1
|
Moura NMM, Guedes S, Salvador D, Oliveira H, Alves MQ, Paradis N, Wu C, Neves MGPMS, Ramos CIV. Oncogenic and telomeric G-quadruplexes: Targets for porphyrin-triphenylphosphonium conjugates. Int J Biol Macromol 2024; 277:134126. [PMID: 39097044 DOI: 10.1016/j.ijbiomac.2024.134126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/05/2024]
Abstract
DNA chains with sequential guanine (G) repeats can lead to the formation of G-quadruplexes (G4), which are found in functional DNA and RNA regions like telomeres and oncogene promoters. The development of molecules with adequate structural features to selectively stabilize G4 structures can counteract cell immortality, highly described for cancer cells, and also downregulate transcription events underlying cell apoptosis and/or senescence processes. We describe here, the efficiency of four highly charged porphyrins-phosphonium conjugates to act as G4 stabilizing agents. The spectrophotometric results allowed to select the conjugates P2-PPh3 and P3-PPh3 as the most promising ones to stabilize selectively G4 structures. Molecular dynamics simulation experiments were performed and support the preferential binding of P2-PPh3 namely to MYC and of P3-PPh3 to KRAS. The ability of both ligands to block the activity of Taq polymerase was confirmed and also their higher cytotoxicity against the two melanoma cell lines A375 and SK-MEL-28 than to immortalized skin keratinocytes. Both ligands present efficient cellular uptake, nuclear co-localization and high ability to generate 1O2 namely when interacting with G4 structure. The obtained data points the synthesized porphyrins as promising ligands to be used in a dual approach that can combine G4 stabilization and Photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Nuno M M Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sofia Guedes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Salvador
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Q Alves
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nicholas Paradis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States of America
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States of America
| | - M Graça P M S Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Catarina I V Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
2
|
Cai JH, Yang DY, Zhang JJ, Tan JH, Huang ZS, Chen SB. Constructing triazole-modified quinazoline derivatives as selective c-MYC G-quadruplex ligands and potent anticancer agents through click chemistry. Bioorg Chem 2024; 144:107173. [PMID: 38335759 DOI: 10.1016/j.bioorg.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
c-MYC is a hallmark of various cancers, playing a critical role in promoting tumorigenesis. The formation of G-quadruplex (G4) in the c-MYC promoter region significantly suppresses its expression. Therefore, developing small-molecule ligands to stabilize c-MYC G4 formation and subsequentially suppress c-MYC expression is an attractive topic for c-MYC-driven cancer therapy. However, achieving selective ligands for c-MYC G4 poses challenges. In this study, we developed a series of triazole-modified quinazoline (TMQ) derivatives as potential c-MYC G4 ligands and c-MYC transcription inhibitors from 4-anilinoquinazoline lead 7a using click chemistry. Importantly, the c-MYC G4 stabilizing ability and antiproliferation activity were well correlated among these new derivatives, particularly in the c-MYC highly expressed colorectal cancer cell line HCT116. Among them, compound A6 exhibited good selectivity in stabilizing c-MYC G4 and in suppressing c-MYC transcription better than 7a. This compound induced G4 formation, selectively inhibited G4-related c-MYC transcription and suppressed the progression of HCT116 cells. These findings identify a new c-MYC transcription inhibitor and provide new insights for optimizing c-MYC G4-targeting ligands.
