1
|
Li T, Huang M, Sun N, Hua X, Chen R, Xie Q, Huang S, Du M, Zhao Y, Lin Q, Xu J, Han X, Zhao Y, Tian Z, Zhang Y, Chen W, Shen X, Huang C. Tumorigenesis of basal muscle invasive bladder cancer was mediated by PTEN protein degradation resulting from SNHG1 upregulation. J Exp Clin Cancer Res 2024; 43:50. [PMID: 38365726 PMCID: PMC10874020 DOI: 10.1186/s13046-024-02966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/23/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Phosphatase and tensin homolog deleted on chromosome ten (PTEN) serves as a powerful tumor suppressor, and has been found to be downregulated in human bladder cancer (BC) tissues. Despite this observation, the mechanisms contributing to PTEN's downregulation have remained elusive. METHODS We established targeted genes' knockdown or overexpressed cell lines to explore the mechanism how it drove the malignant transformation of urothelial cells or promoted anchorageindependent growth of human basal muscle invasive BC (BMIBC) cells. The mice model was used to validate the conclusion in vivo. The important findings were also extended to human studies. RESULTS In this study, we discovered that mice exposed to N-butyl-N-(4-hydroxybu-tyl)nitrosamine (BBN), a specific bladder chemical carcinogen, exhibited primary BMIBC accompanied by a pronounced reduction in PTEN protein expression in vivo. Utilizing a lncRNA deep sequencing high-throughput platform, along with gain- and loss-of-function analyses, we identified small nucleolar RNA host gene 1 (SNHG1) as a critical lncRNA that might drive the formation of primary BMIBCs in BBN-treated mice. Cell culture results further demonstrated that BBN exposure significantly induced SNHG1 in normal human bladder urothelial cell UROtsa. Notably, the ectopic expression of SNHG1 alone was sufficient to induce malignant transformation in human urothelial cells, while SNHG1 knockdown effectively inhibited anchorage-independent growth of human BMIBCs. Our detailed investigation revealed that SNHG1 overexpression led to PTEN protein degradation through its direct interaction with HUR. This interaction reduced HUR binding to ubiquitin-specific peptidase 8 (USP8) mRNA, causing degradation of USP8 mRNA and a subsequent decrease in USP8 protein expression. The downregulation of USP8, in turn, increased PTEN polyubiquitination and degradation, culminating in cell malignant transformation and BMIBC anchorageindependent growth. In vivo studies confirmed the downregulation of PTEN and USP8, as well as their positive correlations in both BBN-treated mouse bladder urothelium and tumor tissues of bladder cancer in nude mice. CONCLUSIONS Our findings, for the first time, demonstrate that overexpressed SNHG1 competes with USP8 for binding to HUR. This competition attenuates USP8 mRNA stability and protein expression, leading to PTEN protein degradation, consequently, this process drives urothelial cell malignant transformation and fosters BMIBC growth and primary BMIBC formation.
Collapse
Affiliation(s)
- Tengda Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Maowen Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ning Sun
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohui Hua
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ruifan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shirui Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Mengxiang Du
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yazhen Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Qianqian Lin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaoyun Han
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wei Chen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Xian Shen
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
2
|
Liao Y, Qiu Z, Bai L. miR‑302d‑3p regulates the viability, migration and apoptosis of breast cancer cells through regulating the TMBIM6‑mediated ERK signaling pathway. Mol Med Rep 2021; 24:853. [PMID: 34651659 PMCID: PMC8548939 DOI: 10.3892/mmr.2021.12493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/05/2021] [Indexed: 12/03/2022] Open
Abstract
MicroRNAs (miRs/miRNAs) play important roles in the occurrence, metastasis and prognosis of multiple types of cancers. However, the specific role of miR-302d-3p and its underlying mechanism in breast cancer (BC) have not yet been reported. The present study aimed to identify the role of miR-302D-3p in BC and its potential mechanism using BC cell lines MCF7 and MDA-MB-231 and normal breast epithelial cell MCF-10A. Cancer and paracancerous tissue from patients with BC were also used. Reverse transcription-quantitative PCR was performed to detect the expression of miR-302d-3p and transmembrane Bax inhibitor motif containing 6 (TMBIM6). Dual-luciferase reporter assays verified the binding sites of miR-302d-3p and TMBIM6. Immunohistochemistry was used to measure the expression of TMBIM6. Cell transfection techniques were used to overexpress or interfere with miR-302d-3p and TMBIM6. A Cell Counting Kit-8 assay was performed to detect cell viability, and migration was measured using a wound healing assay. Apoptosis was detected by flow cytometry. The expression levels of apoptosis-related proteins and pathway-related proteins were detected by western blotting. The expression of miR-302d-3p in BC cell lines was found to be downregulated. It was also demonstrated that miR-302d-3p could inhibit cell viability and migration and promote apoptosis. The expression of TMBIM6 in BC cell lines and tissues was upregulated. Upregulated miR-302d-3p was shown to inhibit viability and migration, and promote apoptosis by targeting TMBIM6, during which extracellular signal-regulated kinase (ERK) and its phosphorylation were inhibited in the ERK signaling pathway in cells. Overall, the present study demonstrated that miR-302d-3p could regulate the viability, migration and apoptosis of BC cells through regulating TMBIM6-mediated ERK signaling pathway.
