1
|
Toropko M, Chuvpilo S, Karabelsky A. miRNA-Mediated Mechanisms in the Generation of Effective and Safe Oncolytic Viruses. Pharmaceutics 2024; 16:986. [PMID: 39204331 PMCID: PMC11360794 DOI: 10.3390/pharmaceutics16080986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by inhibiting the translation of target transcripts. The expression profiles of miRNAs vary in different tissues and change with the development of diseases, including cancer. This feature has begun to be used for the modification of oncolytic viruses (OVs) in order to increase their selectivity and efficacy. OVs represent a relatively new class of anticancer drugs; they are designed to replicate in cancer tumors and destroy them. These can be natural viruses that can replicate within cancer tumor cells, or recombinant viruses created in laboratories. There are some concerns regarding OVs' toxicity, due to their ability to partially replicate in healthy tissues. In addition, lytic and immunological responses upon OV therapy are not always sufficient, so various OV editing methods are used. This review discusses the latest results of preclinical and clinical studies of OVs, modifications of which are associated with the miRNA-mediated mechanism of gene silencing.
Collapse
Affiliation(s)
- Mariia Toropko
- Gene Therapy Department, Sirius University of Science and Technology, Olympic Avenue, 1, 354340 Sochi, Russia; (S.C.); (A.K.)
| | | | | |
Collapse
|
2
|
Delwar Z, Tatsiy O, Chouljenko DV, Lee IF, Liu G, Liu X, Bu L, Ding J, Singh M, Murad YM, Jia WWG. Prophylactic Vaccination and Intratumoral Boost with HER2-Expressing Oncolytic Herpes Simplex Virus Induces Robust and Persistent Immune Response against HER2-Positive Tumor Cells. Vaccines (Basel) 2023; 11:1805. [PMID: 38140209 PMCID: PMC10747554 DOI: 10.3390/vaccines11121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/11/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The development of effective cancer vaccines remains a significant challenge due to immune tolerance and limited clinical benefits. Oncolytic herpes simplex virus type 1 (oHSV-1) has shown promise as a cancer therapy, but efficacy is often limited in advanced cancers. In this study, we constructed and characterized a novel oHSV-1 virus (VG22401) expressing the human epidermal growth factor receptor 2 (HER2), a transmembrane glycoprotein overexpressed in many carcinomas. VG22401 exhibited efficient replication and HER2 payload expression in both human and mouse colorectal cancer cells. Mice immunized with VG22401 showed significant binding of serum anti-HER2 antibodies to HER2-expressing tumor cells, inducing antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). Furthermore, mice primed with VG22401 and intratumorally boosted with the same virus showed enhanced antitumor efficacy in a bilateral syngeneic HER2(+) tumor model, compared to HER2-null backbone virus. This effect was accompanied by the induction of anti-HER2 T cell responses. Our findings suggest that peripheral priming with HER2-expressing oHSV-1 followed by an intratumoral boost with the same virus can significantly enhance antitumor immunity and efficacy, presenting a promising strategy for cancer immunotherapy.
Collapse
|
3
|
Wang X, Shen Y, Wan X, Hu X, Cai WQ, Wu Z, Xin Q, Liu X, Gui J, Xin HY, Xin HW. Oncolytic virotherapy evolved into the fourth generation as tumor immunotherapy. J Transl Med 2023; 21:500. [PMID: 37491263 PMCID: PMC10369732 DOI: 10.1186/s12967-023-04360-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 07/16/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND Oncolytic virotherapy (OVT) is a promising anti-tumor modality that utilizes oncolytic viruses (OVs) to preferentially attack cancers rather than normal tissues. With the understanding particularly in the characteristics of viruses and tumor cells, numerous innovative OVs have been engineered to conquer cancers, such as Talimogene Laherparepvec (T-VEC) and tasadenoturev (DNX-2401). However, the therapeutic safety and efficacy must be further optimized and balanced to ensure the superior safe and efficient OVT in clinics, and reasonable combination therapy strategies are also important challenges worthy to be explored. MAIN BODY Here we provided a critical review of the development history and status of OVT, emphasizing the mechanisms of enhancing both safety and efficacy. We propose that oncolytic virotherapy has evolved into the fourth generation as tumor immunotherapy. Particularly, to arouse T cells by designing OVs expressing bi-specific T cell activator (BiTA) is a promising strategy of killing two birds with one stone. Amazing combination of therapeutic strategies of OVs and immune cells confers immense potential for managing cancers. Moreover, the attractive preclinical OVT addressed recently, and the OVT in clinical trials were systematically reviewed. CONCLUSION OVs, which are advancing into clinical trials, are being envisioned as the frontier clinical anti-tumor agents coming soon.