Collapse
Affiliation(s)
- Jiong-Heng Cai
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Dan-Yan Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun-Jie Zhang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Bahls B, Aljnadi IM, Emídio R, Mendes E, Paulo A. G-Quadruplexes in c-MYC Promoter as Targets for Cancer Therapy. Biomedicines 2023; 11:biomedicines11030969. [PMID: 36979947 PMCID: PMC10046398 DOI: 10.3390/biomedicines11030969] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Cancer is a societal burden demanding innovative approaches. A major problem with the conventional chemotherapeutic agents is their strong toxicity and other side effects due to their poor selectivity. Uncontrolled proliferation of cancer cells is due to mutations, deletions, or amplifications in genes (oncogenes) encoding for proteins that regulate cell growth and division, such as transcription factors, for example, c-MYC. The direct targeting of the c-MYC protein has been attempted but so far unsuccessfully, as it lacks a definite binding site for the modulators. Meanwhile, another approach has been explored since the discovery that G-quadruplex secondary DNA structures formed in the guanine-rich sequences of the c-MYC promoter region can downregulate the transcription of this oncogene. Here, we will overview the major achievements made in the last decades towards the discovery of a new class of anticancer drugs targeting G-quadruplexes in the c-MYC promoter of cancer cells.
Collapse
Affiliation(s)
- Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Israa M Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Rita Emídio
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
4
|
Biswas S, Basak S, Samui S, Pasadi S, Muniyappa K, Naskar J. Co‐Assembly of Peptide with G‐Quadruplex DNA: A Strategic Approach to Develop Anticancer Therapeutics. ChemistrySelect 2023. [DOI: 10.1002/slct.202203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Soumi Biswas
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Shubhanwita Basak
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Satyabrata Samui
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| | - Sanjeev Pasadi
- Department of Biochemistry Indian Institute of Science Bangalore Karnataka 560 012 India
| | - K. Muniyappa
- Department of Biochemistry Indian Institute of Science Bangalore Karnataka 560 012 India
| | - Jishu Naskar
- Department of Biochemistry and Biophysics University of Kalyani Nadia WB 741235 India
| |
Collapse
|
5
|
To probe the binding of TMPyP4 to c-MYC G-quadruplex with in water and in imidazolium-based ionic liquids using spectroscopy coupled with molecular dynamics simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Thiosugar naphthalene diimide conjugates: G-quadruplex ligands with antiparasitic and anticancer activity. Eur J Med Chem 2022; 232:114183. [DOI: 10.1016/j.ejmech.2022.114183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 12/26/2022]
|
7
|
Long W, Zheng BX, Li Y, Huang XH, Lin DM, Chen CC, Hou JQ, Ou TM, Wong WL, Zhang K, Lu YJ. Rational design of small-molecules to recognize G-quadruplexes of c-MYC promoter and telomere and the evaluation of their in vivo antitumor activity against breast cancer. Nucleic Acids Res 2022; 50:1829-1848. [PMID: 35166828 PMCID: PMC8887543 DOI: 10.1093/nar/gkac090] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 12/31/2022] Open
Abstract
DNA G4-structures from human c-MYC promoter and telomere are considered as important drug targets; however, the developing of small-molecule-based fluorescent binding ligands that are highly selective in targeting these G4-structures over other types of nucleic acids is challenging. We herein report a new approach of designing small molecules based on a non-selective thiazole orange scaffold to provide two-directional and multi-site interactions with flanking residues and loops of the G4-motif for better selectivity. The ligands are designed to establish multi-site interactions in the G4-binding pocket. This structural feature may render the molecules higher selectivity toward c-MYC G4s than other structures. The ligand–G4 interaction studied with 1H NMR may suggest a stacking interaction with the terminal G-tetrad. Moreover, the intracellular co-localization study with BG4 and cellular competition experiments with BRACO-19 may suggest that the binding targets of the ligands in cells are most probably G4-structures. Furthermore, the ligands that either preferentially bind to c-MYC promoter or telomeric G4s are able to downregulate markedly the c-MYC and hTERT gene expression in MCF-7 cells, and induce senescence and DNA damage to cancer cells. The in vivo antitumor activity of the ligands in MCF-7 tumor-bearing mice is also demonstrated.
