbert Einstein College of MedicineBronxNYUSA,Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Kyoko Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNYUSA,Departments of Cell Biology and Stem Cell InstituteAlbert Einstein College of MedicineBronxNYUSA,Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Chie Yanase
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNYUSA,Departments of Cell Biology and Stem Cell InstituteAlbert Einstein College of MedicineBronxNYUSA,Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Amit Verma
- Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA,Department of Developmental and Molecular BiologyAlbert Einstein College of MedicineBronxNYUSA,Albert Einstein Cancer Center and Diabetes Research CenterAlbert Einstein College of MedicineBronxNYUSA
| | - Julie Teruya‐Feldstein
- Department of PathologyIcahn School of MedicineMount SinaiNew YorkNYUSA,Department of PathologySloan‐Kettering InstituteMemorial Sloan‐Kettering Cancer CenterNew YorkNYUSA
| | - Keisuke Ito
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine ResearchAlbert Einstein College of MedicineBronxNYUSA,Departments of Cell Biology and Stem Cell InstituteAlbert Einstein College of MedicineBronxNYUSA,Department of MedicineMontefiore Medical CenterAlbert Einstein College of MedicineBronxNYUSA,Albert Einstein Cancer Center and Diabetes Research CenterAlbert Einstein College of MedicineBronxNYUSA
| |
Collapse
|
16
|
Ruan Y, Xu H, Ji X. High expression of NPM1 via the Wnt/β-catenin signalling pathway might predict poor prognosis for patients with prostate adenocarcinoma. Clin Exp Pharmacol Physiol 2022; 49:525-535. [PMID: 35108408 DOI: 10.1111/1440-1681.13628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/29/2022]
Abstract
Prostate adenocarcinoma (PRAD) occurs only in males and has a higher incidence rate than other cancers. NPM1 is a nucleocytoplasmic shuttling protein that participates in the development of multiple tumours. The aim of this research was to explore the effect of the upregulation or downregulation of the NPM1 protein on the malignancy of prostate cancer and its possible signalling pathway. Prostate adenocarcinoma cell lines were used in this study, including RWPE-1, PC3, LNCap, and 22RV1 cells. Our research revealed that NPM1 was widely expressed in the PRAD cell lines, as determined by Western blotting, and that the levels of NPM1 protein were positively correlated with the degree of malignancy of the PRAD cell lines. Through interference and overexpression experiments, we found that PC3 cells growth was inhibited after NPM1 knockdown and that this inhibition was partly reversed by CTNNB1 overexpression; in contrast, PC3 cells growth was promoted after NPM1 overexpression, and this promotion was partly reversed by CTNNB1 knockdown, suggesting that NPM1 and CTNNB1 play important roles in the progression of prostate cancer cells via the Wnt/β-catenin signalling pathway. NPM1 may serve as an important biomarker and candidate therapeutic for patients with prostate cancer.
Collapse
Affiliation(s)
- Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, 550025, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China.,Medical College, Guizhou University, Guiyang, 550025, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guiyang, 550025, China.,College of Animal Science, Guizhou University, Guiyang, 550025, China.,Medical College, Guizhou University, Guiyang, 550025, China
| | - Xinqin Ji
- College of Animal Science, Guizhou University, Guiyang, 550025, China.,Medical College, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
17
|
Wu M, Lu L, Chen S, Li Y, Zhang Q, Fu S, Deng X. Natural products inducing nucleolar stress: implications in cancer therapy. Anticancer Drugs 2022; 33:e21-e27. [PMID: 34561998 DOI: 10.1097/cad.0000000000001146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The nucleolus is the site of ribosome biogenesis and is found to play an important role in stress sensing. For over 100 years, the increase in the size and number of nucleoli has been considered as a marker of aggressive tumors. Despite this, the contribution of the nucleolus and the biologic processes mediated by it to cancer pathogenesis has been largely overlooked. This state has been changed over the recent decades with the demonstration that the nucleolus controls numerous cellular functions associated with cancer development. Induction of nucleolar stress has recently been regarded as being superior to conventional cytotoxic/cytostatic strategy in that it is more selective to neoplastic cells while sparing normal cells. Natural products represent an excellent source of bioactive molecules and some of them have been found to be able to induce nucleolar stress. The demonstration of these nucleolar stress-inducing natural products has paved the way for a new therapeutic approach to more delicate tumor cell-killing. This review provides a contemporary summary of the role of the nucleolus as a novel promising target for cancer therapy, with particular emphasis on natural products as an exciting new class of anti-cancer drugs with nucleolar stress-inducing properties.
Collapse
Affiliation(s)
- Mi Wu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Lu Lu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Sisi Chen
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Ying Li
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Qiuting Zhang
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Shujun Fu
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University
- Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha
- Department of Pathophysiology, Jishou University School of Medicine, Jishou, Hunan, China
| |
Collapse
|
18
|
El Achi H, Kanagal-Shamanna R. Biomarkers in Acute Myeloid Leukemia: Leveraging Next Generation Sequencing Data for Optimal Therapeutic Strategies. Front Oncol 2021; 11:748250. [PMID: 34660311 PMCID: PMC8514876 DOI: 10.3389/fonc.2021.748250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Next generation sequencing (NGS) is routinely used for mutation profiling of acute myeloid leukemia. The extensive application of NGS in hematologic malignancies, and its significant association with the outcomes in multiple large cohorts constituted a proof of concept that AML phenotype is driven by underlying mutational signature and is amenable for targeted therapies. These findings urged incorporation of molecular results into the latest World Health Organization (WHO) sub-classification and integration into risk-stratification and treatment guidelines by the European Leukemia Net. NGS mutation profiling provides a large amount of information that guides diagnosis and management, dependent on the type and number of gene mutations, variant allele frequency and amenability to targeted therapeutics. Hence, molecular mutational profiling is an integral component for work-up of AML and multiple leukemic entities. In addition, there is a vast amount of informative data that can be obtained from routine clinical NGS sequencing beyond diagnosis, prognostication and therapeutic targeting. These include identification of evidence regarding the ontogeny of the disease, underlying germline predisposition and clonal hematopoiesis, serial monitoring to assess the effectiveness of therapy and resistance mutations, which have broader implications for management. In this review, using a few prototypic genes in AML, we will summarize the clinical applications of NGS generated data for optimal AML management, with emphasis on the recently described entities and Food and Drug Administration approved target therapies.
Collapse
Affiliation(s)
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
19
|
Zheng S, Li X, Deng T, Liu R, Bai J, Zuo T, Guo Y, Chen J. KPNA2 promotes renal cell carcinoma proliferation and metastasis via NPM. J Cell Mol Med 2021; 25:9255-9267. [PMID: 34469024 PMCID: PMC8500977 DOI: 10.1111/jcmm.16846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 07/06/2021] [Accepted: 07/26/2021] [Indexed: 02/03/2023] Open
Abstract
Karyopherin α2 (KPNA2), involved in nucleocytoplasmic transport, has been reported to be up‐regulated in tumorigenesis. However, comprehensive studies of KPNA2 functions in renal cell carcinoma (RCC) are still lacking. In this study, we aim to investigate the roles of KPNA2 in kidney tumour development. Our results showed that down‐regulation of KPNA2 inhibited the proliferation and invasion of kidney tumour cell cells in vitro, while the cell cycle arrest and cellular apoptosis were induced once KPNA2 was silenced. Repression of KPNA2 was proved to be efficient to repress tumorigenesis and development of kidney tumour in in nude mice. Furthermore, one related participator, NPM, was identified based on Co‐IP/MS and bioinformatics analyses. The up‐regulation of NPM attenuates the efficiency of knockdown KPNA2. These results indicated that KPNA2 may regulate NPM to play a crucial role for kidney tumour development.