Collapse
Affiliation(s)
- Xianwang Wang
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| | - Yihua Shen
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xingxia Wan
- College of Arts and Sciences, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xiaoqing Hu
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Wen-Qi Cai
- Xinzhou Traditional Chinese Medicine Hospital, Zhongnan Hospital of Wuhan University (Xinzhou), Wuhan, 430000, Hubei, China
| | - Zijun Wu
- The Second School of Clinical Medicine, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Qiang Xin
- School of Graduate Students, Inner Mongolia Medical University, Inner Mongolian Autonomous Region, Hohhot, 010110, China
| | - Xiaoqing Liu
- College of Arts and Sciences, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Hong-Yi Xin
- The Doctoral Scientific Research Center, People's Hospital of Lianjiang, Guangdong, 524400, China.
- The Doctoral Scientific Research Center, Affiliated People's Hospital of Lianjiang, Guangdong Medical University, Guangdong, 524400, China.
| | - Hong-Wu Xin
- Department of Biochemistry and Molecular Biology, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| |
Collapse
|
4
|
Chouljenko DV, Murad YM, Lee IF, Delwar Z, Ding J, Liu G, Liu X, Bu X, Sun Y, Samudio I, Jia WWG. Targeting carcinoembryonic antigen-expressing tumors using a novel transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1. Mol Ther Oncolytics 2023; 28:334-348. [PMID: 36938544 PMCID: PMC10018392 DOI: 10.1016/j.omto.2023.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
VG2025 is a recombinant oncolytic herpes simplex virus type 1 (HSV-1) that uses transcriptional and translational dual regulation (TTDR) of critical viral genes to enhance virus safety and promote tumor-specific virus replication without reducing virulence. The TTDR platform is based on transcriptional control of the essential HSV-1 immediate-early protein ICP27 using a tumor-specific carcinoembryonic antigen (CEA) promoter, coupled with translational control of the neurovirulence factor ICP34.5 using multiple microRNA (miR)-binding sites. VG2025 further incorporates IL-12 and the IL-15/IL-15 receptor alpha subunit complex to enhance the antitumor and immune stimulatory properties of oncolytic HSVs. The TTDR strategy was verified in vitro and shown to be highly selective. Strong in vivo antitumor efficacy was observed following both intratumoral and intravenous administration. Clear abscopal and immune memory effects were also evident, indicating a robust antitumor immune response. Gene expression profiling of treated tumors revealed increased immune cell infiltration and activation of multiple immune-signaling pathways when compared with the backbone virus. Absence of neurotoxicity was verified in mice and in rhesus monkeys. Taken together, the enhanced tumor clearance, excellent safety profile, and positive correlation between CEA levels and viral replication efficiency may provide an opportunity for using biomarker-based precision medicine in oncolytic virotherapy.
Collapse
Affiliation(s)
- Dmitry V. Chouljenko
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
- Corresponding author: Dmitry V. Chouljenko, Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada.