Collapse
Affiliation(s)
- Wei Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Bo-Xin Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Ying Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dan-Min Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Cui-Cui Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jin-Qiang Hou
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario P7B 5E1, Canada.,Thunder Bay Regional Health Research Institute, 980 Oliver Road, Thunder Bay, Ontario P7B 6V4, Canada
| | - Tian-Miao Ou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, P.R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen, 529040, PR China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
8
|
Mulliri S, Laaksonen A, Spanu P, Farris R, Farci M, Mingoia F, Roviello GN, Mocci F. Spectroscopic and In Silico Studies on the Interaction of Substituted Pyrazolo[1,2-a]benzo[1,2,3,4]tetrazine-3-one Derivatives with c-Myc G4-DNA. Int J Mol Sci 2021; 22:6028. [PMID: 34199659 PMCID: PMC8199725 DOI: 10.3390/ijms22116028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 12/14/2022] Open
Abstract
Herein we describe a combined experimental and in silico study of the interaction of a series of pyrazolo[1,2-a]benzo[1,2,3,4]tetrazin-3-one derivatives (PBTs) with parallel G-quadruplex (GQ) DNA aimed at correlating their previously reported anticancer activities and the stabilizing effects observed by us on c-myc oncogene promoter GQ structure. Circular dichroism (CD) melting experiments were performed to characterize the effect of the studied PBTs on the GQ thermal stability. CD measurements indicate that two out of the eight compounds under investigation induced a slight stabilizing effect (2-4 °C) on GQ depending on the nature and position of the substituents. Molecular docking results allowed us to verify the modes of interaction of the ligands with the GQ and estimate the binding affinities. The highest binding affinity was observed for ligands with the experimental melting temperatures (Tms). However, both stabilizing and destabilizing ligands showed similar scores, whilst Molecular Dynamics (MD) simulations, performed across a wide range of temperatures on the GQ in water solution, either unliganded or complexed with two model PBT ligands with the opposite effect on the Tms, consistently confirmed their stabilizing or destabilizing ability ascertained by CD. Clues about a relation between the reported anticancer activity of some PBTs and their ability to stabilize the GQ structure of c-myc emerged from our study. Furthermore, Molecular Dynamics simulations at high temperatures are herein proposed for the first time as a means to verify the stabilizing or destabilizing effect of ligands on the GQ, also disclosing predictive potential in GQ-targeting drug discovery.
Collapse
Affiliation(s)
- Simone Mulliri
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy; (S.M.); (R.F.); (M.F.)
| | - Aatto Laaksonen
- State Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- Division of Physical Chemistry, Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania
- Department of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Pietro Spanu
- Istituto di Chimica Biomolecolare, ICB-CNR-Trav. La Crucca 3, 07100 Sassari, Italy;
| | - Riccardo Farris
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy; (S.M.); (R.F.); (M.F.)
| | - Matteo Farci
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy; (S.M.); (R.F.); (M.F.)
| | - Francesco Mingoia
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR, Via U. La Malfa 153, I-90146 Palermo, Italy;
| | - Giovanni N. Roviello
- Istituto di Biostrutture e Bioimmagini, IBB-CNR, Via Mezzocannone 16, I-80134 Naples, Italy
| | - Francesca Mocci
- Department of Chemical and Geological Sciences, University of Cagliari, I-09042 Monserrato, Italy; (S.M.); (R.F.); (M.F.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| |
Collapse
|
9
|
Wei H, Ding C, Zhuang H, Hu W. TRIM47 Promotes the Development of Glioma by Ubiquitination and Degradation of FOXO1. Onco Targets Ther 2021; 13:13401-13411. [PMID: 33408486 PMCID: PMC7781021 DOI: 10.2147/ott.s264459] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/08/2020] [Indexed: 01/26/2023] Open
Abstract
Objective To investigate the effect of TRIM47 on glioma cells and further explore its underlying molecular mechanisms. Methods Mouse xenograft model was used in this study. The mRNA expression of TRIM47 was detected by qRT-PCR. The cell viability and proliferation activity was detected by MTT assay and colony formation assay. The migration and invasion of glioma cells were determined by Transwell assay. The protein levels of TRIM47, FOXO1, CyclinD1, C-myc, MMP-2 and TIMP-1 were assessed by Western-blotting. The interaction between TRIM47 and FOXO1 was measured by Co-immunoprecipitation (Co-IP) assay. Results In glioma tissues and cells, TRIM47 was significantly up-regulated. Silencing the expression of TRIM47 inhibited the cell viability and proliferation of cells A172 and U251, as well as their ability to invade and migrate. Among them, the expression levels of C-myc and CyclinD1 also decreased, and MMP-2 was down-regulated and TIMP-1 was up-regulated. Similarly, in vivo model, tumor volume and weight also decreased after TRIM47 knockout. Further research showed that TRIM47 inhibited FOXO1 expression by ubiquitination and degradation of FOXO1, thereby promoting glioma growth and progression. Conclusion In our study, we confirmed functional role of the TRIM47-FOXO1 axis in the progression of gliomas and provided a potential target for glioma treatment.