Collapse
Affiliation(s)
- Song Zheng
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaofan Li
- Department of Hematology, Fujian Institute of Hematology, Union Hospital, Fujian Medical University, Fuzhou, China.,Fujian Provincial Key Laboratory on Hematology, Fujian Medical University, Fuzhou, China
| | - Ting Deng
- Department of Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Rong Liu
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Junjie Bai
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Teng Zuo
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yinan Guo
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhui Chen
- Department of Urology, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
20
|
Nucleophosmin/B23 promotes endometrial cancer cell escape from macrophage phagocytosis by increasing CD24 expression. J Mol Med (Berl) 2021; 99:1125-1137. [PMID: 33954835 DOI: 10.1007/s00109-021-02079-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/22/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Despite recent therapeutic breakthroughs, advanced and/or recurrent endometrial cancer still poses a significant health burden globally. While immunotherapy can theoretically lead to durable responses, the benefits to patients remain limited. In an effort to identify novel immunotherapeutic targets, we specifically focused on the potential role of nucleophosmin (NPM, also known as B23) - a nucleolar phosphoprotein involved in tumorigenesis - in cancer immune evasion. Expression profiling with oligonucleotide microarrays was conducted to identify differentially expressed genes in NPM/B23-silenced endometrial cancer cells. CD24 - a heat-stable antigen commonly overexpressed in solid tumors and a target for cancer immunotherapy - was identified as one of the key NPM/B23-regulated molecules. We found that NPM/B23 was capable of inducing CD24 expression, with the Sp1 binding site in the CD24 promoter being essential for NPM/B23-mediated transcriptional activation. Interestingly, NPM/B23 silencing in endometrial cancer cells enhanced phagocytic removal by macrophages through a decreased exposure of CD24 on the cell surface. Conversely, restoration of CD24 expression in NPM/B23-silenced endometrial cancer cells inhibited macrophage-mediated phagocytosis. These results indicate that NPM/B23-driven CD24 overexpression enables endometrial cancer cells to evade from phagocytosis. We further suggest that CD24 may serve as a novel target for endometrial cancer immunotherapy. KEY MESSAGES: NPM/B23 induced CD24 expression in endometrial tumorigenesis. Sp1 binding site in the CD24 promoter is essential for the activation. NPM/B23 silencing enhanced phagocytosis by macrophages through decrease of CD24 on cancer cells. Restoration of CD24 expression in NPM/B23-silenced cancer cells inhibited macrophage-mediated phagocytosis.
Collapse
|
21
|
Shi L, Magee P, Fassan M, Sahoo S, Leong HS, Lee D, Sellers R, Brullé-Soumaré L, Cairo S, Monteverde T, Volinia S, Smith DD, Di Leva G, Galuppini F, Paliouras AR, Zeng K, O'Keefe R, Garofalo M. A KRAS-responsive long non-coding RNA controls microRNA processing. Nat Commun 2021; 12:2038. [PMID: 33795683 PMCID: PMC8016872 DOI: 10.1038/s41467-021-22337-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Wild-type KRAS (KRASWT) amplification has been shown to be a secondary means of KRAS activation in cancer and associated with poor survival. Nevertheless, the precise role of KRASWT overexpression in lung cancer progression is largely unexplored. Here, we identify and characterize a KRAS-responsive lncRNA, KIMAT1 (ENSG00000228709) and show that it correlates with KRAS levels both in cell lines and in lung cancer specimens. Mechanistically, KIMAT1 is a MYC target and drives lung tumorigenesis by promoting the processing of oncogenic microRNAs (miRNAs) through DHX9 and NPM1 stabilization while halting the biogenesis of miRNAs with tumor suppressor function via MYC-dependent silencing of p21, a component of the Microprocessor Complex. KIMAT1 knockdown suppresses not only KRAS expression but also KRAS downstream signaling, thereby arresting lung cancer growth in vitro and in vivo. Taken together, this study uncovers a role for KIMAT1 in maintaining a positive feedback loop that sustains KRAS signaling during lung cancer progression and provides a proof of principle that interfering with KIMAT1 could be a strategy to hamper KRAS-induced tumorigenesis.
Collapse
Affiliation(s)
- Lei Shi
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Peter Magee
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Sudhakar Sahoo
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Hui Sun Leong
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Dave Lee
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Robert Sellers
- Computational Biology Support, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | | | | | - Tiziana Monteverde
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Duncan D Smith
- Biological Mass Spectrometry Facility, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Gianpiero Di Leva
- School of Pharmacy and Bioengineering, Keele University, Stock-on-Trent, UK
| | - Francesca Galuppini
- Department of Medicine, Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Athanasios R Paliouras
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK
| | - Kang Zeng
- Imaging & Cytometry Facility, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Raymond O'Keefe
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Michela Garofalo
- Transcriptional Networks in Lung Cancer Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, at Manchester and University College London, London, UK.
| |
Collapse
|
22
|
Bone Marrow-Derived Mesenchymal Stem Cells Differentially Affect Glioblastoma Cell Proliferation, Migration, and Invasion: A 2D-DIGE Proteomic Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4952876. [PMID: 33628783 PMCID: PMC7892224 DOI: 10.1155/2021/4952876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) display high tumor tropism and cause indirect effects through the cytokines they secrete. However, the effects of BM-MSCs on the biological behaviors of glioblastoma multiforme remain unclear. In this study, the conditioned medium from BM-MSCs significantly inhibited the proliferation of C6 cells (P < 0.05) but promoted their migration and invasion (P < 0.05). Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) proteomic analysis revealed 17 proteins differentially expressed in C6 cells exposed to the BM-MSC-conditioned medium including five upregulated proteins and 12 downregulated proteins. Among these, six differentially expressed proteins (Calr, Set, Oat, Npm1, Ddah1, and Tardbp) were closely related to cell proliferation and differentiation, and nine proteins (Pdia6, Sphk1, Anxa4, Vim, Tuba1c, Actr1b, Actn4, Rap2c, and Tpm2) were associated with motility and the cytoskeleton, which may modulate the invasion and migration of tumor cells. Above all, by identifying the differentially expressed proteins using proteomics and bioinformatics analysis, BM-MSCs could be genetically modified to specifically express tumor-suppressive factors when BM-MSCs are to be used as tumor-selective targeting carriers in the future.
Collapse
|
23
|
Single-Cell Analysis of Different Stages of Oral Cancer Carcinogenesis in a Mouse Model. Int J Mol Sci 2020; 21:ijms21218171. [PMID: 33142921 PMCID: PMC7662772 DOI: 10.3390/ijms21218171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Oral carcinogenesis involves the progression of the normal mucosa into potentially malignant disorders and finally into cancer. Tumors are heterogeneous, with different clusters of cells expressing different genes and exhibiting different behaviors. 4-nitroquinoline 1-oxide (4-NQO) and arecoline were used to induce oral cancer in mice, and the main factors for gene expression influencing carcinogenesis were identified through single-cell RNA sequencing analysis. Male C57BL/6J mice were divided into two groups: a control group (receiving normal drinking water) and treatment group (receiving drinking water containing 4-NQO (200 mg/L) and arecoline (500 mg/L)) to induce the malignant development of oral cancer. Mice were sacrificed at 8, 16, 20, and 29 weeks. Except for mice sacrificed at 8 weeks, all mice were treated for 16 weeks and then either sacrificed or given normal drinking water for the remaining weeks. Tongue lesions were excised, and all cells obtained from mice in the 29- and 16-week treatment groups were clustered into 17 groups by using the Louvain algorithm. Cells in subtypes 7 (stem cells) and 9 (keratinocytes) were analyzed through gene set enrichment analysis. Results indicated that their genes were associated with the MYC_targets_v1 pathway, and this finding was confirmed by the presence of cisplatin-resistant nasopharyngeal carcinoma cell lines. These cell subtype biomarkers can be applied for the detection of patients with precancerous lesions, the identification of high-risk populations, and as a treatment target.
Collapse
|
24
|
Di Natale C, Florio D, Di Somma S, Di Matteo A, Federici L, Netti PA, Morelli G, Malfitano AM, Marasco D. Proteostasis unbalance of nucleophosmin 1 in Acute Myeloid Leukemia: An aggregomic perspective. Int J Biol Macromol 2020; 164:3501-3507. [PMID: 32890557 DOI: 10.1016/j.ijbiomac.2020.08.248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 01/22/2023]
Abstract
The role exerted by the nucleus in the regulation of proteostasis in both health and disease is recognized of outmost importance, even though not fully understood. Many recent investigations are focused on its ability to modulate and coordinate protein quality control machineries in mammalian cells. Nucleophosmin 1 (NPM1) is one of the most abundant nucleolar proteins and its gene is mutated in ~30% of Acute Myeloid Leukemia (AML) patients. Mutations are localized in the C-terminal domain of the protein and cause cytoplasmatically delocalized and possibly aggregated forms of NPM1 (NPM1c+). Therapeutic interventions targeted on NPM1c+ are in demand and, to this end, deeper knowledge of NPM1c+ behavior in the blasts' cytosol is required. Here by means of complementary biophysical techniques we compared the conformational and aggregative behavior of the entire C-terminal domains of NPM1wt and type A NPM1c+ (bearing the most common mutation). Overall data show that only Cterm_mutA is able to form amyloid-like assemblies with fibrillar morphology and that the oligomers are toxic in human neuroblastoma SHSY cells. This study adds a novel piece of knowledge to the comprehension of the molecular roles exerted by cytoplasmatic NPM1c+ and suggests the exploitation of the amyloidogenic propensity of NPM1c+ as a new strategy for targeting AML with NPM1 mutations.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy; Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy
| | - Sarah Di Somma
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biochemical Sciences "A Rossi Fanelli" - Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Federici
- Center of Advanced Studies and Technology (CAST) and Department of Clinical, Oral and Biotechnological Sciences, University of Chieti "G. d'Annunzio", 66100 Chieti, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, Naples, Italy; Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy; Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - Giancarlo Morelli
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy
| | - Anna Maria Malfitano
- Department of Translational Medical Science, University of Naples Federico II, 80131 Napoli, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80134, Italy.
