1
|
Montecillo-Aguado M, Soca-Chafre G, Antonio-Andres G, Morales-Martinez M, Tirado-Rodriguez B, Rocha-Lopez AG, Hernandez-Cueto D, Sánchez-Ceja SG, Alcala-Mota-Velazco B, Gomez-Garcia A, Gutiérrez-Castellanos S, Huerta-Yepez S. Upregulated Nuclear Expression of Soluble Epoxide Hydrolase Predicts Poor Outcome in Breast Cancer Patients: Importance of the Digital Pathology Approach. Int J Mol Sci 2024; 25:8024. [PMID: 39125591 PMCID: PMC11312095 DOI: 10.3390/ijms25158024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Breast cancer (BC) is the most common cancer in women, with incidence rates increasing globally in recent years. Therefore, it is important to find new molecules with prognostic and therapeutic value to improve therapeutic response and quality of life. The polyunsaturated fatty acids (PUFAs) metabolic pathway participates in various physiological processes, as well as in the development of malignancies. Although aberrancies in the PUFAs metabolic pathway have been implicated in carcinogenesis, the functional and clinical relevance of this pathway has not been well explored in BC. To evaluate the clinical significance of soluble epoxide hydrolase (EPHX2) expression in Mexican patients with BC using tissue microarrays (TMAs) and digital pathology (DP). Immunohistochemical analyses were performed on 11 TMAs with 267 BC samples to quantify this enzyme. Using DP, EPHX2 protein expression was evaluated solely in tumor areas. The association of EPHX2 with overall survival (OS) was detected through bioinformatic analysis in public databases and confirmed in our cohort via Cox regression analysis. Clear nuclear expression of EPHX2 was identified. Receiver operating characteristics (ROC) curves revealed the optimal cutoff point at 2.847062 × 10-3 pixels, with sensitivity of 69.2% and specificity of 67%. Stratification based on this cutoff value showed elevated EPHX2 expression in multiple clinicopathological features, including older age and nuclear grade, human epidermal growth factor receptor 2 (HER2) and triple negative breast cancer (TNBC) subtypes, and recurrence. Kaplan-Meier curves demonstrated how higher nuclear expression of EPHX2 predicts shorter OS. Consistently, multivariate analysis confirmed EPHX2 as an independent predictor of OS, with a hazard ratio (HR) of 3.483 and a 95% confidence interval of 1.804-6.724 (p < 0.001). Our study demonstrates for the first time that nuclear overexpression of EPHX2 is a predictor of poor prognosis in BC patients. The DP approach was instrumental in identifying this significant association. Our study provides valuable insights into the potential clinical utility of EPHX2 as a prognostic biomarker and therapeutic target in BC.
Collapse
Affiliation(s)
- Mayra Montecillo-Aguado
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Giovanny Soca-Chafre
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Gabriela Antonio-Andres
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Mario Morales-Martinez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Belen Tirado-Rodriguez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Angelica G. Rocha-Lopez
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico
| | - Daniel Hernandez-Cueto
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| | - Sandra G. Sánchez-Ceja
- Laboratorio de Patología, Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico;
| | - Berenice Alcala-Mota-Velazco
- Departamento de Patología, Facultad de Odontología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico;
| | - Anel Gomez-Garcia
- Centro de investigación Biomédica de Michoacán, División de Investigación Clínica, Instituto Mexicano del Seguro Social, Morelia 58060, Mexico;
| | - Sergio Gutiérrez-Castellanos
- División de Estudios de Posgrado, Facultad de Ciencias Médicas y Biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58060, Mexico
- Centro de investigación Biomédica de Michoacán, División de Investigación Clínica, Instituto Mexicano del Seguro Social, Morelia 58060, Mexico;
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México, Federico Gómez, Ciudad de México 06720, Mexico; (M.M.-A.); (G.S.-C.); (G.A.-A.)