Collapse
Affiliation(s)
- Huaming Wei
- Department of Neurology, Jiyang District People's Hospital of Jinan, Jinan, Shandong 251400, People's Republic of China
| | - Chonglan Ding
- Special Inspection Section, Shandong Zaozhuang Traditional Chinese Medicine Hospital, Zaozhuang, Shandong 277000, People's Republic of China
| | - Huanxia Zhuang
- Department of Neurology, Gaotang County People's Hospital, Gaotang, Shandong 252800, People's Republic of China
| | - WeiLi Hu
- Department of Neurology, Lianshui County People's Hospital, Lianshui, Jiangsu 223400, People's Republic of China
| |
Collapse
|
10
|
Chaudhuri R, Bhattacharya S, Dash J, Bhattacharya S. Recent Update on Targeting c-MYC G-Quadruplexes by Small Molecules for Anticancer Therapeutics. J Med Chem 2020; 64:42-70. [PMID: 33355454 DOI: 10.1021/acs.jmedchem.0c01145] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Guanine-rich DNA sequences have the propensity to adopt four-stranded tetrahelical G-quadruplex (G4) structures that are overrepresented in gene promoters. The structural polymorphism and physicochemical properties of these non-Watson-Crick G4 structures make them important targets for drug development. The guanine-rich nuclease hypersensitivity element III1 present in the upstream of P1 promoter of c-MYC oncogene has the ability to form an intramolecular parallel G4 structure. The G4 structure that forms transiently in the c-MYC promoter functions as a transcriptional repressor element. The c-MYC oncogene is overexpressed in a wide variety of cancers and plays a key role in cancer progression. Till now, a large number of compounds that are capable of interacting and stabilizing thec-MYC G4 have been reported. In this review, we summarize various c-MYC G4 specific molecules and discuss their effects on c-MYC gene expression in vitro and in vivo.