Collapse
Affiliation(s)
- Yanru Liao
- Department of Thyroid and Breast Surgery, Baoan Central Hospital of Shenzhen, Shenzhen, Guangdong 518102, P.R. China
| | - Zhenxiong Qiu
- Department of General Surgery, Baoan Central Hospital of Shenzhen, Shenzhen, Guangdong 518102, P.R. China
| | - Ling Bai
- Department of Pathology and Central Laboratory, Baoan Central Hospital of Shenzhen, Shenzhen, Guangdong 518102, P.R. China
| |
Collapse
|
3
|
Ortega-Loubon C, Martínez-Paz P, García-Morán E, Tamayo-Velasco Á, López-Hernández FJ, Jorge-Monjas P, Tamayo E. Genetic Susceptibility to Acute Kidney Injury. J Clin Med 2021; 10:jcm10143039. [PMID: 34300206 PMCID: PMC8307812 DOI: 10.3390/jcm10143039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022] Open
Abstract
Acute kidney injury (AKI) is a widely held concern related to a substantial burden of morbidity, mortality and expenditure in the healthcare system. AKI is not a simple illness but a complex conglomeration of syndromes that often occurs as part of other syndromes in its wide clinical spectrum of the disease. Genetic factors have been suggested as potentially responsible for its susceptibility and severity. As there is no current cure nor an effective treatment other than generally accepted supportive measures and renal replacement therapy, updated knowledge of the genetic implications may serve as a strategic tactic to counteract its dire consequences. Further understanding of the genetics that predispose AKI may shed light on novel approaches for the prevention and treatment of this condition. This review attempts to address the role of key genes in the appearance and development of AKI, providing not only a comprehensive update of the intertwined process involved but also identifying specific markers that could serve as precise targets for further AKI therapies.
Collapse
Affiliation(s)
- Christian Ortega-Loubon
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Cardiovascular Surgery, Hospital Clinic of Barcelona, 08036 Barcelona, Spain
| | - Pedro Martínez-Paz
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Surgery, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain
- Correspondence: (P.M.-P.); (P.J.-M.); Tel.: +34-9834200000 (P.M.-P.); +34-687978535 (P.J.-M)
| | - Emilio García-Morán
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Cardiology, Clinical University Hospital of Valladolid, 47003 Valladolid, Spain
| | - Álvaro Tamayo-Velasco
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Hematology and Hemotherapy, Clinical University Hospital of Valladolid, 47003 Valladolid, Spain
| | - Francisco J. López-Hernández
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Institute of Biomedical Research of Salamnca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
- Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Departmental Building Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Pablo Jorge-Monjas
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Ramón y Cajal Ave, 47003 Valladolid, Spain
- Correspondence: (P.M.-P.); (P.J.-M.); Tel.: +34-9834200000 (P.M.-P.); +34-687978535 (P.J.-M)
| | - Eduardo Tamayo
- BioCritic. Group for Biomedical Research in Critical Care Medicine, University of Valladolid, 47003 Valladolid, Spain; (C.O.-L.); (E.G.-M.); (Á.T.-V.); (F.J.L.-H.); (E.T.)
- Department of Anesthesiology and Critical Care, Clinical University Hospital of Valladolid, Ramón y Cajal Ave, 47003 Valladolid, Spain
| |
Collapse
|
4
|
Hua X, Huang M, Deng X, Xu J, Luo Y, Xie Q, Xu J, Tian Z, Li J, Zhu J, Huang C, Zhao QS, Huang H, Huang C. The inhibitory effect of compound ChlA-F on human bladder cancer cell invasion can be attributed to its blockage of SOX2 protein. Cell Death Differ 2020; 27:632-645. [PMID: 31243344 PMCID: PMC7205984 DOI: 10.1038/s41418-019-0377-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Sex-determining region Y-box 2 (SOX2), a well-known stemness biomarker, is highly expressed in a variety of cancers, including human highly invasive bladder cancer (BC). However, the role of SOX2 may vary in different kinds of malignancy. In the present study, we discovered that ChlA-F, a novel conformation derivative of isolate Cheliensisin A (Chel A), remarkably inhibits the invasive ability of human invasive BC cells through downregulation of SOX2 protein expression. We found that ChlA-F treatment dramatically decreases SOX2 protein expression in human high-grade invasive BC cells. Ectopic expression of SOX2 reversed ChlA-F inhibition of cell invasion ability in human bladder cancer cells, suggesting that SOX2 is a major target of ChlA-F during its inhibition of human BC invasion. Mechanistic studies revealed that ChlA-F downregulates SOX2 at both the protein degradation and protein translation levels. Further studies revealed that ChlA-F treatment induces HuR protein expression and that the increased HuR interacts with USP8 mRNA, resulting in elevation of USP8 mRNA stability and protein expression. Elevated USP8 subsequently acts as an E3 ligase to promote SOX2 ubiquitination and protein degradation. We also found that ChlA-F treatment substantially increases c-Jun phosphorylation at Ser63 and Ser73, initiating miR-200c transcription. The increased miR-200c directly binds to the 3'-UTR of SOX2 mRNA to suppress SOX2 protein translation. These results present novel mechanistic insight into understanding SOX2 inhibition upon ChlA-F treatment and provide important information for further exploration of ChlA-F as a new therapeutic compound for the treatment of highly invasive/metastatic human BC patients.