| |
Collapse
|
2
|
Zhang F, Zhang Y, Hou T, Ren F, Liu X, Zhao R, Zhang X. Screening of Genes Related to Breast Cancer Prognosis Based on the DO-UniBIC Method. Am J Med Sci 2022; 364:333-342. [DOI: 10.1016/j.amjms.2022.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 10/04/2021] [Accepted: 04/08/2022] [Indexed: 11/01/2022]
|
3
|
Kazemi SM, Esmaieli-bandboni A, Veisi Malekshahi Z, Shahbaz Sardood M, Hashemi M, Majidzadeh K, Kadkhodazadeh M, Esmaili R, Negahdari B. Vitamin D receptor gene polymorphisms and risk of breast cancer in Iranian women. Ann Med Surg (Lond) 2022; 73:103150. [PMID: 34917354 PMCID: PMC8666522 DOI: 10.1016/j.amsu.2021.103150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES Vitamin D deficiency is a driving force of common cancers like breast cancer. Vitamin D receptor (VDR) can play a tumor suppressor role by helping the precise function of vitamin D in cells such as modulation TGF-β signaling pathway. This study aimed to investigate the association of VDR gene variants and susceptibility to breast cancer in Iranian women. METHODS Genomic DNAs were isolated from blood samples of 161 women with breast cancer and 150 healthy women. After amplification of five positions of VDR gene, the prepared amplicons were digested with TaqI, ApaI, BsmI, Cdx2, and FokI restriction enzymes. RESULTS Subsequently, the digested products were electrophoresed on the 1.5% agarose gel. Odds ratios (ORs) for breast cancer were calculated for genotypes and estimated haplotypes. Binary logistic regression analysis showed FokI (rs2228570), BsmI (rs1544410), and ApaI (rs7975232) polymorphisms had the significant distribution in patients than to the normal group. Analysis of linkage disequilibrium for all pairs of SNPs showed that D'-value between SNP TaqI and SNP BsmI was significantly (p ≤ 0.05). We observed that four major haplotypes of ApaI, BsmI, FokI, Cdx2, and TaqI SNPs significantly were in high frequency than predicted frequency. Among these four haplotypes, CGTAT haplotype was in a higher significant association than others with breast cancer risk (p-value = 0.0001). CONCLUSION Our results showed that FokI, BsmI, and ApaI of VDR polymorphisms associated with the risk of breast cancer in Iranian population.
Collapse
Affiliation(s)
- Seyedeh Maryam Kazemi
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aghil Esmaieli-bandboni
- Department of Medical Genetics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shahbaz Sardood
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Keivan Majidzadeh
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Rezvan Esmaili
- Genetics Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Pei T, Luo B, Huang W, Liu D, Li Y, Xiao L, Huang X, Ouyang Y, Zhu H. Increased Expression of YAP Inhibited the Autophagy Level by Upregulating mTOR Signal in the Eutopic ESCs of Endometriosis. Front Endocrinol (Lausanne) 2022; 13:813165. [PMID: 35173685 PMCID: PMC8842667 DOI: 10.3389/fendo.2022.813165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/03/2022] [Indexed: 01/18/2023] Open
Abstract
We first reported that the Hippo-YAP signaling pathway plays a critical role in the pathogenesis of endometriosis (EMS). Autophagy is also related to the invasion ability of endometrial cells and is involved in the pathogenesis of EMS through multi-levels. However, the precise regulatory mechanism of YAP on autophagy in the eutopic endometrial stromal cells (ESCs) is still unclear. Primary eutopic ESCs of EMS patients (n = 12) and control patients without EMS (n = 9) were isolated and cultured to investigate the expressions of YAP and mTOR, the role of YAP in autophagy, and the effect of the YAP-autophagy signal on the decidualization of the eutopic ESCs. Endometriosis-related sequencing data (GSE51981) in the GEO database were used to find the genes significantly correlated with YAP. We found 155 genes with significant differences in the interaction with YAP in EMS from the dataset, and the autophagy pathway was significantly enriched. Following on from our previous studies of YAP knockdown, overexpression of YAP resulted in an increased expression of mTOR and decreased ratio of LC3-II/LC3-I and autophagy markers, in the eutopic ESCs; transmission electron microscope observation also showed fewer autophagosomes compared with the control cells. Furthermore, ESCs of the Rapamycin-treated group showed significant decidual-like changes with significantly increased decidual prolactin level at 72 h after in vitro decidualization. These results demonstrate that the increased YAP inhibited the level of autophagy by upregulating the mTOR signal in the eutopic ESCs of endometriosis. The YAP-autophagy signal plays an important role in the pathogenesis of endometriosis-associated infertility.