| |
Collapse
|
25
|
López DJ, Rodríguez JA, Bañuelos S. Nucleophosmin, a multifunctional nucleolar organizer with a role in DNA repair. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140532. [PMID: 32853771 DOI: 10.1016/j.bbapap.2020.140532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Nucleophosmin (NPM1) is a mostly nucleolar protein with crucial functions in cell growth and homeostasis, including regulation of ribosome biogenesis and stress response. Such multiple activities rely on its ability to interact with nucleic acids and with hundreds of proteins, as well as on a dynamic subcellular distribution. NPM1 is thus regulated by a complex interplay between localization and interactions, further modulated by post-translational modifications. NPM1 is a homopentamer, with globular domains connected by long, intrinsically disordered linkers. This configuration allows NPM1 to engage in liquid-liquid phase separation phenomena, which could underlie a key role in nucleolar organization. Here, we will discuss NPM1 conformational and functional versatility, emphasizing its emerging, and still largely unexplored, role in DNA damage repair. Since NPM1 is altered in a subtype of acute myeloid leukaemia (AML), we will also present ongoing research on the molecular mechanisms underlying its pathogenic role and potential NPM1-targeting therapeutic strategies.
Collapse
Affiliation(s)
- David J López
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Sonia Bañuelos
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
26
|
Ognibene M, Pezzolo A. Roniciclib down-regulates stemness and inhibits cell growth by inducing nucleolar stress in neuroblastoma. Sci Rep 2020; 10:12902. [PMID: 32737364 PMCID: PMC7395171 DOI: 10.1038/s41598-020-69499-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma, an embryonic tumor arising from neuronal crest progenitor cells, has been shown to contain a population of undifferentiated stem cells responsible for the malignant state and the unfavorable prognosis. Although many previous studies have analyzed neuroblastoma stem cells and their therapeutic targeting, this topic appears still open to novel investigations. Here we found that neurospheres derived from neuroblastoma stem-like cells showed a homogeneous staining for several key nucleolar proteins, such as Nucleolin, Nucleophosmin-1, Glypican-2 and PES-1. We investigated the effects of Roniciclib (BAY 1000394), an anticancer stem cells agent, on neurospheres and on an orthotopic neuroblastoma mouse model, discovering an impressive inhibition of tumor growth and indicating good chances for the use of Roniciclib in vivo. We demonstrated that Roniciclib is not only a Wnt/β-catenin signaling inhibitor, but also a nucleolar stress inducer, revealing a possible novel mechanism underlying Roniciclib-mediated repression of cell proliferation. Furthermore, we found that high expression of Nucleophosmin-1 correlates with patients’ short survival. The co-expression of several stem cell surface antigens such as CD44v6 and CD114, together with the nucleolar markers here described, extends new possibilities to isolate undifferentiated subpopulations from neuroblastoma and identify new targets for the treatment of this childhood malignancy.
Collapse
Affiliation(s)
- Marzia Ognibene
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Gaslini, 16147, Genova, Italy. .,Unità di Genetica Medica, IRCCS Istituto Gaslini, 16147, Genova, Italy.
| | - Annalisa Pezzolo
- Laboratorio Cellule Staminali Post Natali e Terapie Cellulari, IRCCS Istituto Gaslini, 16147, Genova, Italy.
| |
Collapse
|
27
|
Cela I, Di Matteo A, Federici L. Nucleophosmin in Its Interaction with Ligands. Int J Mol Sci 2020; 21:E4885. [PMID: 32664415 PMCID: PMC7402337 DOI: 10.3390/ijms21144885] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022] Open
Abstract
Nucleophosmin (NPM1) is a mainly nucleolar protein that shuttles between nucleoli, nucleoplasm and cytoplasm to fulfill its many functions. It is a chaperone of both nucleic acids and proteins and plays a role in cell cycle control, centrosome duplication, ribosome maturation and export, as well as the cellular response to a variety of stress stimuli. NPM1 is a hub protein in nucleoli where it contributes to nucleolar organization through heterotypic and homotypic interactions. Furthermore, several alterations, including overexpression, chromosomal translocations and mutations are present in solid and hematological cancers. Recently, novel germline mutations that cause dyskeratosis congenita have also been described. This review focuses on NPM1 interactions and inhibition. Indeed, the list of NPM1 binding partners is ever-growing and, in recent years, many studies contributed to clarifying the structural basis for NPM1 recognition of both nucleic acids and several proteins. Intriguingly, a number of natural and synthetic ligands that interfere with NPM1 interactions have also been reported. The possible role of NPM1 inhibitors in the treatment of multiple cancers and other pathologies is emerging as a new therapeutic strategy.
Collapse
Affiliation(s)
- Ilaria Cela
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology (IBPM) of the CNR, c/o “Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy;
| | - Luca Federici
- Center for Advanced Studies and Technology (CAST), University of Chieti “G. d’Annunzio”, Via Polacchi, 66100 Chieti, Italy;
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti “G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
28
|
Sakaguchi M, Kitaguchi D, Morinami S, Kurashiki Y, Hashida H, Miyata S, Yamaguchi M, Sakai M, Murata N, Tanaka S. Berberine-induced nucleolar stress response in a human breast cancer cell line. Biochem Biophys Res Commun 2020; 528:227-233. [PMID: 32475643 DOI: 10.1016/j.bbrc.2020.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
We investigated the novel molecular mechanisms of the antitumor effect of berberine. In this study, two different human cell lines (breast cancer MCF7 cells and non-tumorigenic epithelial MCF12A cells) were treated with various concentrations of berberine. Treatment with 1 and 10 μM berberine inhibited proliferation with G0/G1 cell cycle arrest in both cell lines, and treatment with 100 μM berberine triggered a marked level of cell death in MCF7 cells but not in MCF12A cells. Berberine increased the level of p53 protein and of its target p21 both time- and dose-dependently in MCF7 cells. At any concentration of berberine, immediate uptake (within 15 min) followed by predominantly mitochondrial accumulation were observed by confocal microscopy in both cell lines. At high concentrations (10 or 100 μM), accumulation in the nucleolus became prominent after the transition to the nucleoplasm, especially remarkable in MCF7 cells. Therefore, we evaluated the possibility of berberine-induced nucleolar stress and observed the disappearance of ribosomal protein (RP)L5 from the nucleolus and accumulation of p53 protein in the nucleus after treatment with 10 or 100 μM berberine in MCF7 cells. We also detected the accumulation of RPL5 and RPL11 in the nucleoplasm fraction where they bind to Mdm2. Moreover, downregulation of RPL5 inhibited berberine-driven induction of p53 and p21 and cell death in MCF7 cells. Whereas, in MCF12A cells, down-regulation of RPL5 had little effect on the growth inhibitory effect of high concentration of berberine. These results indicated that cell growth inhibition and cell death induced by higher doses (>10 μM) of berberine in MCF7 cells were due to the upregulation of p53 under the nucleolar stress response caused by a significant accumulation of berberine in the nucleoli.
Collapse
Affiliation(s)
- Minoru Sakaguchi
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| | - Daiki Kitaguchi
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Shiho Morinami
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuki Kurashiki
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Haruna Hashida
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Saki Miyata
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Maki Yamaguchi
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Miyu Sakai
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Natsuko Murata
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Satoshi Tanaka
- Laboratory of Cell Biology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
29
|
Sluzalska KD, Slawski J, Sochacka M, Lampart A, Otlewski J, Zakrzewska M. Intracellular partners of fibroblast growth factors 1 and 2 - implications for functions. Cytokine Growth Factor Rev 2020; 57:93-111. [PMID: 32475760 DOI: 10.1016/j.cytogfr.2020.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Fibroblast growth factors 1 and 2 (FGF1 and FGF2) are mainly considered as ligands of surface receptors through which they regulate a broad spectrum of biological processes. They are secreted in non-canonical way and, unlike other growth factors, they are able to translocate from the endosome to the cell interior. These unique features, as well as the role of the intracellular pool of FGF1 and FGF2, are far from being fully understood. An increasing number of reports address this problem, focusing on the intracellular interactions of FGF1 and 2. Here, we summarize the current state of knowledge of the FGF1 and FGF2 binding partners inside the cell and the possible role of these interactions. The partner proteins are grouped according to their function, including proteins involved in secretion, cell signaling, nucleocytoplasmic transport, binding and processing of nucleic acids, ATP binding, and cytoskeleton assembly. An in-depth analysis of the network of these binding partners could indicate novel, non-classical functions of FGF1 and FGF2 and uncover an additional level of a fine control of the well-known FGF-regulated cellular processes.