Collapse
Affiliation(s)
- Xiaohui Hua
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Maowen Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204, Kunming, China
| | - Jiheng Xu
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Yisi Luo
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Xu
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Zhongxian Tian
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Jingxia Li
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Junlan Zhu
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Chao Huang
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, 650204, Kunming, China.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA.
| |
Collapse
|
5
|
Xu J, Hua X, Yang R, Jin H, Li J, Zhu J, Tian Z, Huang M, Jiang G, Huang H, Huang C. XIAP Interaction with E2F1 and Sp1 via its BIR2 and BIR3 domains specific activated MMP2 to promote bladder cancer invasion. Oncogenesis 2019; 8:71. [PMID: 31811115 PMCID: PMC6898186 DOI: 10.1038/s41389-019-0181-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 11/09/2022] Open
Abstract
XIAP has generally been thought to function in bladder cancer. However, the potential function of structure-based function of XIAP in human BC invasion has not been well explored before. We show here that ectopic expression of the BIR domains of XIAP specifically resulted in MMP2 activation and cell invasion in XIAP-deleted BC cells, while Src was further defined as an XIAP downstream negative regulator for MMP2 activation and BC cell invasion. The inhibition of Src expression by the BIR domains was caused by attenuation of Src protein translation upon miR-203 upregulation; which was resulted from direct interaction of BIR2 and BIR3 with E2F1 and Sp1, respectively. The interaction of BIR2/BIR3 with E2F1/Sp1 unexpectedly occurred, which could be blocked by serum-induced XIAP translocation. Taken together, our studies, for the first time revealed that: (1) BIR2 and BIR3 domains of XIAP play their role in cancer cell invasion without affecting cell migration by specific activation of MMP2 in human BC cells; (2) by BIR2 interacting with E2F1 and BIR3 interacting with Sp1, XIAP initiates E2F1/Sp1 positive feedback loop-dependent transcription of miR-203, which in turn inhibits Src protein translation, further leading to MMP2-cleaved activation; (3) XIAP interaction with E2F1 and Sp1 is observed in the nucleus. Our findings provide novel insights into understanding the specific function of BIR2 and BIR3 of XIAP in BC invasion, which will be highly significant for the design/synthesis of new BIR2/BIR3-based compounds for invasive BC treatment.
Collapse
Affiliation(s)
- Jiheng Xu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Rui Yang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Zhongxian Tian
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Maowen Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, China.
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 341 East 25th Street, New York, NY, 10010, USA.
| |
Collapse
|
6
|
Wang H, Gu R, Tian F, Liu Y, Fan W, Xue G, Cai L, Xing Y. PHLPP2 as a novel metastatic and prognostic biomarker in non-small cell lung cancer patients. Thorac Cancer 2019; 10:2124-2132. [PMID: 31571378 PMCID: PMC6825916 DOI: 10.1111/1759-7714.13196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 12/24/2022] Open
Abstract
Background PH domain and leucine‐rich repeat protein phosphatase 2 (PHLPP2) has been reported to be a potent tumor suppressor in many human cancers. However, PHLPP2 has not been fully researched as a putative clinical prognostic biomarker of lung cancer. Methods The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases including data on 1383 non‐small cell lung cancer (NSCLC) patients were used to determine PHLPP2 expression. PHLPP2 expression was then examined by immunohistochemistry, and its clinical significance analyzed in 134 NSCLC patients, including 73 patients with adenocarcinoma and 81 with squamous cell carcinoma. Results We found PHLPP2 expression to be less pronounced in NSCLC tissue samples than that in nontumoral lung tissues according to data taken from TCGA and GEO datasets; this outcome was further validated by immunohistochemistry assay. The low PHLPP2 expression level was found to be associated with the presence of lymph node metastasis (P = 0.003). Importantly, PHLPP2 was found to be an independent indicator of prognosis for overall (hazard ratio [HR] = 0.520, 95% confidence interval [Cl] = 0.327–0.827; P = 0.006) and disease‐free survival (HR = 0.489, 95% Cl = 0.308–0.775; P = 0.002) in patients with surgically‐resected NSCLC by multivariate analysis. Conclusion Taken together, our findings show that PHLPP2 is a robust clinical marker for NSCLC survival and could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ruixue Gu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Fanglin Tian