Collapse
Affiliation(s)
- Tianjiao Pei
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Bin Luo
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Dong Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- Department of Reproductive Endocrinology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yujing Li
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Li Xiao
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Xin Huang
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Yunwei Ouyang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- Department of Reproductive Endocrinology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Huili Zhu
- Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- *Correspondence: Huili Zhu,
| |
Collapse
|
5
|
Zhang M, Jiang Y. Downregulation of circular RNA circ-HN1 suppressed the progression of gastric cancer through the miR-485-5p/GSK3A pathway. Bioengineered 2021; 13:5675-5684. [PMID: 34607506 PMCID: PMC8974141 DOI: 10.1080/21655979.2021.1987124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is a malignancy with high incidence and mortality globally. Circular RNAs (circRNAs) are reported to regulate cellular processes in human diseases, including GC. Herein, the functions of circ-HN1 and its molecular mechanisms were investigated. circ-HN1, miR-485-5p, and GSK3A levels in GC were measured using Real time-quantitative polymerase chain reaction (RT-qPCR). Cell proliferation was analyzed using cell counting kit-8 (CCK-8) and colony formation assays. Meanwhile, the migration and invasion abilities were analyzed using the transwell assay. The targeted relationship was confirmed using a luciferase reporter assay and an RNA pull-down assay. In both GC tissues and cells, circ-HN1 expression was upregulated, and its silencing suppressed cellular processes. Moreover, circ-HN1 served as a sponge of miR-485-5p, which was reduced in patients with GC and negatively regulated by circ-HN1 in GC cells. Inhibition of miR-485-4p abolished the biological functions induced by the silencing of circ-HN1. Additionally, miR-485-5p targeted GSK3A in GC, whose expression was elevated in tumor tissues and was negatively correlated with miR-485-5p in tumor cells. GSK3A rescued the inhibition of miR-485-5p in the cellular processes. In conclusion, silencing of the circ-HN1–miR-485-5p–GSK3A regulatory network inhibited GC cell proliferation, migration, and invasion, suggesting that circ-HN1 is a potential target for GC therapy.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Gastrointestinal surgery, Liuzhou People's Hospital
| | - Yingheng Jiang
- Surgery Medical Insurance Office, Liuzhou People's Hospital
| |
Collapse
|
6
|
Identification and Prognostic Value Exploration of Radiotherapy Sensitivity-Associated Genes in Non-Small-Cell Lung Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5963868. [PMID: 34518802 PMCID: PMC8433590 DOI: 10.1155/2021/5963868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/16/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
Background Non-small-cell lung cancer (NSCLC) is a prevalent malignancy with high mortality and poor prognosis. The radiotherapy is one of the most common treatments of NSCLC, and the radiotherapy sensitivity of patients could affect the individual prognosis of NSCLC. However, the prognostic signatures related to radiotherapy response still remain limited. Here, we explored the radiosensitivity-associated genes and constructed the prognostically predictive model of NSCLC cases. Methods The NSCLC samples with radiotherapy records were obtained from The Cancer Genome Atlas database, and the mRNA expression profiles of NSCLC patients from the GSE30219 and GSE31210 datasets were obtained from the Gene Expression Omnibus database. The Weighted Gene Coexpression Network Analysis (WGCNA), univariate, least absolute shrinkage and selection operator (LASSO), multivariate Cox regression analysis, and nomogram were conducted to identify and validate the radiotherapy sensitivity-related signature. Results WGCNA revealed that 365 genes were significantly correlated with radiotherapy response. LASSO Cox regression analysis identified 8 genes, including FOLR3, SLC6A11, ALPP, IGFN1, KCNJ12, RPS4XP22, HIST1H2BH, and BLACAT1. The overall survival (OS) of the low-risk group was better than that of the high-risk group separated by the Risk Score based on these 8 genes for the NSCLC patients. Furthermore, the immune infiltration analysis showed that monocytes and activated memory CD4 T cells had different relative proportions in the low-risk group compared with the high-risk group. The Risk Score was correlated with immune checkpoints, including CTLA4, PDL1, LAG3, and TIGIT. Conclusion We identified 365 genes potentially correlated with the radiotherapy response of NSCLC patients. The Risk Score model based on the identified 8 genes can predict the prognosis of NSCLC patients.
