1
|
Weindel CG, Ellzey LM, Martinez EL, Watson RO, Patrick KL. Gasdermins gone wild: new roles for GSDMs in regulating cellular homeostasis. Trends Cell Biol 2023; 33:773-787. [PMID: 37062616 PMCID: PMC10611448 DOI: 10.1016/j.tcb.2023.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 04/18/2023]
Abstract
Since their discovery, members of the gasdermin (GSDM) family of proteins have been firmly established as executors of pyroptosis, with the N-terminal fragment of most GSDMs capable of forming pores in the plasma membrane. More recent findings suggest that some GSDMs can drive additional cell death pathways, such as apoptosis and necroptosis, through mechanisms independent of plasma membrane perforation. There is also emerging evidence that by associating with cellular compartments such as mitochondria, peroxisomes, endosomes, and the nucleus, GSDMs regulate cell death-independent aspects of cellular homeostasis. Here, we review the diversity of GSDM function across several cell types and explore how various cellular stresses can promote relocalization - and thus refunctionalization - of GSDMs.
Collapse
Affiliation(s)
- Chi G Weindel
- Texas A&M University School of Medicine, Bryan, TX, USA
| | - Lily M Ellzey
- Texas A&M University School of Medicine, Bryan, TX, USA
| | | | | | | |
Collapse
|
2
|
Ghislanzoni S, Sarcinelli GM, Bresci A, Manetti F, Polli D, Tomassetti A, Radice MT, Bongarzone I. Reduced sulfatide content in deferoxamine-induced senescent HepG2 cells. Int J Biochem Cell Biol 2023; 159:106419. [PMID: 37086817 DOI: 10.1016/j.biocel.2023.106419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/13/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Iron chelators, such as deferoxamine, exert an anticancer effect by altering the activity of biomolecules critical for regulation of the cell cycle, cell metabolism, and apoptotic processes. Thus, iron chelators are sometimes used in combination with radio- and/or chemotherapy in the treatment of cancer. The possibility that deferoxamine could induce a program of senescence similar to radio- and/or chemotherapy, fostering adaptation in the treatment of cancer cells, is not fully understood. Using established biochemical techniques, biomarkers linked to lipid composition, and coherent anti-Stokes Raman scattering microscopy, we demonstrated that hepatocellular carcinoma-derived HepG2 cells survive after deferoxamine treatment, acquiring phenotypic traits and representative hallmarks of senescent cells. The results support the view that deferoxamine acts in HepG2 cells to produce oxidative stress-induced senescence by triggering sequential mitochondrial and lysosomal dysfunction accompanied by autophagy blockade. We also focused on the lipidome of senescent cells after deferoxamine treatment. Using mass spectrometry, we found that the deferoxamine-induced senescent cells presented marked remodeling of the phosphoinositol, sulfatide, and cardiolipin profiles, which all play a central role in cell signaling cascades, intracellular membrane trafficking, and mitochondria functions. Detection of alterations in glycosphingolipid sulfate species suggested modifications in ceramide generation, and turnover is frequently described in cancer cell survival and resistance to chemotherapy. Blockade of ceramide generation may explain autophagic default, resistance to apoptosis, and the onset of senescence. DATA AVAILABILITY STATEMENT: All analyses relevant to the study were included in the article or uploaded as Supplementary Information.
Collapse
Affiliation(s)
- Silvia Ghislanzoni
- MALDI-imaging Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Amadeo 42, Milan, 20133, Italy.