| | - Yanal M. Murad
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - I-Fang Lee
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Zahid Delwar
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Jun Ding
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Guoyu Liu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Xiaohu Liu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Xuexian Bu
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Yi Sun
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - Ismael Samudio
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| | - William Wei-Guo Jia
- Virogin Biotech Canada Ltd., 150-13511 Commerce Parkway, Richmond, BC V6V 2J8, Canada
| |
Collapse
|
5
|
Kato T, Nakamori M, Matsumura S, Nakamura M, Ojima T, Fukuhara H, Ino Y, Todo T, Yamaue H. Oncolytic virotherapy with human telomerase reverse transcriptase promoter regulation enhances cytotoxic effects against gastric cancer. Oncol Lett 2021; 21:490. [PMID: 33968206 PMCID: PMC8100961 DOI: 10.3892/ol.2021.12751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/18/2021] [Indexed: 12/19/2022] Open
Abstract
Currently, gastric cancer is the third most common cause of cancer-associated mortality worldwide. Oncolytic virotherapy using herpes simplex virus (HSV) has emerged as a novel therapeutic strategy against cancer. Telomerase is activated in >90of malignant tumors, including gastric cancer, and human telomerase reverse transcriptase (hTERT) is one of the major components of telomerase enzyme. Therefore, in oncolytic HSV, placing the essential genes under the regulation of the hTERT promoter may enhance its antitumor efficacy. The present study examined the antitumor effect of fourth-generation oncolytic HSVs, which contain the ICP6 gene under the regulation of the hTERT promoter (T-hTERT). To examine the association between hTERT expression and prognosis in patients with gastric cancer, immunohistochemical analysis of resected tumor specimens was performed. The enhanced efficacy of T-hTERT was determined in human gastric cancer cell lines in vitro and in human gastric adenocarcinoma specimens in vivo. In in vitro experiments, enhanced cytotoxicity of T-hTERT was observed in MKN1, MKN28 and MKN45 cells compared with that of a third-generation oncolytic HSV, T-null. In particular, the cytotoxicity of T-hTERT was markedly enhanced in MKN45 cells. Furthermore, in vivo experiments demonstrated that 36.7 and 54.9% of cells were found to be lysed 48 h after infection with T-null or T-hTERT viruses at 0.01 pfu/cell, respectively. The T-hTERT-treated group exhibited considerably lower cell viability than the control [phosphate-buffered saline (-)] group. Therefore, employing oncolytic HSVs that contain the ICP6 gene under the regulation of the hTERT promoter may be an effective therapeutic strategy for gastric cancer. To the best of our knowledge, the present study was the first to describe the effect of an oncolytic HSV with ICP6 expression regulated by the hTERT promoter on gastric cancer cells.
Collapse
Affiliation(s)
- Tomoya Kato
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan
| | - Mikihito Nakamori
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan
| | - Shuichi Matsumura
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan
| | - Masaki Nakamura
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan
| | - Toshiyasu Ojima
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan
| | - Hiroshi Fukuhara
- Department of Urology, Kyorin University, School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Yasushi Ino
- Division of Innovative Cancer Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tomoki Todo
- Division of Innovative Cancer Therapy, The Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Wakayama 641-8510, Japan
| |
Collapse
|
6
|
Sier VQ, de Vries MR, van der Vorst JR, Vahrmeijer AL, van Kooten C, Cruz LJ, de Geus-Oei LF, Ferreira V, Sier CFM, Alves F, Muthana M. Cell-Based Tracers as Trojan Horses for Image-Guided Surgery. Int J Mol Sci 2021; 22:E755. [PMID: 33451116 PMCID: PMC7828607 DOI: 10.3390/ijms22020755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Surgeons rely almost completely on their own vision and palpation to recognize affected tissues during surgery. Consequently, they are often unable to distinguish between different cells and tissue types. This makes accurate and complete resection cumbersome. Targeted image-guided surgery (IGS) provides a solution by enabling real-time tissue recognition. Most current targeting agents (tracers) consist of antibodies or peptides equipped with a radiolabel for Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT), magnetic resonance imaging (MRI) labels, or a near-infrared fluorescent (NIRF) dye. These tracers are preoperatively administered to patients, home in on targeted cells or tissues, and are visualized in the operating room via dedicated imaging systems. Instead of using these 'passive' tracers, there are other, more 'active' approaches of probe delivery conceivable by using living cells (macrophages/monocytes, neutrophils, T cells, mesenchymal stromal cells), cell(-derived) fragments (platelets, extracellular vesicles (exosomes)), and microorganisms (bacteria, viruses) or, alternatively, 'humanized' nanoparticles. Compared with current tracers, these active contrast agents might be more efficient for the specific targeting of tumors or other pathological tissues (e.g., atherosclerotic plaques). This review provides an overview of the arsenal of possibilities applicable for the concept of cell-based tracers for IGS.