Collapse
Affiliation(s)
- Ritapa Chaudhuri
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Semantee Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Sengupta P, Banerjee N, Roychowdhury T, Dutta A, Chattopadhyay S, Chatterjee S. Site-specific amino acid substitution in dodecameric peptides determines the stability and unfolding of c-MYC quadruplex promoting apoptosis in cancer cells. Nucleic Acids Res 2019; 46:9932-9950. [PMID: 30239898 PMCID: PMC6212778 DOI: 10.1093/nar/gky824] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022] Open
Abstract
c-MYC proto-oncogene harbours a transcription-inhibitory quadruplex-forming scaffold (Pu27) upstream P1 promoter providing anti-neoplastic therapeutic target. Previous reports showed the binding profile of human Cathelicidin peptide (LL37) and telomeric G-quadruplex. Here, we truncated the quadruplex-binding domain of LL37 to prepare a small library of peptides through site-specific amino acid substitution. We investigated the intracellular selectivity of peptides for Pu27 over other oncogenic quadruplexes and their role in c-MYC promoter repression by dual-luciferase assays. We analysed their thermodynamics of binding reactions with c-MYC quadruplex isomers (Pu27, Myc22, Pu19) by Isothermal Titration Calorimetry. We discussed how amino acid substitutions and peptide helicity enhanced/weakened their affinities for c-MYC quadruplexes and characterized specific non-covalent inter-residual interactions determining their selectivity. Solution NMR structure indicated that KR12C, the best peptide candidate, selectively stabilized the 5′-propeller loop of c-MYC quadruplex by arginine-driven electrostatic-interactions at the sugar-phosphate backbone while KR12A peptide destabilized the quadruplex inducing a single-stranded hairpin-like conformation. Chromatin immunoprecipitations envisaged that KR12C and KR12A depleted and enriched Sp1 and NM23-H2 (Nucleoside diphosphate kinase) occupancy at Pu27 respectively supporting their regulation in stabilizing and unfolding c-MYC quadruplex in MCF-7 cells. We deciphered that selective arresting of c-MYC transcription by KR12C triggered apoptotic-signalling pathway via VEGF-A-BCL-2 axis.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Nilanjan Banerjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Tanaya Roychowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Anindya Dutta
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Samit Chattopadhyay
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| |
Collapse
|
12
|
Sengupta P, Bhattacharya A, Sa G, Das T, Chatterjee S. Truncated G-Quadruplex Isomers Cross-Talk with the Transcription Factors To Maintain Homeostatic Equilibria in c-MYC Transcription. Biochemistry 2019; 58:1975-1991. [PMID: 30920805 DOI: 10.1021/acs.biochem.9b00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nuclease hypersensitive element III1 (NHE III1) upstream c-MYC promoter harbors a transcription-silencing G-quadruplex (Pu27) element. Dynamic turnover of various transcription factors (TFs) across Pu27 to control c-MYC transcription homeostasis is enigmatic. Here, we reveal that native Pu27 evolves truncated G-quadruplex isomers (Pu19, Pu22, Pu24, and Pu25) in cells that are optimal intracellular targets of specific TFs in a sequence- and structure-dependent manner. Nuclear magnetic resonance and isothermal titration calorimetry envisaged that NM23-H2 (nucleoside diphosphate kinase) and nucleolin induce conformational fluctuations in Pu27 to sample specific conformationally restricted conformer(s). Structural investigations revealed that the flanking guanines at 5'-Pu27 control solvent exposure at G-quartets upon NM23-H2 and nucleolin binding driving Pu27 unfolding and folding, respectively. Transient chromatin immunoprecipitations confirmed that NM23-H2 drives the conformation switch to Pu24 that outcompetes nucleolin recruitment. Similarly, nucleolin arrests Pu27 in the Pu22 conformer minimizing NM23-H2 binding at Pu27. hnRNPK (heterogeneous nuclear ribonucleoprotein K) positively regulates NM23-H2 and nucleolin association at Pu27 despite their antagonism. On the basis of these results, we simulated the transcription kinetics in a feed-forward loop in which the transcription output responds to hnRNPK-induced early activation via NM23-H2 association, which favors Pu24 formation at NHE III1 reducing nucleolin occupancy and driving quadruplex unfolding to initiate transcription. NM23-H2 further promotes hnRNPK deposition across NHE III1 altering Pu27 plasticity that finally enriches the nucleolin abundance to drive Pu22 formation and weaken NM23-H2 binding to extinguish transcription. This mechanism involves three positive feedback loops (NM23-H2-hnRNPK, NM23-H2-CNBP, and hnRNPK-nucleolin) and one negative feedback loop (NM23-H2-nucleolin) controlling optimal turnover and residence time of TFs at Pu27 to homeostatically regulate c-MYC transcription.