| | - Gaia Martina Sarcinelli
- MALDI-imaging Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Amadeo 42, Milan, 20133, Italy
| | - Arianna Bresci
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Francesco Manetti
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Dario Polli
- Department of Physics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milan, Italy; CNR Institute for photonics and nanotechnologies (IFN), Piazza L. da Vinci 32, 20133 Milan, Italy
| | - Antonella Tomassetti
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Amadeo 42, Milan, 20133, Italy
| | - Maria Teresa Radice
- MALDI-imaging Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Amadeo 42, Milan, 20133, Italy
| | - Italia Bongarzone
- MALDI-imaging Laboratory, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Amadeo 42, Milan, 20133, Italy
| |
Collapse
|
3
|
Gao Q, Sun Z, Fang D. Integrins in human hepatocellular carcinoma tumorigenesis and therapy. Chin Med J (Engl) 2023; 136:253-268. [PMID: 36848180 PMCID: PMC10106235 DOI: 10.1097/cm9.0000000000002459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Integrins are a family of transmembrane receptors that connect the extracellular matrix and actin skeleton, which mediate cell adhesion, migration, signal transduction, and gene transcription. As a bi-directional signaling molecule, integrins can modulate many aspects of tumorigenesis, including tumor growth, invasion, angiogenesis, metastasis, and therapeutic resistance. Therefore, integrins have a great potential as antitumor therapeutic targets. In this review, we summarize the recent reports of integrins in human hepatocellular carcinoma (HCC), focusing on the abnormal expression, activation, and signaling of integrins in cancer cells as well as their roles in other cells in the tumor microenvironment. We also discuss the regulation and functions of integrins in hepatitis B virus-related HCC. Finally, we update the clinical and preclinical studies of integrin-related drugs in the treatment of HCC.
Collapse
Affiliation(s)
- Qiong Gao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhaolin Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
4
|
Fan Z, Zhuang C, Wang S, Zhang Y. Photodynamic and Photothermal Therapy of Hepatocellular Carcinoma. Front Oncol 2021; 11:787780. [PMID: 34950591 PMCID: PMC8688153 DOI: 10.3389/fonc.2021.787780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/22/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver tumor. It is ranked the sixth most common neoplasm and the third most common cause of cancer mortality. At present, the most common treatment for HCC is surgery, but the 5-year recurrence rates are still high. Patients with early stage HCC with few nodules can be treated with resection or radiofrequency ablation (RFA); while for multinodular HCC, transarterial chemoembolization (TACE) has been the first-line treatment. In recent years, based on medical engineering cooperation, nanotechnology has been increasingly applied to the treatment of cancer. Photodynamic therapy and photothermal therapy are effective for cancer. This paper summarizes the latest progress of photodynamic therapy and photothermal therapy for HCC, with the aim of providing new ideas for the treatment of HCC.
Collapse
Affiliation(s)
- Zhe Fan
- Department of General Surgery, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China.,Department of Central Laboratory, the Third People's Hospital of Dalian, Dalian Medical University, Dalian, China
| | - Chengjun Zhuang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shuang Wang
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yewei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Li Z, Zhang L, Liu D, Wang C. Ceramide glycosylation and related enzymes in cancer signaling and therapy. Biomed Pharmacother 2021; 139:111565. [PMID: 33887691 DOI: 10.1016/j.biopha.2021.111565] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023] Open
Abstract
Ceramides, the core of the sphingolipid metabolism, draw wide attention as tumor suppressor, and act directly on mitochondria to trigger apoptotic cell death. Ceramide-based therapies are being developed by using promote ceramide generating agents. The ceramide metabolism balance is regulated by multifaceted factors in cancer development. Ceramide metabolic enzymes can increase the elimination of ceramide and counteract the anti-tumor effects of ceramide. However, recent research showed that these metabolic enzymes were highly expressed in several cancers. Especially ceramide glycosyltransferases, they catalyze ceramide glycosylation and synthesis the skeleton of glycosphingolipids (GSLs), play an important role in regulating tumor progression and have a significant correlation with the poor prognosis of cancer patients. To further understand the biological characteristics of ceramide metabolism in tumor, this review focuses on the role of ceramide glycosylation and related enzymes in cancer signaling and therapy. Besides, the research on multidrug resistance and potential inhibitors of ceramide glycosyltransferases are also discussed. Advance study on the structure of ceramide glycosyltransferases and ceramide glycosylation signaling pathway will open the path to new therapies and treatments.