Collapse
Affiliation(s)
- Katarzyna Dominika Sluzalska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Martyna Sochacka
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Agata Lampart
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wroclaw, ul. F. Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
30
|
Long M, Sun X, Shi W, Yanru A, Leung STC, Ding D, Cheema MS, MacPherson N, Nelson CJ, Ausio J, Yan Y, Ishibashi T. A novel histone H4 variant H4G regulates rDNA transcription in breast cancer. Nucleic Acids Res 2019; 47:8399-8409. [PMID: 31219579 PMCID: PMC6895281 DOI: 10.1093/nar/gkz547] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/20/2022] Open
Abstract
Histone variants, present in various cell types and tissues, are known to exhibit different functions. For example, histone H3.3 and H2A.Z are both involved in gene expression regulation, whereas H2A.X is a specific variant that responds to DNA double-strand breaks. In this study, we characterized H4G, a novel hominidae-specific histone H4 variant. We found that H4G is expressed in a variety of human cell lines and exhibit tumor-stage dependent overexpression in tissues from breast cancer patients. We found that H4G localized primarily to the nucleoli of the cell nucleus. This localization was controlled by the interaction of the alpha-helix 3 of the histone fold motif with a histone chaperone, nucleophosmin 1. In addition, we found that modulating H4G expression affects rRNA expression levels, protein synthesis rates and cell-cycle progression. Our data suggest that H4G expression alters nucleolar chromatin in a way that enhances rDNA transcription in breast cancer tissues.
Collapse
Affiliation(s)
- Mengping Long
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong, HKSAR, China
| | - Xulun Sun
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong, HKSAR, China
| | - Wenjin Shi
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong, HKSAR, China
| | - An Yanru
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong, HKSAR, China
| | - Sophia T C Leung
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong, HKSAR, China
| | - Dongbo Ding
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong, HKSAR, China
| | - Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC V8W 3P6, Canada
| | - Nicol MacPherson
- Department of Medical Oncology, BC Cancer Vancouver Island Centre, Victoria, BC V8R 6V5, Canada
| | - Christopher J Nelson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC V8W 3P6, Canada
| | - Juan Ausio
- Department of Biochemistry and Microbiology, University of Victoria, Victoria BC V8W 3P6, Canada
| | - Yan Yan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong, HKSAR, China
| | - Toyotaka Ishibashi
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, NT, Hong Kong, HKSAR, China
| |
Collapse
|
31
|
Carotenuto P, Pecoraro A, Palma G, Russo G, Russo A. Therapeutic Approaches Targeting Nucleolus in Cancer. Cells 2019; 8:E1090. [PMID: 31527430 PMCID: PMC6770360 DOI: 10.3390/cells8091090] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/08/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023] Open
Abstract
The nucleolus is a distinct sub-cellular compartment structure in the nucleus. First observed more than 200 years ago, the nucleolus is detectable by microscopy in eukaryotic cells and visible during the interphase as a sub-nuclear structure immersed in the nucleoplasm, from which it is not separated from any membrane. A huge number of studies, spanning over a century, have identified ribosome biogenesis as the main function of the nucleolus. Recently, novel functions, independent from ribosome biogenesis, have been proposed by several proteomic, genomic, and functional studies. Several works have confirmed the non-canonical role for nucleoli in regulating important cellular processes including genome stability, cell-cycle control, the cellular senescence, stress responses, and biogenesis of ribonucleoprotein particles (RNPs). Many authors have shown that both canonical and non-canonical functions of the nucleolus are associated with several cancer-related processes. The association between the nucleolus and cancer, first proposed by cytological and histopathological studies showing that the number and shape of nucleoli are commonly altered in almost any type of cancer, has been confirmed at the molecular level by several authors who demonstrated that numerous mechanisms occurring in the nucleolus are altered in tumors. Recently, therapeutic approaches targeting the nucleolus in cancer have started to be considered as an emerging "hallmark" of cancer and several therapeutic interventions have been developed. This review proposes an up-to-date overview of available strategies targeting the nucleolus, focusing on novel targeted therapeutic approaches. Finally, a target-based classification of currently available treatment will be proposed.
Collapse
Affiliation(s)
- Pietro Carotenuto
- The Institute of Cancer Research, Cancer Therapeutic Unit, London SM2 5NG, UK.
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy.
| | - Annalisa Pecoraro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Gaetano Palma
- Department of Advanced Biomedical Science, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Giulia Russo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| | - Annapina Russo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy.
| |
Collapse
|
32
|
Phi JH, Sun CH, Lee SH, Lee S, Park I, Choi SA, Park SH, Lee JY, Wang KC, Kim SK, Yun H, Park CK. NPM1 as a potential therapeutic target for atypical teratoid/rhabdoid tumors. BMC Cancer 2019; 19:848. [PMID: 31462227 PMCID: PMC6714307 DOI: 10.1186/s12885-019-6044-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 08/16/2019] [Indexed: 01/10/2023] Open
Abstract
Background Atypical teratoid/rhabdoid tumors (AT/RTs) are highly malignant brain tumors with inactivation of the SMARCB1 gene, which play a critical role in genomic transcriptional control. In this study, we analyzed the genomic and transcriptomic profiles of human AT/RTs to discover new druggable targets. Methods Multiplanar sequencing analyses, including whole exome sequencing (WES), single nucleotide polymorphism (SNP) arrays, array comparative genomic hybridization (aCGH), and whole transcriptome sequencing (RNA-Seq), were performed on 4 AT/RT tissues. Validation of a druggable target was conducted using AT/RT cell lines. Results WES revealed that the AT/RT genome is extremely stable except for the inactivation of SMARCB1. However, we identified 897 significantly upregulated genes and 523 significantly downregulated genes identified using RNA-Seq, indicating that the transcriptional profiles of the AT/RT tissues changed substantially. Gene set enrichment assays revealed genes related to the canonical pathways of cancers, and nucleophosmin (NPM1) was the most significantly upregulated gene in the AT/RT samples. An NPM1 inhibitor (NSC348884) effectively suppressed the viability of 7 AT/RT cell lines. Network analyses showed that genes associated with NPM1 are mainly involved in cell cycle regulation. Upon treatment with an NPM1 inhibitor, cell cycle arrest at G1 phase was observed in AT/RT cells. Conclusions We propose that NPM1 is a novel therapeutic target for AT/RTs. Electronic supplementary material The online version of this article (10.1186/s12885-019-6044-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 110-744, Republic of Korea
| | - Choong-Hyun Sun
- Genome opinion Co., Ltd. 7, Yeonmujang 5ga-gil, Seongdong-gu, Seoul, Republic of Korea
| | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Seungmook Lee
- Graduated, Department of Statistics, Seoul National University, Seoul, Republic of Korea
| | - Inho Park
- SD Genomics, Seoul, Republic of Korea
| | - Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Anatomy, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea.,Department of Neurosurgery, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 110-744, Republic of Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 110-744, Republic of Korea. .,Department of Neurosurgery, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 110-744, Republic of Korea.
| | - Hongseok Yun
- Center for Precision Medicine, Seoul National University Hospital, 101 Daehak-ro Jongno-gu, Seoul, 110-744, Republic of Korea.
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, 101 Daehak-ro Jongno-gu, Seoul, 110-744, Republic of Korea.
| |
Collapse
|
33
|
Ponkratova DA, Lushnikova AA. Features of the Structure and Expression of NPM and NCL Genes in Cutaneous Melanoma. Mol Biol 2019. [DOI: 10.1134/s0026893319040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Palbociclib Promotes Dephosphorylation of NPM/B23 at Threonine 199 and Inhibits Endometrial Cancer Cell Growth. Cancers (Basel) 2019; 11:cancers11071025. [PMID: 31330844 PMCID: PMC6678831 DOI: 10.3390/cancers11071025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/18/2019] [Indexed: 01/09/2023] Open
Abstract
Endometrial cancer incidence rates are growing, especially in countries with rapid socioeconomic transitions. Despite recent advances in chemotherapy, hormone therapy, and targeted therapy, advanced/recurrent disease remains a clinical challenge. Palbociclib—a selective inhibitor of cyclin-dependent kinases (CDK) 4/6—has therapeutic potential against estrogen receptor (ER)-positive and HER2-negative breast cancer. However, the question as to whether it can be clinically useful in endometrial cancer remains open. Here, we show that combined treatment with palbociclib and megesterol acetate exerts synergistic antiproliferative effects against endometrial cancer cells. Treatment of cancer cells with palbociclib suppressed NPM/B23 phosphorylation at threonine 199 (Thr199). We further demonstrated that CDK6 acts as a NPM/B23 kinase. Palbociclib-induced NPM/B23 dephosphorylation sensitized endometrial cancer cells to megesterol acetate through the upregulation of ERα expression. Immunohistochemistry revealed an overexpression of phospho-NPM/B23 (Thr199) in human endometrial cancer, and phospho-NPM/B23 (Thr199) expression levels were inversely associated with Erα in clinical specimen. In a xenograft tumor model, the combination of palbociclib and megesterol acetate successfully inhibited tumor growth. Taken together, our data indicate that palbociclib promoted NPM/B23 dephosphorylation at Thr199—an effect mediated by disruption of CDK6 kinase activity. We conclude that palbociclib holds promise for the treatment of endometrial cancer when used in combination with megesterol acetate.