Collapse
|
7
|
Abstract
Increased proliferation and protein synthesis are characteristics of transformed and tumor cells. Although the components of the translation machinery are often dysregulated in cancer, the role of tRNAs in cancer cells has not been well studied. Nevertheless, the number of related studies has recently started increasing. With the development of high throughput technologies such as next-generation sequencing, genome-wide differential tRNA expression patterns in breast cancer-derived cell lines and breast tumors have been investigated. The genome-wide transcriptomics analyses have been linked with many studies for functional and phenotypic characterization, whereby tRNAs or tRNA-related fragments have been shown to play important roles in breast cancer regulation and as promising prognostic biomarkers. Here, we review their expression patterns, functions, prognostic value, and potential therapeutic use as well as related technologies.
Collapse
|
8
|
Iliopoulos A, Beis G, Apostolou P, Papasotiriou I. Complex Networks, Gene Expression and Cancer Complexity: A Brief Review of Methodology and Applications. Curr Bioinform 2020. [DOI: 10.2174/1574893614666191017093504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this brief survey, various aspects of cancer complexity and how this complexity can
be confronted using modern complex networks’ theory and gene expression datasets, are described.
In particular, the causes and the basic features of cancer complexity, as well as the challenges
it brought are underlined, while the importance of gene expression data in cancer research
and in reverse engineering of gene co-expression networks is highlighted. In addition, an introduction
to the corresponding theoretical and mathematical framework of graph theory and complex
networks is provided. The basics of network reconstruction along with the limitations of gene
network inference, the enrichment and survival analysis, evolution, robustness-resilience and cascades
in complex networks, are described. Finally, an indicative and suggestive example of a cancer
gene co-expression network inference and analysis is given.
Collapse
Affiliation(s)
- A.C. Iliopoulos
- Research and Development Department, Research Genetic Cancer Centre S.A., Florina, Greece
| | - G. Beis
- Research and Development Department, Research Genetic Cancer Centre S.A., Florina, Greece
| | - P. Apostolou
- Research and Development Department, Research Genetic Cancer Centre S.A., Florina, Greece
| | - I. Papasotiriou
- Research Genetic Cancer Centre International GmbH, Zug, Switzerland
| |
Collapse
|
9
|
Zhu C, Miller M, Zeng Z, Wang Y, Mahlich Y, Aptekmann A, Bromberg Y. Computational Approaches for Unraveling the Effects of Variation in the Human Genome and Microbiome. Annu Rev Biomed Data Sci 2020. [DOI: 10.1146/annurev-biodatasci-030320-041014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The past two decades of analytical efforts have highlighted how much more remains to be learned about the human genome and, particularly, its complex involvement in promoting disease development and progression. While numerous computational tools exist for the assessment of the functional and pathogenic effects of genome variants, their precision is far from satisfactory, particularly for clinical use. Accumulating evidence also suggests that the human microbiome's interaction with the human genome plays a critical role in determining health and disease states. While numerous microbial taxonomic groups and molecular functions of the human microbiome have been associated with disease, the reproducibility of these findings is lacking. The human microbiome–genome interaction in healthy individuals is even less well understood. This review summarizes the available computational methods built to analyze the effect of variation in the human genome and microbiome. We address the applicability and precision of these methods across their possible uses. We also briefly discuss the exciting, necessary, and now possible integration of the two types of data to improve the understanding of pathogenicity mechanisms.