Collapse
Affiliation(s)
- Vincent Q. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Margreet R. de Vries
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Joost R. van der Vorst
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Alexander L. Vahrmeijer
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
| | - Cornelis van Kooten
- Department of Nephrology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Luis J. Cruz
- Department of Radiology, Translational Nanomaterials and Imaging Group, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Biomedical Photonic Imaging Group, University of Twente, 7522 NB Enschede, The Netherlands
| | - Valerie Ferreira
- Department of Research and Development, UniQure, 1100 DA Amsterdam, The Netherlands;
| | - Cornelis F. M. Sier
- Department of Surgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (V.Q.S.); (M.R.d.V.); (J.R.v.d.V.); (A.L.V.)
- Percuros B.V. Leiden, 2333 CL Leiden, The Netherlands
| | - Frauke Alves
- Translational Molecular Imaging, Clinic of Hematology and Medical Oncology, Institute of Diagnostic and Interventional Radiology, University Medicine Center Göttingen and Max-Planck-Institute for Experimental Medicine, 37075 Göttingen, Germany;
| | - Munitta Muthana
- Department of Infection and Immunity, University of Sheffield, Sheffield S10 2RX, UK;
| |
Collapse
|
7
|
Sasso E, D'Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A. New viral vectors for infectious diseases and cancer. Semin Immunol 2020; 50:101430. [PMID: 33262065 DOI: 10.1016/j.smim.2020.101430] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Nouscom srl, Via di Castel Romano 100, 00128 Rome, Italy; Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | - Nicola Zambrano
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| | | | | | - Alfredo Nicosia
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
8
|
Hromic-Jahjefendic A, Lundstrom K. Viral Vector-Based Melanoma Gene Therapy. Biomedicines 2020; 8:E60. [PMID: 32187995 PMCID: PMC7148454 DOI: 10.3390/biomedicines8030060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/06/2023] Open
Abstract
Gene therapy applications of oncolytic viruses represent an attractive alternative for cancer treatment. A broad range of oncolytic viruses, including adenoviruses, adeno-associated viruses, alphaviruses, herpes simplex viruses, retroviruses, lentiviruses, rhabdoviruses, reoviruses, measles virus, Newcastle disease virus, picornaviruses and poxviruses, have been used in diverse preclinical and clinical studies for the treatment of various diseases, including colon, head-and-neck, prostate and breast cancer as well as squamous cell carcinoma and glioma. The majority of studies have focused on immunotherapy and several drugs based on viral vectors have been approved. However, gene therapy for malignant melanoma based on viral vectors has not been utilized to its full potential yet. This review represents a summary of the achievements of preclinical and clinical studies using viral vectors, with the focus on malignant melanoma.
Collapse
Affiliation(s)
- Altijana Hromic-Jahjefendic
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina;
| | | |
Collapse
|
9
|
Sasso E, Froechlich G, Cotugno G, D'Alise AM, Gentile C, Bignone V, De Lucia M, Petrovic B, Campadelli-Fiume G, Scarselli E, Nicosia A, Zambrano N. Replicative conditioning of Herpes simplex type 1 virus by Survivin promoter, combined to ERBB2 retargeting, improves tumour cell-restricted oncolysis. Sci Rep 2020; 10:4307. [PMID: 32152425 PMCID: PMC7062820 DOI: 10.1038/s41598-020-61275-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy is emerging as a promising therapeutic option for solid tumours. Several oncolytic vectors in clinical testing are based on attenuated viruses; thus, efforts are being taken to develop a new repertoire of oncolytic viruses, based on virulent viral genomes. This possibility, however, raises concerns dealing with the safety features of the virulent phenotypes. We generated a double regulated Herpes simplex type-1 virus (HSV-1), in which tumour cell restricted replicative potential was combined to selective entry via ERBB2 receptor retargeting. The transcriptional control of the viral alpha4 gene encoding for the infected cell protein-4 (ICP4) by the cellular Survivin/BIRC5 promoter conferred a tumour cell-restricted replicative potential to a virulent HSV-1 genome. The combination of the additional ERBB2 retargeting further improved the selectivity for tumour cells, conferring to the double regulated virus a very limited ability to infect and propagate in non-cancerous cells. Accordingly, a suitable replicative and cytotoxic potential was maintained in tumour cell lines, allowing the double regulated virus to synergize in vivo with immune checkpoint (anti-PD-1) blockade in immunocompetent mice. Thus, restricting the replicative spectrum and tropism of virulent HSV-1 genomes by combination of conditional replication and retargeting provides an improved safety, does not alter the oncolytic strength, and is exploitable for its therapeutic potential with immune checkpoint blockade in cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5, 80131, Naples, Italy. .,CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145, Naples, Italy. .,Nouscom S.R.L., Via di Castel Romano 100, 00128, Rome, Italy.