Collapse
|
35
|
Anselm E, Thomae AW, Jeyaprakash AA, Heun P. Oligomerization of Drosophila Nucleoplasmin-Like Protein is required for its centromere localization. Nucleic Acids Res 2019; 46:11274-11286. [PMID: 30357352 PMCID: PMC6277087 DOI: 10.1093/nar/gky988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023] Open
Abstract
The evolutionarily conserved nucleoplasmin family of histone chaperones has two paralogues in Drosophila, named Nucleoplasmin-Like Protein (NLP) and Nucleophosmin (NPH). NLP localizes to the centromere, yet molecular underpinnings of this localization are unknown. Moreover, similar to homologues in other organisms, NLP forms a pentamer in vitro, but the biological significance of its oligomerization has not been explored. Here, we characterize the oligomers formed by NLP and NPH in vivo and find that oligomerization of NLP is required for its localization at the centromere. We can further show that oligomerization-deficient NLP is unable to bind the centromeric protein Hybrid Male Rescue (HMR), which in turn is required for targeting the NLP oligomer to the centromere. Finally, using super-resolution microscopy we find that NLP and HMR largely co-localize in domains that are immediately adjacent to, yet distinct from centromere domains defined by the centromeric histone dCENP-A.
Collapse
Affiliation(s)
- Eduard Anselm
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| | - Andreas W Thomae
- Biomedical Center, Core Facility Bioimaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | | - Patrick Heun
- Wellcome Trust Centre for Cell Biology, Edinburgh, UK
| |
Collapse
|
36
|
Lambert M, Alioui M, Jambon S, Depauw S, Van Seuningen I, David-Cordonnier MH. Direct and Indirect Targeting of HOXA9 Transcription Factor in Acute Myeloid Leukemia. Cancers (Basel) 2019; 11:cancers11060837. [PMID: 31213012 PMCID: PMC6627208 DOI: 10.3390/cancers11060837] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 01/14/2023] Open
Abstract
HOXA9 (Homeobox A9) is a homeotic transcription factor known for more than two decades to be associated with leukemia. The expression of HOXA9 homeoprotein is associated with anterior-posterior patterning during embryonic development, and its expression is then abolished in most adult cells, with the exception of hematopoietic progenitor cells. The oncogenic function of HOXA9 was first assessed in human acute myeloid leukemia (AML), particularly in the mixed-phenotype associated lineage leukemia (MPAL) subtype. HOXA9 expression in AML is associated with aggressiveness and a poor prognosis. Since then, HOXA9 has been involved in other hematopoietic malignancies and an increasing number of solid tumors. Despite this, HOXA9 was for a long time not targeted to treat cancer, mainly since, as a transcription factor, it belongs to a class of protein long considered to be an "undruggable" target; however, things have now evolved. The aim of the present review is to focus on the different aspects of HOXA9 targeting that could be achieved through multiple ways: (1) indirectly, through the inhibition of its expression, a strategy acting principally at the epigenetic level; or (2) directly, through the inhibition of its transcription factor function by acting at either the protein/protein interaction or the protein/DNA interaction interfaces.
Collapse
Affiliation(s)
- Mélanie Lambert
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Meryem Alioui
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Samy Jambon
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Sabine Depauw
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| | - Isabelle Van Seuningen
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
| | - Marie-Hélène David-Cordonnier
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences and Cancer, F-59000 Lille, France.
- Institut pour la Recherche sur le Cancer de Lille, F-59045 Lille, France.
| |
Collapse
|
37
|
Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis: mechanisms and relevance to cancer and aging. Aging (Albany NY) 2019; 11:2512-2540. [PMID: 31026227 PMCID: PMC6520011 DOI: 10.18632/aging.101922] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023]
Abstract
The biosynthesis of ribosomes is a complex process that requires the coordinated action of many factors and a huge energy investment from the cell. Ribosomes are essential for protein production, and thus for cellular survival, growth and proliferation. Ribosome biogenesis is initiated in the nucleolus and includes: the synthesis and processing of ribosomal RNAs, assembly of ribosomal proteins, transport to the cytoplasm and association of ribosomal subunits. The disruption of ribosome biogenesis at various steps, with either increased or decreased expression of different ribosomal components, can promote cell cycle arrest, senescence or apoptosis. Additionally, interference with ribosomal biogenesis is often associated with cancer, aging and age-related degenerative diseases. Here, we review current knowledge on impaired ribosome biogenesis, discuss the main factors involved in stress responses under such circumstances and focus on examples with clinical relevance.
Collapse
Affiliation(s)
- Zsofia Turi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Matthew Lacey
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Martin Mistrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Pavel Moudry
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| |
Collapse
|
38
|
Brodská B, Šašinková M, Kuželová K. Nucleophosmin in leukemia: Consequences of anchor loss. Int J Biochem Cell Biol 2019; 111:52-62. [PMID: 31009764 DOI: 10.1016/j.biocel.2019.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Nucleophosmin (NPM), one of the most abundant nucleolar proteins, has crucial functions in ribosome biogenesis, cell cycle control, and DNA-damage repair. In human cells, NPM occurs mainly in oligomers. It functions as a chaperone, undergoes numerous interactions and forms part of many protein complexes. Although NPM role in carcinogenesis is not fully elucidated, a variety of tumor suppressor as well as oncogenic activities were described. NPM is overexpressed, fused with other proteins, or mutated in various tumor types. In the acute myeloid leukemia (AML), characteristic mutations in NPM1 gene, leading to modification of NPM C-terminus, are the most frequent genetic aberration. Although multiple mutation types of NPM are found in AML, they are all characterized by aberrant cytoplasmic localization of the mutated protein. In this review, current knowledge of the structure and function of NPM is presented in relation to its interaction network, in particular to the interaction with other nucleolar proteins and with proteins active in apoptosis. Possible molecular mechanisms of NPM mutation-driven leukemogenesis and NPM therapeutic targeting are discussed. Finally, recent findings concerning the immunogenicity of the mutated NPM and specific immunological features of AML patients with NPM mutation are summarized.
Collapse
Affiliation(s)
- Barbora Brodská
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Markéta Šašinková
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic
| | - Kateřina Kuželová
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague 2, Czech Republic.
| |
Collapse
|
39
|
Brennecke P, Rasina D, Aubi O, Herzog K, Landskron J, Cautain B, Vicente F, Quintana J, Mestres J, Stechmann B, Ellinger B, Brea J, Kolanowski JL, Pilarski R, Orzaez M, Pineda-Lucena A, Laraia L, Nami F, Zielenkiewicz P, Paruch K, Hansen E, von Kries JP, Neuenschwander M, Specker E, Bartunek P, Simova S, Leśnikowski Z, Krauss S, Lehtiö L, Bilitewski U, Brönstrup M, Taskén K, Jirgensons A, Lickert H, Clausen MH, Andersen JH, Vicent MJ, Genilloud O, Martinez A, Nazaré M, Fecke W, Gribbon P. EU-OPENSCREEN: A Novel Collaborative Approach to Facilitate Chemical Biology. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2019; 24:398-413. [PMID: 30616481 PMCID: PMC6764006 DOI: 10.1177/2472555218816276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022]
Abstract
Compound screening in biological assays and subsequent optimization of hits is indispensable for the development of new molecular research tools and drug candidates. To facilitate such discoveries, the European Research Infrastructure EU-OPENSCREEN was founded recently with the support of its member countries and the European Commission. Its distributed character harnesses complementary knowledge, expertise, and instrumentation in the discipline of chemical biology from 20 European partners, and its open working model ensures that academia and industry can readily access EU-OPENSCREEN's compound collection, equipment, and generated data. To demonstrate the power of this collaborative approach, this perspective article highlights recent projects from EU-OPENSCREEN partner institutions. These studies yielded (1) 2-aminoquinazolin-4(3 H)-ones as potential lead structures for new antimalarial drugs, (2) a novel lipodepsipeptide specifically inducing apoptosis in cells deficient for the pVHL tumor suppressor, (3) small-molecule-based ROCK inhibitors that induce definitive endoderm formation and can potentially be used for regenerative medicine, (4) potential pharmacological chaperones for inborn errors of metabolism and a familiar form of acute myeloid leukemia (AML), and (5) novel tankyrase inhibitors that entered a lead-to-candidate program. Collectively, these findings highlight the benefits of small-molecule screening, the plethora of assay designs, and the close connection between screening and medicinal chemistry within EU-OPENSCREEN.