Collapse
Affiliation(s)
- Chengsheng Zhu
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
| | - Maximilian Miller
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
| | - Zishuo Zeng
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
| | - Yanran Wang
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
| | - Yannick Mahlich
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
| | - Ariel Aptekmann
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey 08873, USA;,
- Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
10
|
Khalique A, Mattijssen S, Haddad AF, Chaudhry S, Maraia RJ. Targeting mitochondrial and cytosolic substrates of TRIT1 isopentenyltransferase: Specificity determinants and tRNA-i6A37 profiles. PLoS Genet 2020; 16:e1008330. [PMID: 32324744 PMCID: PMC7200024 DOI: 10.1371/journal.pgen.1008330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 05/05/2020] [Accepted: 03/18/2020] [Indexed: 11/29/2022] Open
Abstract
The tRNA isopentenyltransferases (IPTases), which add an isopentenyl group to N6 of A37 (i6A37) of certain tRNAs, are among a minority of enzymes that modify cytosolic and mitochondrial tRNAs. Pathogenic mutations to the human IPTase, TRIT1, that decrease i6A37 levels, cause mitochondrial insufficiency that leads to neurodevelopmental disease. We show that TRIT1 encodes an amino-terminal mitochondrial targeting sequence (MTS) that directs mitochondrial import and modification of mitochondrial-tRNAs. Full understanding of IPTase function must consider the tRNAs selected for modification, which vary among species, and in their cytosol and mitochondria. Selection is principally via recognition of the tRNA A36-A37-A38 sequence. An exception is unmodified tRNATrpCCA-A37-A38 in Saccharomyces cerevisiae, whereas tRNATrpCCA is readily modified in Schizosaccharomyces pombe, indicating variable IPTase recognition systems and suggesting that additional exceptions may account for some of the tRNA-i6A37 paucity in higher eukaryotes. Yet TRIT1 had not been characterized for restrictive type substrate-specific recognition. We used i6A37-dependent tRNA-mediated suppression and i6A37-sensitive northern blotting to examine IPTase activities in S. pombe and S. cerevisiae lacking endogenous IPTases on a diversity of tRNA-A36-A37-A38 substrates. Point mutations to the TRIT1 MTS that decrease human mitochondrial import, decrease modification of mitochondrial but not cytosolic tRNAs in both yeasts. TRIT1 exhibits clear substrate-specific restriction against a cytosolic-tRNATrpCCA-A37-A38. Additional data suggest that position 32 of tRNATrpCCA is a conditional determinant for substrate-specific i6A37 modification by the restrictive IPTases, Mod5 and TRIT1. The cumulative biochemical and phylogenetic sequence analyses provide new insights into IPTase activities and determinants of tRNA-i6A37 profiles in cytosol and mitochondria.
Collapse
Affiliation(s)
- Abdul Khalique
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sandy Mattijssen
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alexander F. Haddad
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Shereen Chaudhry
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richard J. Maraia
- Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development, of the National Institutes of Health, Bethesda, Maryland, United States of America
- Commissioned Corps, United States Public Health Service, Rockville, Maryland, United States of America
| |
Collapse
|
11
|
Gao G, Liang X, Ma W. Sinomenine restrains breast cancer cells proliferation, migration and invasion via modulation of miR-29/PDCD-4 axis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3839-3846. [PMID: 31556312 DOI: 10.1080/21691401.2019.1666861] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sinomenine (Sino) is diffusely applied in heal rheumatoid arthritis and neuralgia. Howbeit, the activities of Sino in breast cancer cells remain confused. The research attempted to probe the anti-tumor function of Sino in breast cancer cells and divulge the feasible molecular mechanism. Sion at the 1-16 μM concentrations was exploited for the exposure of MDA-MB-231 or MCF7 cells, and cell growth, migration, invasion, cell cycle-relevant and apoptosis-correlative factors were estimated. Micro RNA (miR)-29 expression was evaluated via enforcing qRT-PCR, and the actions of miR-29 in MDA-MB-231 cells growth, migration and invasion were appraised after the overexpressed or suppressed vectors transfection. The functions of PDCD-4 in JNK and MEK/ERK pathways were estimated by employing western blot. We found that, Sino exposure impeded cell proliferation, provoked cell apoptosis and barricaded cell migration and invasion in MDA-MB-231 and MCF7 cells. Enhancement of miR-29 was observed in Sino-managed cells, and miR-29 overexpression further potentiated the activities of Sino in MDA-MB-231 cells. Additionally, Sino remarkably enhanced PCDC-4 expression via adjusting miR-29 in MDA-MB-231 cells. Beyond that, overexpressed PCDC-4 obstructed JNK and MEK/ERK pathways in MDA-MB-231 cells. Taken together, the explorations unveiled that Sino restrained MDA-MB-231 cells proliferation, migration, invasion, and provoked apoptosis through modulation of miR-29/PDCD-4 axis. Highlight Sino inhibits MDA-MB-231 and MCF7 cells proliferation and provokes apoptosis; Sino restrains MDA-MB-231 and MCF7 cells migration and invasion; Sino ascends miR-29 expression in MDA-MB-231 and MCF7 cells; Sino adjusts cell growth, migration and invasion via modulating miR-29; Sino up-regulates PDCD-4 expression through mediating miR-29; PDCD-4 obstructs JNK and MEK/ERK pathways in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Guanglei Gao