| | | | | | | | - Chiara Gentile
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5, 80131, Naples, Italy.,CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145, Naples, Italy
| | | | - Maria De Lucia
- Nouscom S.R.L., Via di Castel Romano 100, 00128, Rome, Italy
| | | | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Via San Giacomo 12, 40126, Bologna, Italy
| | - Elisa Scarselli
- Nouscom S.R.L., Via di Castel Romano 100, 00128, Rome, Italy
| | - Alfredo Nicosia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5, 80131, Naples, Italy.,CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145, Naples, Italy.,Nouscom S.R.L., Via di Castel Romano 100, 00128, Rome, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini, 5, 80131, Naples, Italy.,CEINGE Biotecnologie Avanzate S.C.aR.L., Via G. Salvatore 486, 80145, Naples, Italy
| |
Collapse
|
10
|
Gorbet MJ, Ranjan A. Cancer immunotherapy with immunoadjuvants, nanoparticles, and checkpoint inhibitors: Recent progress and challenges in treatment and tracking response to immunotherapy. Pharmacol Ther 2019; 207:107456. [PMID: 31863820 DOI: 10.1016/j.pharmthera.2019.107456] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Chemotherapy, surgery, and radiation are accepted as the preferred treatment modalities against cancer, but in recent years the use of immunotherapeutic approaches has gained prominence as the fourth treatment modality in cancer patients. In this approach, a patient's innate and adaptive immune systems are activated to achieve clearance of occult cancerous cells. In this review, we discuss the preclinical and clinical immunotherapeutic (e.g., immunoadjuvants (in-situ vaccines, oncolytic viruses, CXC antagonists, device activated agents), organic and inorganic nanoparticles, and checkpoint blockade) that are under investigation for cancer therapy and diagnostics. Additionally, the innovations in imaging of immune cells for tracking therapeutic responses and limitations (e.g., toxicity, inefficient immunomodulation, etc.) are described. Existing data suggest that if immune therapy is optimized, it can be a real and potentially paradigm-shifting cancer treatment frontier.
Collapse
Affiliation(s)
- Michael-Joseph Gorbet
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA
| | - Ashish Ranjan
- Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74074, USA.
| |
Collapse
|
11
|
Affiliation(s)
- Claudia Hill
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Robert Carlisle
- Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Hua L, Wakimoto H. Oncolytic herpes simplex virus therapy for malignant glioma: current approaches to successful clinical application. Expert Opin Biol Ther 2019; 19:845-854. [PMID: 31046478 DOI: 10.1080/14712598.2019.1614557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION With the approval of talimogene laherparepvec (T-VEC) for advanced malignant melanoma, virotherapy using oncolytic herpes simplex virus (oHSV) is now emerging as a viable therapeutic option for cancer patients, including malignant gliomas. AREAS COVERED This review summarizes the most recent literature to provide cutting-edge knowledge about preclinical and clinical development of oHSV therapy for malignant gliomas, presenting current approaches to overcome obstacles to successful clinical application of oHSV in neuro-oncology. EXPERT OPINION Current strategies to improve the efficacy of oHSV therapy include engineering new viruses, modulation of innate and adaptive immune responses, combination with other treatments, and developing new oHSV delivery. All of these could rapidly be translated into clinical investigations, following several clinical trials that are currently ongoing.