Collapse
Affiliation(s)
- Philip Brennecke
- EU-OPENSCREEN, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Dace Rasina
- Organic Synthesis Methodology Group,
Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Oscar Aubi
- Department of Biomedicine, University of
Bergen, Bergen, Norway
| | - Katja Herzog
- EU-OPENSCREEN, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Johannes Landskron
- Centre for Molecular Medicine
Norway–Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Bastien Cautain
- Fundación MEDINA, Health Sciences
Technology Park, Granada, Spain
| | | | - Jordi Quintana
- Department of Experimental and Health
Sciences, Universitat Pompeu Fabra, Barcelona, Catalunya, Spain
| | - Jordi Mestres
- Department of Experimental and Health
Sciences, Universitat Pompeu Fabra, Barcelona, Catalunya, Spain
- IMIM Hospital del Mar Medical Research
Institute, Research Program on Biomedical Informatics (GRIB), Barcelona, Spain
| | - Bahne Stechmann
- EU-OPENSCREEN, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Bernhard Ellinger
- Fraunhofer Institute for Molecular
Biology and Applied Ecology IME, Screening Port, Hamburg, Germany
| | - Jose Brea
- Institute for Research in Molecular
Medicine and Chronic Diseases—BioFarma Research Group, University of Santiago de
Compostela, Santiago de Compostela, Spain
| | - Jacek L. Kolanowski
- Department of Molecular Probes and
Prodrugs, Institute of Bioorganic Chemistry—Polish Academy of Sciences, Poznan,
Poland
| | - Radosław Pilarski
- Department of Molecular Probes and
Prodrugs, Institute of Bioorganic Chemistry—Polish Academy of Sciences, Poznan,
Poland
| | - Mar Orzaez
- Screening Platform, Principe Felipe
Research Center, Valencia, Spain
| | | | - Luca Laraia
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Lyngby,
Denmark
- Technical University of Denmark,
DK-OPENSCREEN, Lyngby, Denmark
| | - Faranak Nami
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Lyngby,
Denmark
- Technical University of Denmark,
DK-OPENSCREEN, Lyngby, Denmark
| | - Piotr Zielenkiewicz
- Department of Bioinformatics,
Institute of Biochemistry and Biophysics—Polish Academy of Sciences, Warsaw,
Poland
| | - Kamil Paruch
- Department of Chemistry—CZ-OPENSCREEN,
Masaryk University, Brno, Czech Republic
| | - Espen Hansen
- The Arctic University of Norway,
University of Tromsø, Marbio, Tromsø, Norway
| | - Jens P. von Kries
- Screening Unit, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Martin Neuenschwander
- Screening Unit, Leibniz Research
Institute for Molecular Pharmacology, Berlin, Germany
| | - Edgar Specker
- Medicinal Chemistry Research Group,
Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
| | - Petr Bartunek
- Institute of Molecular Genetics of the
ASCR, CZ-OPENSCREEN, Prague, Czech Republic
| | - Sarka Simova
- Institute of Molecular Genetics of the
ASCR, CZ-OPENSCREEN, Prague, Czech Republic
| | - Zbigniew Leśnikowski
- Laboratory of Molecular Virology and
Biological Chemistry, Institute of Medical Biology—Polish Academy of Sciences, Łódź,
Poland
| | - Stefan Krauss
- Department of Immunology and
Transfusion Medicine, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub—Centre of
Excellence—Institute of Basic Medical Sciences, University of Oslo, Oslo,
Norway
| | - Lari Lehtiö
- Faculty of Biochemistry and Molecular
Medicine—Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Ursula Bilitewski
- Working Group Compound Profiling and
Screening, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Mark Brönstrup
- Department of Chemical Biology,
Helmholtz Centre for Infection Research, Brunswick, Germany
- German Center for Infection Research
(DZIF), partner site Hannover-Brunswick, Brunswick, Germany
| | - Kjetil Taskén
- Centre for Molecular Medicine
Norway–Nordic EMBL Partnership, University of Oslo, Oslo, Norway
- Department of Cancer
Immunology—Institute for Cancer Research, Oslo University Hospital, Oslo,
Norway
- K.G. Jebsen Centre for Cancer
Immunotherapy—Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for B Cell
Malignancies—Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aigars Jirgensons
- Organic Synthesis Methodology Group,
Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Heiko Lickert
- Institute of Diabetes and Regeneration
Research, Helmholtz Centre Munich German Research Center for Environmental Health,
Neuherberg, Germany
| | - Mads H. Clausen
- Center for Nanomedicine and
Theranostics, Department of Chemistry, Technical University of Denmark, Lyngby,
Denmark
- Technical University of Denmark,
DK-OPENSCREEN, Lyngby, Denmark
| | | | - Maria J. Vicent
- Screening Platform, Principe Felipe
Research Center, Valencia, Spain
| | - Olga Genilloud
- Fundación MEDINA, Health Sciences
Technology Park, Granada, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of
Bergen, Bergen, Norway
| | - Marc Nazaré
- Medicinal Chemistry Research Group,
Leibniz Research Institute for Molecular Pharmacology, Berlin, Germany
| | | | - Philip Gribbon
- Fraunhofer Institute for Molecular
Biology and Applied Ecology IME, Screening Port, Hamburg, Germany
| |
Collapse
|
40
|
La Manna S, Roviello V, Scognamiglio PL, Diaferia C, Giannini C, Sibillano T, Morelli G, Novellino E, Marasco D. Amyloid fibers deriving from the aromatic core of C-terminal domain of nucleophosmin 1. Int J Biol Macromol 2019; 122:517-525. [DOI: 10.1016/j.ijbiomac.2018.10.210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 10/28/2022]
|
41
|
Lobaina Y, Perera Y. Implication of B23/NPM1 in Viral Infections, Potential Uses of B23/NPM1 Inhibitors as Antiviral Therapy. Infect Disord Drug Targets 2019; 19:2-16. [PMID: 29589547 DOI: 10.2174/1871526518666180327124412] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/08/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND B23/nucleophosmin (B23/NPM1) is an abundant multifunctional protein mainly located in the nucleolus but constantly shuttling between the nucleus and cytosol. As a consequence of its constitutive expression, intracellular dynamics and binding capacities, B23/NPM1 interacts with multiple cellular factors in different cellular compartments, but also with viral proteins from both DNA and RNA viruses. B23/NPM1 influences overall viral replication of viruses like HIV, HBV, HCV, HDV and HPV by playing functional roles in different stages of viral replication including nuclear import, viral genome transcription and assembly, as well as final particle formation. Of note, some virus modify the subcellular localization, stability and/or increases B23/NPM1 expression levels on target cells, probably to foster B23/NPM1 functions in their own replicative cycle. RESULTS This review summarizes current knowledge concerning the interaction of B23/NPM1 with several viral proteins during relevant human infections. The opportunities and challenges of targeting this well-conserved host protein as a potentially new broad antiviral treatment are discussed in detail. Importantly, although initially conceived to treat cancer, a handful of B23/NPM1 inhibitors are currently available to test on viral infection models. CONCLUSION As B23/NPM1 partakes in key steps of viral replication and some viral infections remain as unsolved medical needs, an appealing idea may be the expedite evaluation of B23/NPM1 inhibitors in viral infections. Furthermore, worth to be addressed is if the up-regulation of B23/NPM1 protein levels that follows persistent viral infections may be instrumental to the malignant transformation induced by virus like HBV and HCV.