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuechao Liu
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Weina Fan
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guiqin Xue
- General Surgical Department, The Fifth Hospital of Daqing, Daqing, China
| | - Li Cai
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ying Xing
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
7
|
Sun W, Li S, Yu Y, Jin H, Xie Q, Hua X, Wang S, Tian Z, Zhang H, Jiang G, Huang C, Huang H. MicroRNA-3648 Is Upregulated to Suppress TCF21, Resulting in Promotion of Invasion and Metastasis of Human Bladder Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:519-530. [PMID: 31071528 PMCID: PMC6506626 DOI: 10.1016/j.omtn.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/07/2019] [Indexed: 12/30/2022]
Abstract
Although microRNAs (miRNAs) are well-known for their potential in cancer, the function and mechanisms of miR-3648 have barely been explored in any type of cancer. We show here that miR-3648 is upregulated in human BC tissues in comparison with adjacent non-tumor tissues. Functional studies showed that inhibition of miR-3648 expression in the human invasive BC UMUC3 and T24T cell lines decreased migration and invasion in vitro and suppressed lung metastasis in vivo, whereas miR-3648 overexpression promoted BC cell migration and invasion. A bioinformatics screen and mRNA 3' UTR luciferase reporter assay showed that transcription factor 21 (TCF21) was a direct target of miR-3648, and the results obtained from using a miR-3648 inhibitor revealed that miR-3648 inhibited TCF21 protein expression by reduction of its mRNA stability. Further, Kisspeptin 1 (KISS1) was identified as a TCF21 downstream effector responsible for miR-3648-mediated BC invasion and lung metastasis. Collectively, the present results suggest that miR-3648 is overexpressed and plays an oncogenic role in mediation of BC invasion and metastasis through directing the TCF21/KISS1 axis, revealing miR-3648 as a potential biomarker for BC prognosis and a target for BC therapy.
Collapse
Affiliation(s)
- Wenrui Sun
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Xi'an GaoXin Hospital, Shannxi, Xi'an 710000, China
| | - Shi Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yuan Yu
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Honglei Jin
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaohui Hua
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuai Wang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhongxian Tian
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Huxiang Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guosong Jiang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, China.
| | - Chuanshu Huang
- Department of Environmental Medicine, New York University School of Medicine, 431 East 25(th) Street, New York, NY 10010, USA.
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
8
|
Xu J, Hua X, Jin H, Zhu J, Li Y, Li J, Huang C. NFκB2 p52 stabilizes rhogdiβ mRNA by inhibiting AUF1 protein degradation via a miR-145/Sp1/USP8-dependent axis. Mol Carcinog 2019; 58:777-793. [PMID: 30604907 DOI: 10.1002/mc.22970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 12/29/2022]
Abstract
Although overexpression of the non-canonical NFκB subunit p52 has been observed in several tumors, the function and mechanism of p52 in bladder cancer (BC) are less well understood. Here, we aimed at understanding the role and mechanism underlying p52 regulation of BC invasion. Human p52 was stably knockdown with shRNA targeting p52 in two bladder cancer cell lines (T24 and UMUC3). Two constitutively expressing constructs, p52 and p100, were stably transfected in to T24 or UMUC3, respectively. The stable transfectants were used to determine function and mechanisms responsible for p52 regulation of BC invasion. We demonstrate that p52 mediates human BC invasion. Knockdown of p52 impaired bladder cancer invasion by reduction of rhogdiβ mRNA stability and expression. Positively regulation of rhogdiβ mRNA stability was mediated by p52 promoting AUF1 protein degradation, consequently resulting in reduction of AUF1 binding to rhogdiβ mRNA. Further studies indicated that AUF1 protein degradation was mediated by upregulating USP8 transcription, which was modulated by its negative regulatory transcription factor Sp1. Moreover, we found that p52 upregulated miR-145, which directly bound to the 3'-UTR of sp1 mRNA, leading to downregulation of Sp1 protein translation. Our results reveal a comprehensive pathway that p52 acts as a positive regulator of BC invasion by initiating a novel miR-145/Sp1/USP8/AUF1/RhoGDIβ axis. These findings provide insight into the understanding of p52 in the pathology of human BC invasion and progression, which may be useful information in the development of preventive and therapeutic approaches for using p52 as a potential target.