Collapse
Affiliation(s)
- Lingyang Hua
- a Department of Neurosurgery , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| | - Hiroaki Wakimoto
- a Department of Neurosurgery , Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA
| |
Collapse
|
13
|
Kerstetter-Fogle A, Shukla S, Wang C, Beiss V, Harris PLR, Sloan AE, Steinmetz NF. Plant Virus-Like Particle In Situ Vaccine for Intracranial Glioma Immunotherapy. Cancers (Basel) 2019; 11:cancers11040515. [PMID: 30974896 PMCID: PMC6521079 DOI: 10.3390/cancers11040515] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Despite aggressive multi-modality treatment with surgery, radiation and chemotherapies, malignant glioma inevitably recurs and has dismal survival rates. Recent progress in immunotherapy has led to a resurgence of interest, and immunotherapies are being investigated for treatment of glioma. However, the unique brain anatomy and a highly immunosuppressive glioma microenvironment pose significant challenges to achieving efficacy. Thus, there is a critical need for assessment of next-generation immunotherapies for glioma. In this study, we have investigated the efficacy of the nanoparticle platform technology based on plant-derived Cowpea mosaic virus like particles (empty CPMV or eCPMV) to instigate a potent immune response against intracranial glioma. CPMV immunotherapy has been shown to efficiently reverse the immunosuppressive tumor microenvironments in pre-clinical murine models of dermal melanoma and metastatic melanoma, metastatic breast cancer, intraperitoneal ovarian cancer and in canine patients with oral melanoma. In the present study, we demonstrate that in situ administration of CPMV immunotherapy in the setting of glioma can effectively recruit unique subset of effector innate and adaptive immune cells to the brain parenchyma while reducing immune suppressive cellular population, leading to regression of intracranial glioma. The in situ CPMV nanoparticle vaccine offers a potent yet safe and localized immunotherapy for intracranial glioma.
Collapse
Affiliation(s)
- Amber Kerstetter-Fogle
- Department of Neurological Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Sourabh Shukla
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Chao Wang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Veronique Beiss
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
| | - Peggy L R Harris
- Department of Neurological Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Andrew E Sloan
- Department of Neurological Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
- University Hospitals-Cleveland Medical Center & the Seidman Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA 92093, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Pol JG, Lévesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 2018; 7:e1503032. [PMID: 30524901 PMCID: PMC6279343 DOI: 10.1080/2162402x.2018.1503032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 02/08/2023] Open
Abstract
Oncolytic viruses selectively target and kill cancer cells in an immunogenic fashion, thus supporting the establishment of therapeutically relevant tumor-specific immune responses. In 2015, the US Food and Drug Administration (FDA) approved the oncolytic herpes simplex virus T-VEC for use in advanced melanoma patients. Since then, a plethora of trials has been initiated to assess the safety and efficacy of multiple oncolytic viruses in patients affected with various malignancies. Here, we summarize recent preclinical and clinical progress in the field of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Samuel T. Workenhe
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, NS, Canada
- Department of Biology, Dalhousie University, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
| | - Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Jean-Eudes Fahrner
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Transgene S.A., Illkirch-Graffenstaden, France
| | | | - John C. Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Karen L. Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
15
|
Lundstrom K. New frontiers in oncolytic viruses: optimizing and selecting for virus strains with improved efficacy. Biologics 2018; 12:43-60. [PMID: 29445265 PMCID: PMC5810530 DOI: 10.2147/btt.s140114] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses have demonstrated selective replication and killing of tumor cells. Different types of oncolytic viruses – adenoviruses, alphaviruses, herpes simplex viruses, Newcastle disease viruses, rhabdoviruses, Coxsackie viruses, and vaccinia viruses – have been applied as either naturally occurring or engineered vectors. Numerous studies in animal-tumor models have demonstrated substantial tumor regression and prolonged survival rates. Moreover, clinical trials have confirmed good safety profiles and therapeutic efficacy for oncolytic viruses. Most encouragingly, the first cancer gene-therapy drug – Gendicine, based on oncolytic adenovirus type 5 – was approved in China. Likewise, a second-generation oncolytic herpes simplex virus-based drug for the treatment of melanoma has been registered in the US and Europe as talimogene laherparepvec.