Collapse
Affiliation(s)
- Yadira Lobaina
- Therapeutic Hepatitis B Vaccine Group, Vaccine Division, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, CP 10600, Cuba
| | - Yasser Perera
- Molecular Oncology Group, Pharmaceuticals Division, Biomedical Research Direction, Center for Genetic Engineering and Biotechnology, Havana, CP 10600, Cuba
| |
Collapse
|
42
|
Zeng D, Xiao Y, Zhu J, Peng C, Liang W, Lin H. Knockdown of nucleophosmin 1 suppresses proliferation of triple-negative breast cancer cells through activating CDH1/Skp2/p27kip1 pathway. Cancer Manag Res 2018; 11:143-156. [PMID: 30613163 PMCID: PMC6306051 DOI: 10.2147/cmar.s191176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background NPM1 is a multifunctional phosphoprotein that commutes between the cytoplasm and nucleus in cell cycle process, which appears to be actively involved in tumorigenesis. Herein, we sought to investigate the possible role and prognostic value of NPM1 in triple-negative breast cancer (TNBC). Methods An array of public databases, including bc-GenExMiner v4.0, GOBO, GEPIA, UAL-CAN, ONCOMINE database and Kaplan-Meier plotter, were used to investigate the expression feature and potential function of NPM1 in TNBC. Immunohistochemistry, immunofluorescence, proliferation and colony formation, flow cytometry and western-blotting assays were used to analyze and verify the function and relevant mechanism of NPM1 in TNBC tissues and cells. Results According to analysis from bc-GenExMiner, the expression level of NPM1 was significantly higher in basal-like subtypes than luminal-A, HER-2 or normal-like subtypes of breast cancer (P<0.0001). GOBO database analysis indicated that the expression of NPM1 in basal-A or basal-B was significantly higher than luminal-like breast cancer cells. Immunohistochemistry assay in 52 TNBC tissue samples showed that positive expression of Ki-67 was 93.5% in the high-NPM1-expression group and 66.7% in the low-NPM1-expression group, respectively (P=0.032). Proliferation and colony formation assays demonstrated that inhibition of NPM1 suppressed cell growth by approximately 2-fold and reduced the number of colonies by 3-4-fold in MDA-MB-231 and BT549 cells. Moreover, inhibition of NPM1 in MDA-MB-231 and BT549 cells increased the percentage of cells at G0/G1 phase and decreased the percentage of cells at both S and G2/M phase, as compared with control counterparts. Western-blotting results showed that down-regulation of NPM1 could elevate CDH1 and p27kip1 expression, while decrease Skp2 expression both in MDA-MB-231 and BT549 cells. In addition, high mRNA expression of NPM1 correlated with shorter RFS (HR=1.64, P=0.00013) and OS (HR=2.45, P=0.00034) in patients with TNBC. Conclusions NPM1 is significantly high expressed basal-like/triple-negative breast cancer and is correlated with shorter RFS and OS in this subset of patients. Knockdown of NPM1 impairs the proliferative capacity of TNBC cells via activation of the CDH1/Skp2/p27kip1 pathway. Targeting NPM1 is a potential therapeutic strategy against TNBC.
Collapse
Affiliation(s)
- De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China,
| | - Yingsheng Xiao
- Department of Thyroid Surgery, Shantou Central Hospital, Shantou 515000, China
| | - Jianling Zhu
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou 515031, China
| | - Chunyan Peng
- Department of Clinical Laboratory, Taihe Hospital of Hubei University of Medicine, Hubei 442008, China
| | - Weiquan Liang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China,
| | - Haoyu Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China,
| |
Collapse
|
43
|
Role of Spata34 in cell proliferation and its expression pattern in postnatal development of rat testis. Mol Biol Rep 2018; 45:2697-2705. [PMID: 30341690 DOI: 10.1007/s11033-018-4439-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
Abstract
Spata34 is a testis-specific-expressed gene which exerts diverse functions in testis development. This study intends to examine the expression profiles of Spata34 in postnatal rat testis, and explore its potential roles in cell proliferation in vitro. We found that the mRNA and protein expression levels of Spata34 were developmentally upregulated in rat testes during the early 1-7 postnatal weeks using real-time polymerase chain reaction and western blotting. Immunohistochemical results indicated that Spata34 protein was mainly detected in the nuclear and cytoplasm of spermatocytes and round spermatids. The possible function of Spata34 in cellular proliferation was analyzed using cell counting kit, colony formation and flow cytometry assays. Our results showed that overexpression of Spata34 in multipotent adult germline stem cell lines (maGSC129SV) cells markedly facilitated cell proliferation with a large increase in cell numbers in S phase of cell cycle. While knockdown of Spata34 expression by specific siRNA suppressed the growth of maGSC129SV cells and triggered cell-cycle arrest at G1/S phase transition, which was related to the elevation of p21 and p27 and decrease of Cyclin D1 and Cyclin D-dependent kinase 4. Altogether, our results indicated that the Spata34 gene evokes unique expression patterns during postnatal development of the rat testis, and for the first time, unravels the function of Spata34 on regulating cell-cycle progress through p21 and p27 pathway.
Collapse
|
44
|
Chen S, He H, Wang Y, Liu L, Liu Y, You H, Dong Y, Lyu J. Poor prognosis of nucleophosmin overexpression in solid tumors: a meta-analysis. BMC Cancer 2018; 18:838. [PMID: 30126359 PMCID: PMC6102940 DOI: 10.1186/s12885-018-4718-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/02/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nucleophosmin is a non-ribosomal nucleolar phosphoprotein that is found primarily in the nucleolus region of cell nucleus, plays multiple important roles in tumor processes. Accumulated previous studies have reported a potential value of NPM acted as a biomarker for prognosis in various solid tumors, but the results were more inconsistency. We performed this meta-analysis to precisely evaluate the prognostic significance of NPM in solid tumors. METHODS Clinical data were collected from a comprehensive literature search in PubMed, Web of Science, Embase, and China National Knowledge Infrastructure databases (up to October, 2017). A total of 11 studied with 997 patients were used to assess the association of NPM expression and patients' overall survival (OS). The hazard ratio (HR) or odds ratio (OR) with its 95% confidence intervals (CI) were calculated to estimate the effect. RESULTS The pooled results indicated that higher expression of NPM was observably correlated with poor OS in solid tumor (HR = 1.85, 95% CI: 1.44-2.38, P < 0.001). Furthermore, high expression of NPM was associated with some phenotypes of tumor aggressiveness, such as tumor stage (4 studies, III/IV vs. I/II, OR = 5.21, 95% CI: 2.72-9.56, P < 0.001), differentiation grade (poor vs. well/moderate, OR = 1.82, 95% CI: 1.01-3.27, P = 0.046). CONCLUSION This meta-analysis indicated that NPM may act as a valuable prognosis biomarker and a potential therapeutic target in human solid tumors.
Collapse
Affiliation(s)
- Siying Chen
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China
| | - Hairong He
- Clinical Research Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China
| | - Yan Wang
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China
| | - Leichao Liu
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China
| | - Yang Liu
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China
| | - Haisheng You
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China
| | - Yalin Dong
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China.
| | - Jun Lyu
- Clinical Research Center, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 of Yanta west road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
45
|
Magherini F, Fiaschi T, Valocchia E, Becatti M, Pratesi A, Marzo T, Massai L, Gabbiani C, Landini I, Nobili S, Mini E, Messori L, Modesti A, Gamberi T. Antiproliferative effects of two gold(I)-N-heterocyclic carbene complexes in A2780 human ovarian cancer cells: a comparative proteomic study. Oncotarget 2018; 9:28042-28068. [PMID: 29963261 PMCID: PMC6021324 DOI: 10.18632/oncotarget.25556] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 05/19/2018] [Indexed: 02/07/2023] Open
Abstract
Au(NHC) and Au(NHC)2, i.e. a monocarbene gold(I) complex and the corresponding bis(carbene) complex, are two structurally related compounds, endowed with cytotoxic properties against several cancer cell lines. Herein, we explore the molecular and cellular mechanisms at the basis of their cytotoxicity in A2780 human ovarian cancer cells. Through a comparative proteomic analysis, we demonstrated that the number of modulated proteins is far larger in Au(NHC)2-treated than in Au(NHC)-treated A2780 cells. Both gold compounds mainly affected proteins belonging to the following functional classes: protein synthesis, metabolism, cytoskeleton and stress response and chaperones. Particularly, Au(NHC)2 gave rise to an evident upregulation of several glycolytic enzymes. Moreover, only Au(NHC)2 triggered a net impairment of respiration and a metabolic shift towards glycolysis, suggesting that mitochondria are relevant cellular targets. We also found that both carbenes, similarly to the gold(I) compound auranofin, caused a strong inhibition of the seleno-enzyme thioredoxin reductase (TrxR). In conclusion, we highlighted that coordination of two carbene ligands to the same gold(I) center greatly enhances the antiproliferative effects of the resulting compound in comparison to the monocarbene derivative. Moreover, TrxR inhibition and metabolic impairment seem to play a major role in the Au(NHC)2 cytotoxicity. Overall, these antiproliferative effects were also confirmed on other two human ovarian cancer cell lines (i.e. SKOV3 and IGROV1).