Collapse
Affiliation(s)
- Jiawei Xu
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Hua
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Yang Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| | - Chuangshu Huang
- Nelson Institute of Environmental Medicine, New York University, School of Medicine, New York, New York
| |
Collapse
|
9
|
Peng M, Wang J, Tian Z, Zhang D, Jin H, Liu C, Xu J, Li J, Hua X, Xu J, Huang C, Huang C. Autophagy-mediated Mir6981 degradation exhibits CDKN1B promotion of PHLPP1 protein translation. Autophagy 2019; 15:1523-1538. [PMID: 30821592 DOI: 10.1080/15548627.2019.1586254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PHLPP1 (PH domain and leucine rich repeat protein phosphatase 1) is a newly identified family of Ser/Thr phosphatases that catalyzes the dephosphorylation of a conserved regulatory motif of the AGC kinases resulting in a tumor suppressive function, while CDKN1B/p27 also acts as a tumor suppressor by regulating cell cycle, senescence, apoptosis, and cell motility. Our most recent studies reveal that CDKN1B is required for PHLPP1 abundance, which contributes to the inhibition of carcinogenic arsenite-induced cell malignant transformation through inhibition of RPS6-mediated Hif1a translation. However, nothing is known about the mechanisms underlying the crosstalk between these 2 key tumor suppressors in intact cells. Here, for the first time to the best of our knowledge, we show that CDKN1B is able to promote PHLPP1 protein translation by attenuating the abundance of Mir6981, which binds directly to the 5'untranslated region (UTR) of Phlpp1 mRNA. Further studies indicate that the attenuation of Mir6981 expression is due to macroautophagy/autophagy-mediated degradation of Mir6981 in an SQSTM1/p62-dependent fashion. Moreover, we have determined that Sqstm1 is upregulated by CDKN1B at the level of transcription via enhancing SP1 protein stability in an HSP90-depdendent manner. Collectively, our studies prove that: 1) SQSTM1 is a CDKN1B downstream effector responsible for CDKN1B-mediated autophagy; 2) by promoting the autophagy-mediated degradation of Mir6981, CDKN1B exerts a positive regulatory effect on PHLPP1 translation; 3) Mir6981 suppresses PHLPP1 translation by binding directly to its mRNA 5'-UTR, rather than classical binding to the 3'-UTR. These findings provide significant insight into understanding the crosstalk between CDKN1B and PHLPP1. Abbreviations: ATG: autophagy related; ACTB: actin beta; BAF: bafilomycin; BECN1: beclin 1; Cdkn1b/p27: cyclin-dependent kinase inhibitor 1B; CHX: cycloheximide; DMEM: dulbecco's modified eagle medium; FBS: fetal bovine serum; GAPDH: glyceraldehyde -3-phosphate dehydrogenase; Hif1a: hypoxia inducible factor 1, alpha subunit; Hsp90: heat shock protein 90; JUN: Jun proto-oncogene, AP1 transcription factor subunit; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MG132: proteasome inhibitor; Mtor: mechanistic target of rapamycin kinase; Phlpp1: PH domain and leucine rich repeat protein phosphatase 1; Phlpp2: PH domain and leucine rich repeat protein phosphatase 2; Pp2c: protein phosphatase 2 C; RPS6: ribosomal protein S6; Sp1: trans-acting transcription factor 1; Sqstm1/p62: sequestosome 1; TUBA: alpha tubulin; 3'-UTR; 3'-untranslated region; 5'-UTR: 5'-untranslated region.
Collapse
Affiliation(s)
- Minggang Peng
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jingjing Wang
- b School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Zhongxian Tian
- b School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Dongyun Zhang
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Honglei Jin
- b School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Claire Liu
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jiawei Xu
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jingxia Li
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Xiaohui Hua
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Jiheng Xu
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Chao Huang
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| | - Chuanshu Huang
- a Department of Environmental Medicine and Urology, New York University School of Medicine , Tuxedo , NY , USA
| |
Collapse
|
10
|
Westphal S, Stoppe C, Gruenewald M, Bein B, Renner J, Cremer J, Coburn M, Schaelte G, Boening A, Niemann B, Kletzin F, Roesner J, Strouhal U, Reyher C, Laufenberg-Feldmann R, Ferner M, Brandes IF, Bauer M, Kortgen A, Stehr SN, Wittmann M, Baumgarten G, Struck R, Meyer-Treschan T, Kienbaum P, Heringlake M, Schoen J, Sander M, Treskatsch S, Smul T, Wolwender E, Schilling T, Degenhardt F, Franke A, Mucha S, Tittmann L, Kohlhaas M, Fuernau G, Brosteanu O, Hasenclever D, Zacharowski K, Meybohm P. Genome-wide association study of myocardial infarction, atrial fibrillation, acute stroke, acute kidney injury and delirium after cardiac surgery - a sub-analysis of the RIPHeart-Study. BMC Cardiovasc Disord 2019; 19:26. [PMID: 30678657 PMCID: PMC6345037 DOI: 10.1186/s12872-019-1002-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Background The aim of our study was the identification of genetic variants associated with postoperative complications after cardiac surgery. Methods We conducted a prospective, double-blind, multicenter, randomized trial (RIPHeart). We performed a genome-wide association study (GWAS) in 1170 patients of both genders (871 males, 299 females) from the RIPHeart-Study cohort. Patients undergoing non-emergent cardiac surgery were included. Primary endpoint comprises a binary composite complication rate covering atrial fibrillation, delirium, non-fatal myocardial infarction, acute renal failure and/or any new stroke until hospital discharge with a maximum of fourteen days after surgery. Results A total of 547,644 genotyped markers were available for analysis. Following quality control and adjustment for clinical covariate, one SNP reached genome-wide significance (PHLPP2, rs78064607, p = 3.77 × 10− 8) and 139 (adjusted for all other outcomes) SNPs showed promising association with p < 1 × 10− 5 from the GWAS. Conclusions We identified several potential loci, in particular PHLPP2, BBS9, RyR2, DUSP4 and HSPA8, associated with new-onset of atrial fibrillation, delirium, myocardial infarction, acute kidney injury and stroke after cardiac surgery. Trial registration The study was registered with ClinicalTrials.gov NCT01067703, prospectively registered on 11 Feb 2010. Electronic supplementary material The online version of this article (10.1186/s12872-019-1002-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabine Westphal