Collapse
Affiliation(s)
- Zibo Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Lin Zhang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Dan Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Caiyan Wang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
6
|
Cai Q, Liu Y, Zhu P, Kang C, Xu H, Qi B, Wang R, Dong Y, Wu XZ. SIN3B promotes integrin αV subunit gene transcription and cell migration of hepatocellular carcinoma. J Mol Cell Biol 2020; 11:421-432. [PMID: 30215728 PMCID: PMC7727265 DOI: 10.1093/jmcb/mjy050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/23/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
Paired amphipathic helix protein (SIN3B) is a transcription corepressor for many genes. Here we show a different regulation mechanism of integrin αV gene expression by SIN3B in human hepatocellular carcinoma (HCC). We first observed a close relationship between Integrin αV and SIN3B expressions in HCC patients and tumor cell lines with different metastatic potentials. Overexpression of SIN3B significantly accelerated the cell migration rate of SMMC-7721, but failed when integrin αV expression was silenced. Interestingly, SIN3B stimulated integrin αV subunit promoter activity only in the presence of sulfatide. Importantly, SIN3B was identified in the complex with sulfatide by mass spectrometry. Fat blot assay indicated that SIN3B specifically interacted with sulfatide. Molecular modeling suggested that sulfatide induced the conformational change of SIN3B from compacted α-helices to a relaxed β-sheet in PAH2 domain. The data of immunoprecipitation and ChIP assay indicated that altered SIN3B lost the binding affinity with MAD1 and HDAC2, which reduced the recruitment of HDAC2 on integrin αV gene promoter and prevented the deacetylation of the histone 3. In conclusion, this study demonstrated that SIN3B promoted the transcriptional activation of the integrin αV subunit gene promoter by reducing interaction with HDAC2.
Collapse
Affiliation(s)
- Qianqian Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Yuanyuan Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Ping Zhu
- Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Chunlang Kang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Heyang Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Bing Qi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Rong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Yiwei Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| | - Xing Zhong Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Key Lab of Glycoconjugate Research, Ministry of Public Health, Shanghai, China
| |
Collapse
|
7
|
Kang CL, Qi B, Cai QQ, Fu LS, Yang Y, Tang C, Zhu P, Chen QW, Pan J, Chen MH, Wu XZ. LncRNA AY promotes hepatocellular carcinoma metastasis by stimulating ITGAV transcription. Am J Cancer Res 2019; 9:4421-4436. [PMID: 31285770 PMCID: PMC6599657 DOI: 10.7150/thno.32854] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 05/21/2019] [Indexed: 01/11/2023] Open
Abstract
Rationale: Tumor metastasis is the main cause for cancer-related death. However, the driving molecules of metastasis remain largely unknown. Here, we aim to identify long non-coding RNAs (lncRNAs) critical for human hepatocellular carcinoma (HCC) metastasis. Methods: Microarrays were used to screen a comprehensive set of lncRNAs with differential expression profiles in sulfatide-treated cells. Mass spectrometry, protein arrays, and RNA pull-down experiments were used to identify proteins that interacted with lncRNA. Epigenetic analysis was used to study lncRNA-mediated regulation mechanisms. Results: We identified lncRNA AY927503 (AY) as a metastasis-associated molecule that was highly expressed in human hepatocellular carcinoma (HCC) and correlated with metastatic events and poor prognosis in patients with HCC. AY promoted HCC cell migration, stemness, 5-fluorouracil resistance, and metastasis in mice. However, knockdown of integrin αV (ITGAV) abolished AY-stimulated migration, cell viability in HCC cells or tube formation. AY strongly promoted ITGAV transcription and αVβ3 expression by interacting with the ITGAV promoter specifically and stimulating its activity. AY was identified to interact with histone 1FX (H1FX), but deletion of the central domain of AY (AY∆371-522) abolished H1FX binding and ITGAV promoter stimulation. AY significantly enriched H3K4Me3 and acH3K9/14 but reduced H3K27Me3 and H1FX occupancy on the ITGAV promoter, which remodeled chromatin structures for RNA polymerase II recruitment. Knockdown of H1FX abrogated ITGAV transcription stimulated by AY. Conclusions: Our findings suggested that lncRNA AY promoted HCC metastasis via induction of chromatin modification for ITGAV transcription as a pioneer factor and was a potential molecular signature for metastasis or poor prognosis in patients with HCC.
Collapse
|