- Department of Galactophore, Linyi Central Hospital , Linyi , China
| | - Xiaolin Liang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University , Shenzhen , China
| | - Wenyan Ma
- Department of Pharmacy, Jining No.1 People's Hospital , Jining , China
| |
Collapse
|
12
|
de Crécy-Lagard V, Boccaletto P, Mangleburg CG, Sharma P, Lowe TM, Leidel SA, Bujnicki JM. Matching tRNA modifications in humans to their known and predicted enzymes. Nucleic Acids Res 2019; 47:2143-2159. [PMID: 30698754 PMCID: PMC6412123 DOI: 10.1093/nar/gkz011] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 12/25/2022] Open
Abstract
tRNA are post-transcriptionally modified by chemical modifications that affect all aspects of tRNA biology. An increasing number of mutations underlying human genetic diseases map to genes encoding for tRNA modification enzymes. However, our knowledge on human tRNA-modification genes remains fragmentary and the most comprehensive RNA modification database currently contains information on approximately 20% of human cytosolic tRNAs, primarily based on biochemical studies. Recent high-throughput methods such as DM-tRNA-seq now allow annotation of a majority of tRNAs for six specific base modifications. Furthermore, we identified large gaps in knowledge when we predicted all cytosolic and mitochondrial human tRNA modification genes. Only 48% of the candidate cytosolic tRNA modification enzymes have been experimentally validated in mammals (either directly or in a heterologous system). Approximately 23% of the modification genes (cytosolic and mitochondrial combined) remain unknown. We discuss these 'unidentified enzymes' cases in detail and propose candidates whenever possible. Finally, tissue-specific expression analysis shows that modification genes are highly expressed in proliferative tissues like testis and transformed cells, but scarcely in differentiated tissues, with the exception of the cerebellum. Our work provides a comprehensive up to date compilation of human tRNA modifications and their enzymes that can be used as a resource for further studies.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
- Cancer and Genetic Institute, University of Florida, Gainesville, FL 32611, USA
| | - Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
| | - Carl G Mangleburg
- Department of Microbiology and Cell Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Puneet Sharma
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Sebastian A Leidel
- Max Planck Research Group for RNA Biology, Max Planck Institute for Molecular Biomedicine, 48149 Muenster, Germany
- Cells-in-Motion Cluster of Excellence, University of Muenster, 48149 Muenster, Germany
- Research Group for RNA Biochemistry, Institute of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. Trojdena 4, 02-109 Warsaw, Poland
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
13
|
Roles of Elongator Dependent tRNA Modification Pathways in Neurodegeneration and Cancer. Genes (Basel) 2018; 10:genes10010019. [PMID: 30597914 PMCID: PMC6356722 DOI: 10.3390/genes10010019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Transfer RNA (tRNA) is subject to a multitude of posttranscriptional modifications which can profoundly impact its functionality as the essential adaptor molecule in messenger RNA (mRNA) translation. Therefore, dynamic regulation of tRNA modification in response to environmental changes can tune the efficiency of gene expression in concert with the emerging epitranscriptomic mRNA regulators. Several of the tRNA modifications are required to prevent human diseases and are particularly important for proper development and generation of neurons. In addition to the positive role of different tRNA modifications in prevention of neurodegeneration, certain cancer types upregulate tRNA modification genes to sustain cancer cell gene expression and metastasis. Multiple associations of defects in genes encoding subunits of the tRNA modifier complex Elongator with human disease highlight the importance of proper anticodon wobble uridine modifications (xm⁵U34) for health. Elongator functionality requires communication with accessory proteins and dynamic phosphorylation, providing regulatory control of its function. Here, we summarized recent insights into molecular functions of the complex and the role of Elongator dependent tRNA modification in human disease.