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Christian Stoppe
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen, University Aachen, Aachen, Germany
| | - Matthias Gruenewald
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Berthold Bein
- Department of Anaesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Asklepios Klinik St. Georg, Hamburg, Germany.,Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jochen Renner
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiovascular Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Mark Coburn
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen, University Aachen, Aachen, Germany
| | - Gereon Schaelte
- Department of Anaesthesiology, Medical Faculty, RWTH Aachen, University Aachen, Aachen, Germany
| | - Andreas Boening
- Department of Cardiovascular Surgery, University of Giessen, Giessen, Germany
| | - Bernd Niemann
- Department of Cardiovascular Surgery, University of Giessen, Giessen, Germany
| | - Frank Kletzin
- Clinic of Anaesthesiology and Intensive Care Medicine, University Hospital Rostock, Rostock, Germany
| | - Jan Roesner
- Department of Anaesthesiology and Intensive Care, Suedstadt Hospital Rostock, Rostock, Germany
| | - Ulrich Strouhal
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Christian Reyher
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | | | - Marion Ferner
- Department of Anesthesiology, Medical Center of Johannes Gutenberg-University, Mainz, Germany
| | - Ivo F Brandes
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Goettingen, Goettingen, Germany
| | - Martin Bauer
- Department of Anaesthesiology and Intensive Care, Klinikum Region Hannover, Hannover, Germany
| | - Andreas Kortgen
- Department of Anaesthesiology and Intensive Care Medicine and Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Sebastian N Stehr
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Maria Wittmann
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Georg Baumgarten
- Department of Anaesthesiology and Intensive Care Medicine, Johanniter Hospital Bonn, Bonn, Germany
| | - Rafael Struck
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Tanja Meyer-Treschan
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Peter Kienbaum
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Matthias Heringlake
- Department of Anaesthesiology and Intensive Care Medicine, University Luebeck, Luebeck, Germany
| | - Julika Schoen
- Department of Anaesthesiology and Intensive Care Medicine, Hospital Neuruppin, Neuruppin, Germany
| | - Michael Sander
- Department of Anaesthesiology and Intensive Care, University of Giessen, Giessen, Germany
| | - Sascha Treskatsch
- Department of Anaesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Thorsten Smul
- Department of Anaesthesiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Ewa Wolwender
- Department of Anaesthesiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Schilling
- Department of Anaesthesiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Soeren Mucha
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lukas Tittmann
- Institute of Clinical Molecular Biology, Kiel University, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Madeline Kohlhaas
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Georg Fuernau
- University Heart Center Luebeck, Medical Clinic II (Cardiology/Angiology/Intensive Care Medicine), University Hospital Schleswig-Holstein, Luebeck, Luebeck, Germany
| | - Oana Brosteanu
- Clinical Trial Centre, University Leipzig, Leipzig, Germany
| | - Dirk Hasenclever
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt, Germany.
| | | |
Collapse
|
11
|
Peng M, Wang J, Zhang D, Jin H, Li J, Wu XR, Huang C. PHLPP2 stabilization by p27 mediates its inhibition of bladder cancer invasion by promoting autophagic degradation of MMP2 protein. Oncogene 2018; 37:5735-5748. [PMID: 29930380 PMCID: PMC6202328 DOI: 10.1038/s41388-018-0374-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 01/24/2023]
Abstract
Pleckstrin homology domain leucine-rich repeat protein phosphatase 2 (PHLPP2) is a tumor suppressor that catalyzes the de-phosphorylation of the AGC kinases, while p27 acts as a tumor suppressor that regulates cell cycle, apoptosis, and cell motility. Our previous studies have identified that PHLPP2 participates in inhibition of transformation of human bronchial epithelial cells following lung carcinogen B[a]P/B[a]PDE exposure. However, nothing was known about the association of p27 with regulation of PHLPP2 expression and the role of PHLPP2 in bladder cancer (BC) invasion. In our current studies, we demonstrated that PHLPP2 inhibited BC invasion through promoting MMP2 degradation via p62-mediated autophagy; and p27 expression was able to stabilize PHLPP2 protein by inhibiting protein degradation of Hsp90, which could directly bind to PHLPP2 and protect it from degradation. More in-depth studies discovered that stabilization of Hsp90 by p27 was mediated by calpain1 proteolysis system, whereas p27 inhibited calpain1 gene transcription by attenuating Jak1/Stat1 cascade in human invasive BC cells. Collectively, we for the first time revealed PHLPP2 downregulation in BCs and its participating in promotion of BC invasion, as well as novel role of p27 and mechanisms underlying its regulation of PHLPP2 protein degradation through Hsp90-dependent manner. Our findings improve our understanding of p27 and PHLPP2 roles and their crosstalk in regulation of BC invasion, which further contributes to improve the current strategy for invasive bladder cancer therapy.