Collapse
|
16
|
Li K, Liang J, Lin Y, Zhang H, Xiao X, Tan Y, Cai J, Zhu W, Xing F, Hu J, Yan G. A classical PKA inhibitor increases the oncolytic effect of M1 virus via activation of exchange protein directly activated by cAMP 1. Oncotarget 2018; 7:48443-48455. [PMID: 27374176 PMCID: PMC5217030 DOI: 10.18632/oncotarget.10305] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/09/2016] [Indexed: 11/25/2022] Open
Abstract
Oncolytic virotherapy is an emerging and promising treatment modality that uses replicating viruses as selective antitumor agents. Here, we report that a classical protein kinase A (PKA) inhibitor, H89, synergizes with oncolytic virus M1 in various cancer cells through activation of Epac1 (exchange protein directly activated by cAMP 1). H89 substantially increases viral replication in refractory cancer cells, leading to unresolvable Endoplasmic Reticulum stress, and cell apoptosis. Microarray analysis indicates that H89 blunts antiviral response in refractory cancer cells through retarding the nuclear translocation of NF-κB. Importantly, in vivo studies show significant antitumor effects during M1/H89 combination treatment. Overall, this study reveals a previously unappreciated role for H89 and demonstrates that activation of the Epac1 activity can improve the responsiveness of biotherapeutic agents for cancer.
Collapse
Affiliation(s)
- Kai Li
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Haipeng Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao Xiao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yaqian Tan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan Xing
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jun Hu
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
17
|
RETRACTED ARTICLE: Transcriptional retargeting of herpes simplex virus for cell-specific replication to control cancer. J Cancer Res Clin Oncol 2018; 144:2107. [PMID: 29305707 DOI: 10.1007/s00432-017-2566-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
|
18
|
De Munck J, Binks A, McNeish IA, Aerts JL. Oncolytic virus-induced cell death and immunity: a match made in heaven? J Leukoc Biol 2017; 102:631-643. [PMID: 28720686 DOI: 10.1189/jlb.5ru0117-040r] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/22/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022] Open
Abstract
Our understanding of the mechanisms responsible for cancer development has increased enormously over the last decades. However, for many cancers, this has not been translated into a significant improvement in overall survival, and overall mortality remains high. Treatment for many malignancies remains based on surgery, chemotherapy, and radiotherapy. Significant progress has been made toward the development of more specific, more potent, and less invasive treatment modalities, but such targeted therapies remain the exception for most cancers. Thus, cancer therapies based on a different mechanism of action should be explored. The immune system plays an important role in keeping tumor growth at bay. However, in many cases, these responses are not strong enough to keep tumor growth under control. Thus, immunotherapy aims to boost the immune system to suppress tumor growth efficiently. This has been demonstrated by the recent successes of immune checkpoint therapy in several cancers. Oncolytic viruses (OVs) are another exciting class of immunotherapy agent. As well as replicating selectively within and killing tumor cells, OVs are able to elicit potent anti-tumor immune responses. Therapeutic vaccination with OVs, also referred to as cancer virotherapy, can thus be tailored to elicit vigorous cellular immune responses and even target individual malignancies in a personalized manner. In this review, we will describe the intricate link among oncolytic virotherapy, tumor immunology, and immunogenic cell death (ICD) and discuss ways to harness optimally their potential for future cancer therapy.
Collapse
Affiliation(s)
- Jolien De Munck
- Laboratory for Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Brussels, Belgium; and
| | - Alex Binks
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Iain A McNeish
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Joeri L Aerts
- Laboratory for Pharmaceutical Biotechnology and Molecular Biology, Vrije Universiteit Brussel, Brussels, Belgium; and
| |
Collapse
|