Collapse
Affiliation(s)
- Francesca Magherini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Fiaschi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Elisa Valocchia
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Alessandro Pratesi
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Tiziano Marzo
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy.,Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Chiara Gabbiani
- Department of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
| | - Ida Landini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stefania Nobili
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Enrico Mini
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Florence, Italy
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Tania Gamberi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
46
|
Abstract
The nucleolus is a prominent subnuclear compartment, where ribosome biosynthesis takes place. Recently, the nucleolus has gained attention for its novel role in the regulation of cellular stress. Nucleolar stress is emerging as a new concept, which is characterized by diverse cellular insult-induced abnormalities in nucleolar structure and function, ultimately leading to activation of p53 or other stress signaling pathways and alterations in cell behavior. Despite a number of comprehensive reviews on this concept, straightforward and clear-cut way criteria for a nucleolar stress state, regarding the factors that elicit this state, the morphological and functional alterations as well as the rationale for p53 activation are still missing. Based on literature of the past two decades, we herein summarize the evolution of the concept and provide hallmarks of nucleolar stress. Along with updated information and thorough discussion of existing confusions in the field, we pay particular attention to the current understanding of the sensing mechanisms, i.e., how stress is integrated by p53. In addition, we propose our own emphasis regarding the role of nucleolar protein NPM1 in the hallmarks of nucleolar stress and sensing mechanisms. Finally, the links of nucleolar stress to human diseases are briefly and selectively introduced.
Collapse
Affiliation(s)
- Kai Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Jie Yang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Jing Yi
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| |
Collapse
|
47
|
Kunchala P, Kuravi S, Jensen R, McGuirk J, Balusu R. When the good go bad: Mutant NPM1 in acute myeloid leukemia. Blood Rev 2018; 32:167-183. [DOI: 10.1016/j.blre.2017.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 12/26/2022]
|
48
|
Sakashita G, Kiyoi H, Naoe T, Urano T. Analysis of the oligomeric states of nucleophosmin using size exclusion chromatography. Sci Rep 2018; 8:4008. [PMID: 29507312 PMCID: PMC5838202 DOI: 10.1038/s41598-018-22359-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/21/2018] [Indexed: 12/18/2022] Open
Abstract
Nucleophosmin (NPM1) is a multifunctional phosphoprotein which plays important roles in diverse biological processes. NPM1 can form homo- or hetero-oligomers through its N-terminal region, and bind DNA and RNA through its C-terminal region. However, the monomer-oligomer distribution of NPM1, and the extent of NPM1 binding and unbinding to RNA in living cells, are not fully understood. In this work, we analysed molecular complexes of NPM1 using size exclusion chromatography. We found that a substantial fraction of NPM1 behaves as an oligomer in HeLa cells. Furthermore, we identified three distinct oligomeric states of NPM1 using molecular characterization techniques such as subcellular localization and RNA binding. Finally, we found that heterozygous expression of a leukemia-associated NPM1 mutant significantly decreases the RNA binding level. Our data demonstrate that size exclusion chromatography provides a powerful tool for analysing NPM1 oligomers.
Collapse
Affiliation(s)
- Gyosuke Sakashita
- Department of Biochemistry, Shimane University School of Medicine, Izumo, 693-8501, Japan.
| | - Hitoshi Kiyoi
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Tomoki Naoe
- National Hospital Organization Nagoya Medical Centre, Nagoya, 460-0001, Japan
| | - Takeshi Urano
- Department of Biochemistry, Shimane University School of Medicine, Izumo, 693-8501, Japan
| |
Collapse
|
49
|
Luchinat E, Chiarella S, Franceschini M, Di Matteo A, Brunori M, Banci L, Federici L. Identification of a novel nucleophosmin-interaction motif in the tumor suppressor p14arf. FEBS J 2018; 285:832-847. [PMID: 29283500 DOI: 10.1111/febs.14373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/20/2017] [Accepted: 12/20/2017] [Indexed: 12/16/2022]
Abstract
The tumor suppressor p14arf interacts, in response to oncogenic signals, with the p53 E3-ubiquitin ligase HDM2, thereby resulting in p53 stabilization and activation. In addition, it also exerts tumor-suppressive functions in p53-independent contexts. The activities of p14arf are regulated by the nucleolar chaperone nucleophosmin (NPM1), which controls its levels and cellular localization. In acute myeloid leukemia with mutations in the NPM1 gene, mutated NPM1 aberrantly translocates in the cytosol carrying with itself p14arf that is subsequently degraded, thus impairing the p14arf-HDM2-p53 axis. In this work we investigated the complex between these two proteins by means of NMR and other techniques. We identified a novel NPM1-interacting motif in the C-terminal region of p14arf, which corresponds to its predicted nucleolar localization signal. This motif recognizes a specific region of the NPM1 N-terminal domain and, upon binding, the two proteins form soluble high molecular weight complexes. By NMR, we identified critical residues on both proteins involved in the interaction. Collectively, our data provide a structural framework to rationalize the overall assembly of the p14arf-NPM1 supramolecular complexes. A number of p14arf cancer-associated mutations cluster in this motif and their effect on the interaction with NPM1 was also analyzed.
Collapse
Affiliation(s)
- Enrico Luchinat
- CERM, Centro Risonanze Magnetiche, Università di Firenze, Italy.,Dipartimento di Scienze Biomediche, Sperimentali e Cliniche - Università di Firenze, Italy
| | - Sara Chiarella
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | - Mimma Franceschini
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | - Adele Di Matteo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Maurizio Brunori
- Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli" - Sapienza Università di Roma, Italy
| | - Lucia Banci
- CERM, Centro Risonanze Magnetiche, Università di Firenze, Italy.,Dipartimento di Chimica, Università di Firenze, Italy
| | - Luca Federici
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| |
Collapse
|
50
|
De Cola A, Franceschini M, Di Matteo A, Colotti G, Celani R, Clemente E, Ippoliti R, Cimini AM, Dhez AC, Vallée B, Raineri F, Cascone I, Destouches D, De Laurenzi V, Courty J, Federici L. N6L pseudopeptide interferes with nucleophosmin protein-protein interactions and sensitizes leukemic cells to chemotherapy. Cancer Lett 2017; 412:272-282. [PMID: 29111347 DOI: 10.1016/j.canlet.2017.10.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
NPM1 is a multifunctional nucleolar protein implicated in several processes such as ribosome maturation and export, DNA damage response and apoptotic response to stress stimuli. The NPM1 gene is involved in human tumorigenesis and is found mutated in one third of acute myeloid leukemia patients, leading to the aberrant cytoplasmic localization of NPM1. Recent studies indicated that the N6L multivalent pseudopeptide, a synthetic ligand of cell-surface nucleolin, is also able to bind NPM1 with high affinity. N6L inhibits cell growth with different mechanisms and represents a good candidate as a novel anticancer drug for a number of malignancies of different histological origin. In this study we investigated whether N6L treatment could drive antitumor effect in acute myeloid leukemia cell lines. We found that N6L binds NPM1 at the N-terminal domain, co-localizes with cytoplasmic, mutated NPM1, and interferes with its protein-protein associations. N6L toxicity appears to be p53 dependent but interestingly, the leukemic cell line harbouring the mutated form of NPM1 is more resistant to treatment, suggesting that NPM1 cytoplasmic delocalization confers protection from p53 activation. Moreover, we show that N6L sensitizes AML cells to doxorubicin and cytarabine treatment. These studies suggest that N6L may be a promising option in combination therapies for acute myeloid leukemia treatment.
Collapse
Affiliation(s)
- A De Cola
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, Centro Scienze dell'Invecchiamento e Medicina Traslazionale, Universita' "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - M Franceschini
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, Centro Scienze dell'Invecchiamento e Medicina Traslazionale, Universita' "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - A Di Matteo
- Istituto di Biologia e Patologia Molecolari del CNR, Rome, Italy
| | - G Colotti
- Istituto di Biologia e Patologia Molecolari del CNR, Rome, Italy
| | - R Celani
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, Centro Scienze dell'Invecchiamento e Medicina Traslazionale, Universita' "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - E Clemente
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, Centro Scienze dell'Invecchiamento e Medicina Traslazionale, Universita' "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - R Ippoliti
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università dell'Aquila, L'Aquila, Italy
| | - A M Cimini
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università dell'Aquila, L'Aquila, Italy; Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, USA; National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi, Italy
| | - A C Dhez
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, Università dell'Aquila, L'Aquila, Italy
| | - B Vallée
- Université; Paris-Est Créteil, CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - F Raineri
- Université; Paris-Est Créteil, CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - I Cascone
- Université; Paris-Est Créteil, CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - D Destouches
- Université; Paris-Est Créteil, CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - V De Laurenzi
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, Centro Scienze dell'Invecchiamento e Medicina Traslazionale, Universita' "G. d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - J Courty
- Université; Paris-Est Créteil, CNRS, ERL 9215, Laboratoire de Recherche sur la Croissance Cellulaire, la Réparation et la Régénération Tissulaires (CRRET), Créteil, F-94000, France
| | - L Federici
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche, CESI-MeT, Centro Scienze dell'Invecchiamento e Medicina Traslazionale, Universita' "G. d'Annunzio" Chieti-Pescara, Chieti, Italy.
| |
Collapse
|