Collapse
Affiliation(s)
- Minggang Peng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Jingjing Wang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Dongyun Zhang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Honglei Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, NY, 10987, USA.
| |
Collapse
|
12
|
Noncanonical NF-κB in Cancer. Biomedicines 2018; 6:biomedicines6020066. [PMID: 29874793 PMCID: PMC6027307 DOI: 10.3390/biomedicines6020066] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/31/2018] [Accepted: 06/04/2018] [Indexed: 12/31/2022] Open
Abstract
The NF-κB pathway is a critical regulator of immune responses and is often dysregulated in cancer. Two NF-κB pathways have been described to mediate these responses, the canonical and the noncanonical. While understudied compared to the canonical NF-κB pathway, noncanonical NF-κB and its components have been shown to have effects, usually protumorigenic, in many different cancer types. Here, we review noncanonical NF-κB pathways and discuss its important roles in promoting cancer. We also discuss alternative NF-κB-independent functions of some the components of noncanonical NF-κB signaling. Finally, we discuss important crosstalk between canonical and noncanonical signaling, which blurs the two pathways, indicating that understanding the full picture of NF-κB regulation is critical to deciphering how this broad pathway promotes oncogenesis.
Collapse
|
13
|
Abstract
Urinary bladder cancer (UBC) is a common and complex malignancy, with a multifactorial etiology, like environmental factors, such as cigarette smoking, occupational exposure, and genetic factors.UBC exhibits considerable genotypic and phenotypic heterogeneity. Among all UBC lesions, urothelial carcinoma is the most frequently observed histological type. Despite all the developments made in urologic oncology field, therapeutic options remain inadequate. There is urgency for the identification and development of new antineoplastic drugs to replace or improve current protocols and in vivo models have been proven to be essential for this step. There are different animal models of UBC: Spontaneous and experimentally induced models (genetically engineered, transplantable-xenograft and syngeneic animals- and chemically induced models). N-butyl-N(4-hydroxybutil)nitrosamine (BBN) is the most suitable reagent to generate chemically induced in vivo models of UBC and to study bladder carcinogenesis. BBN has proven, over the years, to be very realistic and reliable. It is bladder specific, and induces high tumor incidence.
Collapse
|
14
|
Cheliensisin A (Chel A) induces apoptosis in human bladder cancer cells by promoting PHLPP2 protein degradation. Oncotarget 2018; 7:66689-66699. [PMID: 27556506 PMCID: PMC5341830 DOI: 10.18632/oncotarget.11440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/09/2016] [Indexed: 12/26/2022] Open
Abstract
Cheliensisin A (Chel A), a styryl-lactone compound extracted from Goniothalamus cheliensis, is reported to have significant anti-cancer effects in various cancer cells. Here we demonstrated that Chel A treatment resulted in apoptosis and an inhibition of anchorage-independent growth in human bladder cancer T24, T24T and U5637 cells. Mechanistic studies showed that such effect is mediated by PH domain and Leucine rich repeat Protein Phosphatases (PHLPP2) protein. Chel A treatment led to PHLPP2 degradation and subsequently increased in c-Jun phosphorylation. Moreover PHLPP2 degradation could be attenuated by inhibition of autophagy, which was mediated by Beclin 1. Collectively, we discover that Chel A treatment induces Beclin-dependent autophagy, consequently mediates PHLPP2 degradation and JNK/C-Jun phosphorylation and activation, further in turn contributing to apoptosis in human bladder cancer cells. Current studies provide a significant insight into understanding of anticancer effect of Chel A in treatment of human bladder cancer.
Collapse
|
15
|
Jin H, Xie Q, Guo X, Xu J, Wang A, Li J, Zhu J, Wu XR, Huang H, Huang C. p63α protein up-regulates heat shock protein 70 expression via E2F1 transcription factor 1, promoting Wasf3/Wave3/MMP9 signaling and bladder cancer invasion. J Biol Chem 2017; 292:15952-15963. [PMID: 28794159 DOI: 10.1074/jbc.m117.792010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/08/2017] [Indexed: 01/15/2023] Open
Abstract
Bladder cancer (BC) is the sixth most common cancer in the United States and is the number one cause of death among patients with urinary system malignancies. This makes the identification of invasive regulator(s)/effector(s) as the potential therapeutic targets for managing BC a high priority. p63 is a member of the p53 family of tumor suppressor genes/proteins, plays a role in the differentiation of epithelial tissues, and is believed to function as a tumor suppressor. However, it remains unclear whether and how p63 functions in BC cell invasion after tumorigenesis. Here, we show that p63α protein levels were much higher in mouse high-invasive BC tissues than in normal tissues. Our results also revealed that p63α is crucial for heat shock protein 70 (Hsp70) expression and subsequently increases the ability of BC invasion. Mechanistic experiments demonstrated that p63α can transcriptionally up-regulate Hsp70 expression, thereby promoting BC cell invasion via the Hsp70/Wasf3/Wave3/MMP-9 axis. We further show that E2F transcription factor 1 (E2F1) mediates p63α overexpression-induced Hsp70 transcription. We also found that p63α overexpression activates E2F1 transcription, which appears to be stimulated by p63α together with E2F1. Collectively, our results demonstrate that p63α is a positive regulator of BC cell invasion after tumorigenesis, providing significant insights into the biological function of p63α in BC and supporting the notion that p63α might be a potential target for invasive BC therapy.