Collapse
|
14
|
Wang L, Yang Z, Zhang B, Yu D, Liu J, Gong Q, Qanmber G, Li Y, Lu L, Lin Y, Yang Z, Li F. Genome-wide characterization and phylogenetic analysis of GSK gene family in three species of cotton: evidence for a role of some GSKs in fiber development and responses to stress. BMC PLANT BIOLOGY 2018; 18:330. [PMID: 30514299 PMCID: PMC6280398 DOI: 10.1186/s12870-018-1526-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/14/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND The glycogen synthase kinase 3/shaggy kinase (GSK3) is a serine/threonine kinase with important roles in animals. Although GSK3 genes have been studied for more than 30 years, plant GSK genes have been studied only since the last decade. Previous research has confirmed that plant GSK genes are involved in diverse processes, including floral development, brassinosteroid signaling, and responses to abiotic stresses. RESULT In this study, 20, 15 (including 5 different transcripts) and 10 GSK genes were identified in G. hirsutum, G. raimondii and G. arboreum, respectively. A total of 65 genes from Arabidopsis, rice, and cotton were classified into 4 clades. High similarities were found in GSK3 protein sequences, conserved motifs, and gene structures, as well as good concordance in gene pairwise comparisons (G. hirsutum vs. G. arboreum, G. hirsutum vs. G. raimondii, and G. arboreum vs. G. raimondii) were observed. Whole genome duplication (WGD) within At and Dt sub-genomes has been central to the expansion of the GSK gene family. Furthermore, GhSK genes showed diverse expression patterns in various tissues. Additionally, the expression profiles of GhSKs under different stress treatments demonstrated that many are stress-responsive genes. However, none were induced by brassinolide treatment. Finally, nine co-expression sub-networks were observed for GhSKs and the functional annotations of these genes suggested that some GhSKs might be involved in cotton fiber development. CONCLUSION In this present work, we identified 45 GSK genes from three cotton species, which were divided into four clades. The gene features, muti-alignment, conversed motifs, and syntenic blocks indicate that they have been highly conserved during evolution. Whole genome duplication was determined to be the dominant factor for GSK gene family expansion. The analysis of co-expressed sub-networks and tissue-specific expression profiles suggested functions of GhSKs during fiber development. Moreover, their different responses to various abiotic stresses indicated great functional diversity amongst the GhSKs. Briefly, data presented herein may serve as the basis for future functional studies of GhSKs.
Collapse
Affiliation(s)
- Lingling Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Bin Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Daoqian Yu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Qian Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Lili Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000 Henan China
| |
Collapse
|
15
|
Chambers AE, Richardson AE, Read DF, Waller TJ, Bernstein DA, Smaldino PJ. An In Vitro Assay to Detect tRNA-Isopentenyl Transferase Activity. J Vis Exp 2018. [PMID: 30346392 DOI: 10.3791/58100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
N6-isopentenyladenosine RNA modifications are functionally diverse and highly conserved among prokaryotes and eukaryotes. One of the most highly conserved N6-isopentenyladenosine modifications occurs at the A37 position in a subset of tRNAs. This modification improves translation efficiency and fidelity by increasing the affinity of the tRNA for the ribosome. Mutation of enzymes responsible for this modification in eukaryotes are associated with several disease states, including mitochondrial dysfunction and cancer. Therefore, understanding the substrate specificity and biochemical activities of these enzymes is important for understanding of normal and pathologic eukaryotic biology. A diverse array of methods has been employed to characterize i6A modifications. Herein is described a direct approach for the detection of isopentenylation by Mod5. This method utilizes incubation of RNAs with a recombinant isopentenyl transferase, followed by RNase T1 digestion, and 1-dimensional gel electrophoresis analysis to detect i6A modifications. In addition, the potential adaptability of this protocol to characterize other RNA-modifying enzymes is discussed.