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biophysics , Bose Institute , P 1/12, C. I. T. Road, Scheme-VIIM , Kolkata 700054 , West Bengal , India
| | - Apoorva Bhattacharya
- Division of Molecular Medicine , Bose Institute , P 1/12, C. I. T. Road, Scheme-VIIM , Kolkata 700054 , West Bengal , India
| | - Gaurisankar Sa
- Division of Molecular Medicine , Bose Institute , P 1/12, C. I. T. Road, Scheme-VIIM , Kolkata 700054 , West Bengal , India
| | - Tanya Das
- Division of Molecular Medicine , Bose Institute , P 1/12, C. I. T. Road, Scheme-VIIM , Kolkata 700054 , West Bengal , India
| | - Subhrangsu Chatterjee
- Department of Biophysics , Bose Institute , P 1/12, C. I. T. Road, Scheme-VIIM , Kolkata 700054 , West Bengal , India
| |
Collapse
|
13
|
Abstract
Guanine-rich nucleic acid sequences able to form four-stranded structures (G-quadruplexes, G4) play key cellular regulatory roles and are considered as promising drug targets for anticancer therapy. On the basis of the organization of their structural elements, G4 ligands can be divided into three major families: one, fused heteroaromatic polycyclic systems; two, macrocycles; three, modular aromatic compounds. The design of modular G4 ligands emerged as the answer to achieve not only more drug-like compounds but also more selective ligands by targeting the diversity of the G4 loops and grooves. The rationale behind the design of a very comprehensive set of ligands, with particular focus on the structural features required for binding to G4, is discussed and combined with the corresponding biochemical/biological data to highlight key structure-G4 interaction relationships. Analysis of the data suggests that the shape of the ligand is the major factor behind the G4 stabilizing effect of the ligands. The information here critically reviewed will certainly contribute to the development of new and better G4 ligands with application either as therapeutics or probes.
Collapse
Affiliation(s)
- Ana Rita Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Enrico Cadoni
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana S Ressurreição
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Paulo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
Wang Y, Ding Q, Xu T, Li CY, Zhou DD, Zhang L. HZ-6d targeted HERC5 to regulate p53 ISGylation in human hepatocellular carcinoma. Toxicol Appl Pharmacol 2017; 334:180-191. [PMID: 28919514 DOI: 10.1016/j.taap.2017.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/06/2017] [Accepted: 09/13/2017] [Indexed: 12/18/2022]
Abstract
Manipulating the posttranslational modulator of p53 is central in the regulation of its activity and function. ISGylated p53 can be degraded by the 20S proteasome. During this process, HERC5/Ceb1, an IFN-induced HECT-type E3 ligase, mediated p53 ISGylation. In this study, we indicated that HERC5 was over-expressed in both HCC tissue samples and cell lines. Knockdown of HERC5 significantly induced the expression of p53, p21 and Bax/Bcl-2 in HCC cells, resulting in apoptosis augment. Whereas, opposite results were obtained by using HERC5 over-expression. On this basis, we screened a 7, 11-disubstituted quinazoline derivative HZ-6d that could bind to the HERC5 G-rich sequence in vitro. Interestingly, HZ-6d injection effectively delayed the growth of xenografts in nude mice. In vitro, HZ-6d significantly inhibited cell growth, suppressed cell migration, induced apoptosis in HCC cells. Further studies demonstrated the anti-cancer effect of HZ-6d was associated with down-regulation of HERC5 and accumulation of p53. Collectively, we demonstrated that HZ6d is a HERC5 G-quadruplex ligand with anti-tumor properties, an action that may offer an attractive idea for restoration of p53 function in cancers.
