1
|
Innate Immunity: A Balance between Disease and Adaption to Stress. Biomolecules 2022; 12:biom12050737. [PMID: 35625664 PMCID: PMC9138980 DOI: 10.3390/biom12050737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/01/2022] Open
Abstract
Since first being documented in ancient times, the relation of inflammation with injury and disease has evolved in complexity and causality. Early observations supported a cause (injury) and effect (inflammation) relationship, but the number of pathologies linked to chronic inflammation suggests that inflammation itself acts as a potent promoter of injury and disease. Additionally, results from studies over the last 25 years point to chronic inflammation and innate immune signaling as a critical link between stress (exogenous and endogenous) and adaptation. This brief review looks to highlight the role of the innate immune response in disease pathology, and recent findings indicating the innate immune response to chronic stresses as an influence in driving adaptation.
Collapse
|
2
|
Silva VAO, André ND, E Sousa TA, Alves VM, Do Carmo Kettelhut I, De Lucca FL. Nuclear PKR in retinal neurons in the early stage of diabetic retinopathy in streptozotocin‑induced diabetic rats. Mol Med Rep 2021; 24:614. [PMID: 34184090 PMCID: PMC8258468 DOI: 10.3892/mmr.2021.12253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/16/2021] [Indexed: 01/01/2023] Open
Abstract
Retinal neuron apoptosis is a key component of diabetic retinopathy (DR), one of the most common complications of diabetes. Stress due to persistent hyperglycaemia and corresponding glucotoxicity represents one of the primary pathogenic mechanisms of diabetes and its complications. Apoptosis of retinal neurons serves a critical role in the pathogenesis of DR observed in patients with diabetes and streptozotocin (STZ)‑induced diabetic rats. Retinal neuron apoptosis occurs one month after STZ injection, which is considered the early stage of DR. The molecular mechanism involved in the suppression of retinal neuron apoptosis during the early stage of DR remains unclear. RNA‑dependent protein kinase (PKR) is a stress‑sensitive pro‑apoptotic kinase. Our previous study indicated that PKR‑associated protein X, a stress‑sensitive activator of PKR, is upregulated in the early stage of STZ‑induced diabetes. In order to assess the role of PKR in DR prior to apoptosis of retinal neurons, immunofluorescence and western blotting were performed to investigate the cellular localization and expression of PKR in the retina in the early stage of STZ‑induced diabetes in rats. PKR activity was indirectly assessed by expression levels of phosphorylated eukaryotic translation initiation factor 2α (p‑eIF2‑α) and the presence of apoptotic cells in the retina was investigated by TUNEL assay. The findings revealed that PKR was localized in the nucleus of retinal ganglion and inner nuclear layer cells from normal and diabetic rats. To the best of our knowledge, the present study is the first to demonstrate nuclear localization of PKR in retinal neurons. Immunofluorescence analysis demonstrated that PKR was expressed in the nuclei of retinal neurons at 3 and 6 days and its expression was decreased at 15 days after STZ treatment. In addition, p‑eIF2‑α expression and cellular localization followed the trend of PKR, suggesting that this pro‑apoptotic kinase was active in the nuclei of retinal neurons. These findings are consistent with the hypothesis that nuclear translocation of PKR may be a mechanism to sequester active PKR, thus preventing upregulation of cytosolic signalling pathways that induce apoptosis in retinal neurons. Apoptotic cells were not detected in the retina in the early stage of DR. A model was proposed to explain the mechanism by which apoptosis of retinal neurons by PKR is suppressed in the early stage of DR. The possible role of mitochondrial RNA (mtRNA) and Alu RNA in this phenomenon is also discussed since it was demonstrated that the cellular stress due to prolonged hyperglycaemia induces the release of mtRNA and transcription of Alu RNA. Moreover, it mtRNA activates PKR, whereas Alu RNA inhibits the activation of this protein kinase.
Collapse
Affiliation(s)
| | | | - Thaís Amaral E Sousa
- Federal Institute of Education, Science and Technology of Goiás, Formosa, Goiás 73813-816, Brazil
| | - Vâni Maria Alves
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Isis Do Carmo Kettelhut
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Fernando Luiz De Lucca
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| |
Collapse
|
3
|
Bavelloni A, Focaccia E, Piazzi M, Raffini M, Cesarini V, Tomaselli S, Orsini A, Ratti S, Faenza I, Cocco L, Gallo A, Blalock WL. AKT-dependent phosphorylation of the adenosine deaminases ADAR-1 and -2 inhibits deaminase activity. FASEB J 2019; 33:9044-9061. [PMID: 31095429 DOI: 10.1096/fj.201800490rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Murine thymoma viral oncogene homolog (AKT) kinases target both cytosolic and nuclear substrates for phosphorylation. Whereas the cytosolic substrates are known to be closely associated with the regulation of apoptosis and autophagy or metabolism and protein synthesis, the nuclear substrates are, for the most part, poorly understood. To better define the role of nuclear AKT, potential AKT substrates were isolated from the nuclear lysates of leukemic cell lines using a phosphorylated AKT substrate antibody and identified in tandem mass spectrometry. Among the proteins identified was adenosine deaminase acting on RNA (ADAR)1p110, the predominant nuclear isoform of the adenosine deaminase acting on double-stranded RNA. Coimmunoprecipitation studies and in vitro kinase assays revealed that AKT-1, -2, and -3 interact with both ADAR1p110 and ADAR2 and phosphorylate these RNA editases. Using site-directed mutagenesis of suspected AKT phosphorylation sites, AKT was found to primarily phosphorylate ADAR1p110 and ADAR2 on T738 and T553, respectively, and overexpression of the phosphomimic mutants ADAR1p110 (T738D) and ADAR2 (T553D) resulted in a 50-100% reduction in editase activity. Thus, activation of AKT has a direct and major impact on RNA editing.-Bavelloni, A., Focaccia, E., Piazzi, M., Raffini, M., Cesarini, V., Tomaselli, S., Orsini, A., Ratti, S., Faenza, I., Cocco, L., Gallo, A., Blalock, W. L. AKT-dependent phosphorylation of the adenosine deaminases ADAR-1 and -2 inhibits deaminase activity.