Collapse
Affiliation(s)
| | | | - David F Read
- Department of Genome Sciences, University of Washington
| | - Thomas J Waller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan
| | | | | |
Collapse
|
16
|
Liang J, Liu Z, Zou Z, Tang Y, Zhou C, Yang J, Wei X, Lu Y. The Correlation Between the Immune and Epithelial-Mesenchymal Transition Signatures Suggests Potential Therapeutic Targets and Prognosis Prediction Approaches in Kidney Cancer. Sci Rep 2018; 8:6570. [PMID: 29700419 PMCID: PMC5919934 DOI: 10.1038/s41598-018-25002-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/13/2018] [Indexed: 02/05/2023] Open
Abstract
Both epithelial-mesenchymal transition (EMT) and immune regulation are important biological process in malignant tumours. The current research aims to comprehensively explore the potential association between the epithelial-mesenchymal transition (EMT) signature and immune checkpoint signature and its role in predicting the prognosis of clear-cell renal cell carcinoma (ccRCC) patients. EMT-related genes were collected from an experiment-based study and then were investigated using data from the Cancer Genome Atlas. A total of 357 genes were included, and 23 of them that were upregulated and correlated with prognosis were analysed further as core EMT genes in ccRCC. Interestingly, the emerging immune checkpoints CD276, OX40 and TGFB1 were found to be significantly co-expressed with core EMT genes, and TGFB1, CXCR4, IL10, and IL6 were the most important molecules potentially interacting with EMT molecules in our model, as determined from mRNA co-expression and protein-protein interaction network analysis. Additionally, an integrated scoring model based on FOXM1, TIMP1 and IL6 was successfully established to distinguish ccRCC patients with different clinical risks. Our results identified core genes in the EMT-immunophenotyping correlation and evaluated their risk assessment capabilities, providing more potential therapeutic targets and prediction approaches regarding the translational research of treatment and prognosis in ccRCC.
Collapse
Affiliation(s)
- Jiayu Liang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zijun Zou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yongquan Tang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuan Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jian Yang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Xin Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yiping Lu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
17
|
Puig-Butille JA, Gimenez-Xavier P, Visconti A, Nsengimana J, Garcia-García F, Tell-Marti G, Escamez MJ, Newton-Bishop J, Bataille V, del Río M, Dopazo J, Falchi M, Puig S. Genomic expression differences between cutaneous cells from red hair color individuals and black hair color individuals based on bioinformatic analysis. Oncotarget 2017; 8:11589-11599. [PMID: 28030792 PMCID: PMC5355288 DOI: 10.18632/oncotarget.14140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
The MC1R gene plays a crucial role in pigmentation synthesis. Loss-of-function MC1R variants, which impair protein function, are associated with red hair color (RHC) phenotype and increased skin cancer risk. Cultured cutaneous cells bearing loss-of-function MC1R variants show a distinct gene expression profile compared to wild-type MC1R cultured cutaneous cells. We analysed the gene signature associated with RHC co-cultured melanocytes and keratinocytes by Protein-Protein interaction (PPI) network analysis to identify genes related with non-functional MC1R variants. From two detected networks, we selected 23 nodes as hub genes based on topological parameters. Differential expression of hub genes was then evaluated in healthy skin biopsies from RHC and black hair color (BHC) individuals. We also compared gene expression in melanoma tumors from individuals with RHC versus BHC. Gene expression in normal skin from RHC cutaneous cells showed dysregulation in 8 out of 23 hub genes (CLN3, ATG10, WIPI2, SNX2, GABARAPL2, YWHA, PCNA and GBAS). Hub genes did not differ between melanoma tumors in RHC versus BHC individuals. The study suggests that healthy skin cells from RHC individuals present a constitutive genomic deregulation associated with the red hair phenotype and identify novel genes involved in melanocyte biology.
Collapse
Affiliation(s)
- Joan Anton Puig-Butille
- Biochemistry and Molecular Genetics Department, Melanoma Unit, Hospital Clinic & IDIBAPS, CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Pol Gimenez-Xavier
- Dermatology Department, Melanoma Unit, Hospital Clinic & IDIBAPS, CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Alessia Visconti
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jérémie Nsengimana
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Francisco Garcia-García
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Gemma Tell-Marti
- Dermatology Department, Melanoma Unit, Hospital Clinic & IDIBAPS, CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Maria José Escamez
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, CIEMAT, IIS-Fundación Jiménez Díaz, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Julia Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Veronique Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Marcela del Río
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, CIEMAT, IIS-Fundación Jiménez Díaz, CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Joaquín Dopazo
- Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
- Functional Genomics Node, (INB) at CIPF, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Susana Puig
- Dermatology Department, Melanoma Unit, Hospital Clinic & IDIBAPS, CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|