Collapse
Affiliation(s)
- Yang Wang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Key Laboratory of major autoimmune disease, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032,China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Qi Ding
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Key Laboratory of major autoimmune disease, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032,China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Tao Xu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Key Laboratory of major autoimmune disease, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032,China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Chang-Yao Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Key Laboratory of major autoimmune disease, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032,China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Dan-Dan Zhou
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Key Laboratory of major autoimmune disease, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032,China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, Anhui Medical University, Hefei 230032, China; The Key Laboratory of major autoimmune disease, School of Pharmacy, Anhui Medical University, Hefei, Anhui Province 230032,China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
15
|
Qin QP, Qin JL, Chen M, Li YL, Meng T, Zhou J, Liang H, Chen ZF. Chiral platinum (II)-4-(2,3-dihydroxypropyl)- formamide oxo-aporphine (FOA) complexes promote tumor cells apoptosis by directly targeting G-quadruplex DNA in vitro and in vivo. Oncotarget 2017; 8:61982-61997. [PMID: 28977920 PMCID: PMC5617480 DOI: 10.18632/oncotarget.18778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/06/2017] [Indexed: 11/25/2022] Open
Abstract
Three platinum(II) complexes, 4 (LC-004), 5 (LC-005), and 6 (LC-006), with the chiral FOA ligands R/S-(±)-FOA (1), R-(+)-FOA (2) and S-(–)-FOA (3), respectively, were synthesized and characterized. As potential anti-tumor agents, these complexes show higher cytotoxicity to BEL-7404 cells than the HL-7702 normal cells. They are potential telomerase inhibitors that target c-myc and human telomeric G-quadruplex DNA. Compared to complexes 4 and 5, 6 exhibited higher binding affinities towards telomeric, c-myc G-quadruplex DNA and caspase-3/9, thereby inducing senescence and apoptosis to a greater extent in tumor cells. Moreover, our in vivo studies showed that complex 6 can effectively inhibit tumor growth in the BEL-7404 and BEL-7402 xenograft mouse models and is less toxic than 5-fluorouracil and cisplatin. The effective inhibition of tumor growth is attributed to its interactions with 53BP1, TRF1, c-myc, TRF2, and hTERT. Thus, complex 6 can serve as a novel lead compound and a potential drug candidate for anticancer chemotherapy.
Collapse
Affiliation(s)
- Qi-Pin Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jiao-Lan Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ming Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yu-Lan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Ting Meng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Jie Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
16
|
Al-Shamary DS, Al-Alshaikh MA, Kheder NA, Mabkhot YN, Badshah SL. Molecular docking and biological evaluation of some thioxoquinazolin-4(3H)-one derivatives as anticancer, antioxidant and anticonvulsant agents. Chem Cent J 2017; 11:48. [PMID: 29086826 PMCID: PMC5451370 DOI: 10.1186/s13065-017-0272-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/16/2017] [Indexed: 01/27/2023] Open
Abstract
Background The quinazoline are an important class of medicinal compounds that possess a number of biological activities like anticancer, anticonvulsant and antioxidant etc. Results We evaluated the previously synthesized quinazoline derivatives 1–3 for their anticancer activities against three cancer cell lines (HepG2, MCF-7, and HCT-116). Among the tested compounds, quinazolines 1 and 3 were found to be more potent than the standard drug Vinblastine against HepG2 and MCF-7 cell lines. All the tested compounds had less antioxidant activity and did not exhibit any anticonvulsant activity. Also, molecular docking studies were performed to get an insight
into the binding modes of the compounds with human cyclin-dependent kinase 2, butyrylcholinesterase enzyme, human gamma-aminobutyric acid receptor. These compounds showed better docking properties with the CDK2 as compared to the other two enzymes. Conclusions The overall study showed that thioxoquinazolines are suitable antitumor agents and they should be explored for other biological activities. Modification in the available lot of quinazoline and synthesis of its novel derivatives is essential to explore the potential of this class of compounds. The increase in the threat and with the emergence of drug resistance, it is important to explore and develop more efficacious drugs.
Collapse
Affiliation(s)
- Danah S Al-Shamary
- Women Students-Medical Studies & Sciences Sections, Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Monirah A Al-Alshaikh
- Women Students-Medical Studies & Sciences Sections, Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Nabila Abdelshafy Kheder
- Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Khalid University, Abha, 61441, Saudi Arabia
| | - Yahia Nasser Mabkhot
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar, 25120, Pakistan.
| |
Collapse
|