Collapse
Affiliation(s)
| | - Enrico Focaccia
- IRCSS Istituto Ortopedico Rizzoli (IOR), Bologna, Italy.,National Research Council (CNR) of Italy, Institute of Molecular Genetics (IGM), Bologna, Italy
| | - Manuela Piazzi
- IRCSS Istituto Ortopedico Rizzoli (IOR), Bologna, Italy.,National Research Council (CNR) of Italy, Institute of Molecular Genetics (IGM), Bologna, Italy
| | - Mirco Raffini
- IRCSS Istituto Ortopedico Rizzoli (IOR), Bologna, Italy
| | - Valeriana Cesarini
- Oncohaematology Department, RNA Editing Laboratory, IRCCS-Ospedale Pediatrico Bambino Gesù, Rome, Italy; and
| | - Sara Tomaselli
- Oncohaematology Department, RNA Editing Laboratory, IRCCS-Ospedale Pediatrico Bambino Gesù, Rome, Italy; and
| | - Arianna Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Angela Gallo
- Oncohaematology Department, RNA Editing Laboratory, IRCCS-Ospedale Pediatrico Bambino Gesù, Rome, Italy; and
| | - William L Blalock
- IRCSS Istituto Ortopedico Rizzoli (IOR), Bologna, Italy.,National Research Council (CNR) of Italy, Institute of Molecular Genetics (IGM), Bologna, Italy
| |
Collapse
|
4
|
Pataer A, Shao R, Correa AM, Behrens C, Roth JA, Vaporciyan AA, Wistuba II, Swisher SG. Major pathologic response and RAD51 predict survival in lung cancer patients receiving neoadjuvant chemotherapy. Cancer Med 2018; 7:2405-2414. [PMID: 29673125 PMCID: PMC6010873 DOI: 10.1002/cam4.1505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 12/18/2022] Open
Abstract
In a previous study, we determined that major pathologic response (MPR) as indicated by the percentage of residual viable tumor cells predicted overall survival (OS) in patients with non-small-cell lung cancer (NSCLC) who received neoadjuvant chemotherapy. In this study, we assessed whether two genes and five protein biomarkers could predict MPR and OS in 98 patients with NSCLC receiving neoadjuvant chemotherapy. We collected formalin-fixed, paraffin-embedded specimens of resected NSCLC tumors from 98 patients treated with neoadjuvant chemotherapy. We identified mutations in KRAS and EGFR genes using pyrosequencing and examined the expression of protein markers VEGFR2, EZH2, ERCC1, RAD51, and PKR using immunohistochemistry. We assessed whether gene mutation status or protein expression was associated with MPR or OS. We observed that KRAS mutation tended to be associated with OS (P = .06), but EGFR mutation was not associated with OS. We found that patients with high RAD51 expression levels had a poorer prognosis than did those with low RAD51 expression. We also observed that RAD51 expression was associated with MPR. MPR and RAD51 expression were associated with OS in univariate and multivariate analyses (P = .04 and P = .02, respectively). Combination of MPR with RAD51 is a significant predictor of prognosis in patients with NSCLC who received neoadjuvant chemotherapy. We demonstrated that MPR or RAD51 expression was associated with OS in patients with NSCLC receiving neoadjuvant chemotherapy. Prediction of a patient's prognosis could be improved by combined assessment of MPR and RAD51 expression.
Collapse
Affiliation(s)
- Apar Pataer
- Department of Thoracic and Cardiovascular SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Ruping Shao
- Department of Thoracic and Cardiovascular SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Arlene M. Correa
- Department of Thoracic and Cardiovascular SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Jack A. Roth
- Department of Thoracic and Cardiovascular SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Ara A. Vaporciyan
- Department of Thoracic and Cardiovascular SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Ignacio I. Wistuba
- Department of Translational Molecular PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Stephen G. Swisher
- Department of Thoracic and Cardiovascular SurgeryThe University of Texas MD Anderson Cancer CenterHoustonTexas
| |
Collapse
|
5
|
Clinical and therapeutic potential of protein kinase PKR in cancer and metabolism. Expert Rev Mol Med 2017; 19:e9. [PMID: 28724458 DOI: 10.1017/erm.2017.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The protein kinase R (PKR, also called EIF2AK2) is an interferon-inducible double-stranded RNA protein kinase with multiple effects on cells that plays an active part in the cellular response to numerous types of stress. PKR has been extensively studied and documented for its relevance as an antiviral agent and a cell growth regulator. Recently, the role of PKR related to metabolism, inflammatory processes, cancer and neurodegenerative diseases has gained interest. In this review, we summarise and discuss the involvement of PKR in several cancer signalling pathways and the dual role that this kinase plays in cancer disease. We emphasise the importance of PKR as a molecular target for both conventional chemotherapeutics and emerging treatments based on novel drugs, and its potential as a biomarker and therapeutic target for several pathologies. Finally, we discuss the impact that the recent knowledge regarding PKR involvement in metabolism has in our understanding of the complex processes of cancer and metabolism pathologies, highlighting the translational research establishing the clinical and therapeutic potential of this pleiotropic kinase.
Collapse
|