Collapse
Affiliation(s)
- Honglei Jin
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987.,Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China, and
| | - Qipeng Xie
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China, and
| | - Xirui Guo
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Jiheng Xu
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Annette Wang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Jingxia Li
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Junlan Zhu
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, New York 10016 and the Veterans Affairs New York Harbor Healthcare System in Manhattan, New York, New York 10010
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China, and
| | - Chuanshu Huang
- From the Nelson Institute of Environmental Medicine, New York University School of Medicine, Tuxedo, New York 10987,
| |
Collapse
|
16
|
Huang C, Zeng X, Jiang G, Liao X, Liu C, Li J, Jin H, Zhu J, Sun H, Wu XR, Huang C. XIAP BIR domain suppresses miR-200a expression and subsequently promotes EGFR protein translation and anchorage-independent growth of bladder cancer cell. J Hematol Oncol 2017; 10:6. [PMID: 28057023 PMCID: PMC5217641 DOI: 10.1186/s13045-016-0376-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/12/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The X-linked inhibitor of apoptosis protein (XIAP) is a well-known potent apoptosis suppressor and also participates in cancer cell biological behaviors, therefore attracting great attentions as a potential antineoplastic therapeutic target for past years. Anti-IAP therapy is reported to be closely related to epidermal growth factor receptor (EGFR) expression level. However, whether and how XIAP modulates EGFR expression remains largely unknown. METHODS Human XIAP was knockdown with short-hairpin RNA in two different bladder cancer cell lines, T24T and UMUC3. Two XIAP mutants, XIAP ∆BIR (deletion of N-terminal three BIR domains) and XIAP ∆RING (deletion of C-terminal RING domain and keeping the function of BIR domains), were generated to determine which domain is involved in regulating EGFR. RESULTS We found here that lacking of XIAP expression resulted in a remarkable suppression of EGFR expression, consequently leading to the deficiency of anchorage-independent cell growth. Further study demonstrated that BIR domain of XIAP was crucial for regulating the EGFR translation by suppressing the transcription and expression of miR-200a. Mechanistic studies indicated that BIR domain activated the protein phosphatase 2 (PP2A) activity by decreasing the phosphorylation of PP2A at Tyr307 in its catalytic subunit, PP2A-C. Such activated PP2A prevented the deviant phosphorylation and activation of MAPK kinases/MAPKs, their downstream effector c-Jun, and in turn inhibiting transcription of c-Jun-regulated the miR-200a. CONCLUSIONS Our study uncovered a novel function of BIR domain of XIAP in regulating the EGFR translation, providing significant insight into the understanding of the XIAP overexpression in the cancer development and progression, further offering a new theoretical support for using XIAP BIR domain and EGFR as targets for cancer therapy.
Collapse
Affiliation(s)
- Chao Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Xingruo Zeng
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Guosong Jiang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Xin Liao
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Claire Liu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Jingxia Li
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Honglei Jin
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China, 325035
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China, 325035
| | - Hong Sun
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA
| | - Xue-Ru Wu
- Departments of Urology and Pathology, New York University School of Medicine, New York, NY, 10016, USA
- VA Medical Center in Manhattan, New York, NY, 10010, USA
| | - Chuanshu Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, NY, 10987, USA.
| |
Collapse
|
17
|
Wang F, Yang L, Sun J, Zheng J, Shi L, Zhang G, Cui N. Tumor suppressors microRNA-302d and microRNA-16 inhibit human glioblastoma multiforme by targeting NF-κB and FGF2. MOLECULAR BIOSYSTEMS 2017; 13:1345-1354. [PMID: 28497156 DOI: 10.1039/c7mb00139h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA-302d and microRNA-16 inhibit glioblastoma multiforme by targeting NF-κB p65 and FGF2.
Collapse
Affiliation(s)
- Feng Wang
- Department of Neurosurgery
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- China
| | - Lijun Yang
- Department of Neurosurgery
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- China
| | - Jianping Sun
- Department of Neurosurgery
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- China
| | - Jun Zheng
- Department of Neurosurgery
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- China
| | - Lin Shi
- Department of Neurosurgery
- The Second Hospital of Baoding City
- Baoding 071051
- China
| | - Gengshen Zhang
- Department of Neurosurgery
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- China
| | - Na Cui
- Department of Reproductive Medicine
- The Second Hospital of Hebei Medical University
- Shijiazhuang 050000
- China
| |
Collapse
|