1
|
Zhao F, Wang Y, Zuo H, Ru Y, Wang Y. Cyclin-Dependent kinase 9 (CDK9) inhibitor Atuveciclib ameliorates Imiquimod-Induced Psoriasis-Like dermatitis in mice by inhibiting various inflammation factors via STAT3 signaling pathway. Int Immunopharmacol 2024; 129:111652. [PMID: 38335657 DOI: 10.1016/j.intimp.2024.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Psoriasis is a chronic, autoimmune skin disease characterized by the deregulated secretion of inflammatory factors in multiple organs. The aberrant activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway mediated by cyclin-dependent kinase 9 (CDK9) is vital for the pathology of psoriasis, leading to the accumulation of inflammatory factors and the progression of skin damage. In this study, we explored the effect of CDK9 inhibition on attenuating the secretion of inflammatory factors and alleviating skin damage in psoriasis models both in vitro and in vivo. Results showed that Atuveciclib, a highly selective CDK9 inhibitor, significantly relieved skin lesions in Imiquimod (IMQ)-induced mice models by lowering the expression of CDK9 and p-RNA Pol II Ser2. Meanwhile, Atuveciclib significantly inhibited STAT3 phosphorylation in mice skin and reduced the levels of key inflammatory cytokines in mice skin, plasma and spleen. In addition to suppressing the secretion of inflammatory cytokines, Atuveciclib ablated the activation of STAT3 induced by tumor necrosis factor-α (TNF-α)/interferon-γ (IFN-γ). Overall, our findings indicated that the overexpression and hyperfunction of CDK9 promote the progression of psoriasis. Moreover, Atuveciclib interfered with the abnormal STAT3 signaling pathway through the inhibition of CDK9, which ultimately ameliorated psoriatic-like skin inflammation. These suggested that CDK9 inhibition is a potential strategy for batting psoriasis.
Collapse
Affiliation(s)
- Fang Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yujie Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Haojie Zuo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yiming Ru
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yang Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Department of Medicinal Chemistry, Anhui Academy of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
2
|
Wang J, Liu J, Tian F, Zhan Y, Kong D. Cyclin-dependent kinase 9 expression and its association with CD8 + T cell infiltration in microsatellite-stable colorectal cancer. Oncol Lett 2019; 18:6046-6056. [PMID: 31788079 PMCID: PMC6865572 DOI: 10.3892/ol.2019.10970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/20/2019] [Indexed: 12/24/2022] Open
Abstract
Programmed death 1 (PD-1)-targeted therapy has benefited patients with microsatellite instability-high metastatic colorectal cancer (mCRC). However, the efficacy of PD-1-targeted therapy is poor in patients with microsatellite-stable (MSS) mCRC. Therefore, it is imperative to explore additional co-inhibitory molecular signalling pathways to improve the efficacy of immunotherapy in MSS mCRC treatment. In the present study, the association between cyclin-dependent kinase 9 (CDK9) expression and the survival of patients with CRC was analysed using RNA sequencing data from 605 patients, including 121 cases of mortality, from human cancer datasets. Furthermore, 35 clinical MSS stage III–IV CRC specimens were collected to assess CDK9 protein expression by immunohistochemistry, and the frequency of tumor-infiltrating CD8+ T cells was assessed by flow cytometry. The human cancer datasets demonstrated that upregulation CDK9 significantly shortened the survival of patients with stage II–IV colon cancer. Additionally, CDK9 mRNA expression was positively correlated with the expression levels of genes associated with immune evasion in the tumor. Notably, CDK9 was expression was upregulated in stage IV CRC compared with para-cancerous tissues and early-stage tumors. Interestingly, CDK9 expression was negatively associated with the infiltration of CD8+ T cells at the tumor site. In addition, the expression levels of T-cell immunoglobulin mucin family member 3 and CD39, proteins associated with exhaustion, on tumor-infiltrating CD8+ T cells were significantly elevated in patients with abnormal CDK9 expression levels. The present study demonstrated that CDK9 expression was negatively associated with CD8+ T cell infiltration and positively associated with CD8+ T cell exhaustion in MSS mCRC. In conclusion, CDK9 may be utilized to evaluate the prognosis and the immune-type of the tumor microenvironment in patients with MSS mCRC.
Collapse
Affiliation(s)
- Jiefu Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Jia Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Fei Tian
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yang Zhan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Dalu Kong
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|
3
|
Göthert JR, Imsak R, Möllmann M, Kesper S, Göbel M, Dührsen U, Scholz A, Lücking U, Baumann M, Unger A, Schultz-Fademrecht C, Klebl B, Eickhoff J, Choidas A, Dürig J. Potent anti-leukemic activity of a specific cyclin-dependent kinase 9 inhibitor in mouse models of chronic lymphocytic leukemia. Oncotarget 2018; 9:26353-26369. [PMID: 29899864 PMCID: PMC5995184 DOI: 10.18632/oncotarget.25293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 04/07/2018] [Indexed: 12/23/2022] Open
Abstract
Onset of progression even during therapy with novel drugs remains an issue in chronic lymphocytic leukemia (CLL). Thus, there is ongoing demand for novel agents. Approaches targeting cyclin-dependent kinases (CDK) have reached the clinical trial stage. CDK9 mediating RNA transcriptional elongation is the evolving pivotal CLL CDK inhibitor target. However, more CDK9 selective compounds are desirable. Here, we describe the CDK9 inhibitor LDC526 displaying a low nanomolar biochemical activity against CDK9 and an at least 50-fold selectivity against other CDKs. After demonstrating in vitro MEC-1 cell line and primary human CLL cell cytotoxicity we evaluated the LDC526 in vivo effect on human CLL cells transplanted into NOD/scid/γcnull (NSG) mice. LDC526 administration (75 mg/kg) for 5 days resulted in a 77% reduction of human CLL cells in NSG spleens compared to carrier control treatment. Next, we longitudinally studied the LDC526 impact on circulating CLL cells in the TCL1 transgenic mouse model. LDC526 (50 mg/kg) administration for two days led to a 16-fold reduction of blood CLL cell numbers. Remarkably, residual CLL cells exhibited significantly increased intracellular BCL-2 levels. However, the LDC526 cytotoxic effect was not restricted to CLL cells as also declining numbers of normal B and T lymphocytes were observed in LDC526 treated TCL1 mice. Taken together, our in vivo data provide a strong rational for continued LDC526 development in CLL therapy and argue for the combination with BCL-2 inhibitors.
Collapse
Affiliation(s)
- Joachim R Göthert
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Roze Imsak
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Michael Möllmann
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Stefanie Kesper
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Maria Göbel
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| | - Arne Scholz
- Bayer AG, Pharmaceuticals, Drug Discovery, Berlin, Germany
| | - Ulrich Lücking
- Bayer AG, Pharmaceuticals, Drug Discovery, Berlin, Germany
| | | | - Anke Unger
- Lead Discovery Center GmbH (LDC), Dortmund, Germany
| | | | - Bert Klebl
- Lead Discovery Center GmbH (LDC), Dortmund, Germany
| | - Jan Eickhoff
- Lead Discovery Center GmbH (LDC), Dortmund, Germany
| | - Axel Choidas
- Lead Discovery Center GmbH (LDC), Dortmund, Germany
| | - Jan Dürig
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
| |
Collapse
|